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1. INTRODUCTION

Because the application of semiconducting field
transistors has almost reached its technological limit,
it has become necessary to for alternative materials
that for new�generation electronic devices. Such
promising systems include nanoheterostructures con�
taining layers of a ferromagnetic metal [1] or magnetic
semiconductors [2], as well as Josephson�type systems
[3–5]. In data recording and storage, this problem can
be solved, in particular, by designing new memory sys�
tems that would have better basic parameters (such as
the size, energy consumption, reading time, and num�
ber of rewriting cycles) as compared to those of exist�
ing semiconducting samples (e.g., flash memory
cards).

As a result of considerable advances in technology
and substantial enhancement of experimental poten�
tial, magnetic atomic and molecular complexes, as
well as individual particles, have become objects of
keen interest in recent decades. Such structures are
either adsorbed in the region of a break junction [6] or
are located on the surface; they are probed by a scan�
ning tunnel microscope (STM) [7]. Sometimes, a
magnetic ion is placed into a quantum dot (QD) [8].
The role of such a center can be played by an atom of
a transition or rare�earth metal (e.g., Co, Mn, Fe, or
Ce), as well as a molecule in which the magnetic core
is surrounded by ligands (e.g., phthalocyanines of Co
and Fe; Mn12).

STM experiments with magnetic systems on the
atomic scale have revealed a number of resonance
effects in the transport characteristics of these struc�
tures. The origin of such peculiarities is associated
with inelastic scattering of electrons due to the inter�
action of their spins with the spin moments of the
atomic structure [9]. It was shown that the spin�flip
scattering of transported electrons from the potential
profile of the structure makes it possible to control its
magnetic states [10]. The experiments demonstrated
that the spin state of systems in principle can be con�
trolled down to an individual atom. In particular, the
possibility of recording and reading information on an
antiferromagnetic chain of eight atoms by passing a
spin�polarized current from the STM point contacting
an individual atom of such a chain was demonstrated
in [11]. Thus, a magnetic bit on the atomic scale has
been realized without applying an external magnetic
field for recording information, which is required for
magnetic domains in contemporary hard disks.

Experimental data show that in the theoretical
analysis of transport properties of an atomic�scale sys�
tem, the processes of the transition of these systems
into excited states should be taken into account. Such
transitions are induced due to the interaction of elec�
trons being transported with the charge and spin
degrees of freedom of the system. As a result, a situa�
tion arises in which the passage of the tunnel current
leads to a distribution of the energy level populations
of the system, which differs significantly from the
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equilibrium distribution. In particular, the inclusion of
charge and spin correlations under nonequilibrium
conditions leads to such effects as the Coulomb block�
ade and Kondo resonance [12, 13]. It was shown ear�
lier that the existence of vibrational degrees of freedom
of a molecule is manifested as a modification of its
current–voltage (I–V) characteristics due to excita�
tion of a molecule by the tunnel current passing
through it [14, 15].

Since atomic�scale structures in actual conditions
are in a tunnel junction with metal electrodes, the sta�
tistical properties of electron ensembles in such elec�
tron ensembles should be taken into account. This
means that electron scattering from a magnetic struc�
ture should be calculated taking into account the fact
that the interaction of previous electrons with the
structure could generally change its potential profile.
As a result of multiple repetition of scattering of elec�
trons from the renormalized potential profile of the
structure, a nonequilibrium distribution of occupancy
of the states that sets in a magnetic structure differs sig�
nificantly from the initial equilibrium distribution.
Accordingly, some I–V characteristics are renormal�
ized and become dependent on the properties of the
tunnel�current�induced nonequilibrium state of the
magnetic structure, indicating the existence of transi�
tions between excited states [10]. An additional factor
that should be taken into account in describing the
transport properties of magnetic atomic structures is
the influence of the crystal surroundings in the mag�
netic properties of the adsorbate. In particular,
depending on the strength and type of the bond
between an adatom and the substrate, the anisotropy
type may change [16] or the magnetic moment can be
screened due to Kondo correlations [17].

In this study, we solve the problem of the I–V char�
acteristic of an adsorbed atom that exhibits anisotropy
in magnetic properties due to the effect of the substrate
in an external magnetic field H at a finite temperature
with allowance for the above�mentioned factors. The
results of calculating the I–V characteristic for H = 0
were briefly described in [18]. The nonuniform spacing
of a large number of states of the “magnetic atom +
electrons” system is taken into account exactly using
the atomic representation and the description of
dynamic processes in terms of the Hubbard operators
[12, 19, 20]. The nonequilibrium occupation numbers
for the states of the magnetic structure under investi�

gation is calculated using the solution to a closed sys�
tem of kinetic equations obtained using the Keldysh
diagram technique [21] both for the Fermi and Hub�
bard operators [19, 20]. It is modified by introducing
the Keldysh contour for the nonequilibrium case [22,
23]. Such an approach makes it possible to take into
account multiple scattering of electrons in all orders of
perturbation theory in the parameter of coupling of
the structure to contacts, and to obtain the expression
for current satisfying the necessary symmetry proper�
ties [15]. Calculations show that the I–V characteristic
of a magnetic impurity in the tunnel regime has seg�
ments with a negative differential conductivity
(NDC). It is noted that a change in the anisotropy
parameter of the impurity and the asymmetry of the
coupling with the contacts can enhance the NDC
effect. It is shown that the application of magnetic
field increases the number of Coulomb steps and con�
tributed to the occurrence of considerable magnetore�
sistance of the system.

2. HAMILTONIAN OF THE SYSTEM

Let us consider tunnel transport of electrons
through a magnetic impurity with spin S = 1 in an
external magnetic field H in the geometry shown in
Fig. 1. Such a configuration corresponds to some of
the above�mentioned experiments, in which trans�
ported electrons interact with magnetic impurities.

The Hamiltonian of such a system in external mag�
netic field H can be written in the form

(1)

Operators  and  appearing in the expression for

 describe conduction electrons in the left and right
metal contacts, respectively,

(2)

where ckσ(dpσ) is the electron annihilation operator for
the left (right) contact with wavevector k(p) and spin
projection σ; ξLkσ = εLk – σgeμBH – μ and ξRpσ = εRp –
σgeμBH – μ are the one�electron energies in the left
and right contacts, respectively, which are measured
from chemical potential μ and take into account
energy splitting in the electron spin projection σ =
±1/2 in the magnetic field; ge is the electron g factor in
the contacts, and μB is the Bohr magneton. From here
on, we will assume that the contacts are one�band
paramagnetic metals with bandwidth W = 4  ~ 1 eV
(t is the overlap integral for the electron wavefunctions
at the neighboring sites in the contacts) considerably
exceeding the characteristic energy parameters in the
system.
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Fig. 1. Magnetic impurity with spin S located between two
metal contacts.
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The second term in the expression for  is the
Hamiltonian of the magnetic impurity (structure),

(3)

where ξdσ = εd – σgeμBH – μ is the spin�dependent
energy (measured from the chemical potential) of an
electron located on the impurity in external magnetic
field H; εd is the initial one�electron energy of the

impurity atom; nσ = aσ is the operator of the num�
ber of electrons at an impurity center with spin projec�

tion σ; (aσ) is the electron creation (annihilation)
operator on the impurity atom with spin projection σ;
and parameter U characterizes the Hubbard repulsion
of two electrons with opposite spin projections. The
effect of the crystal surroundings on the magnetic
properties of the impurity [17] is simulated by intro�
ducing the uniaxial anisotropy parameter D. The
action of the magnetic field on the energy structure of
an impurity center with the effective g factor is
described by the last but one term in Eq. (3). The
interrelation between the spin degrees of freedom of
the electron being transported and the impurity atom
is effected via the mechanism of s – d( f) exchange
coupling. It is described by the last term in Eq. (3), in
which S is the vector operator of the spin moment of
the impurity and σ is the vector spin operator of the
transported electron. The intensity of s – d( f)
exchange coupling is determined by parameter A. It is
well known that scalar product σ ⋅ S contains the oper�
ator terms corresponding to inclusion of spin�flip pro�
cesses, in which the spin projections of the impurity
and the electron change simultaneously; the total
value of the z projection of the spin of the entire system
is conserved. The importance of such processes is, in
particular, due to the fact that the potential profile of
the scattering center changes owing to these processes.
This is manifested, for example, in the induction of the
Fano effect [24]. It will be shown below that such pro�
cesses in our case considerably affect the I–V charac�
teristic of the system.

The coupling of the magnetic impurity with the
metal contacts is described by the second term of the
Hamiltonian of system (1) by taking into account
electron tunneling between the contacts and the mag�
netic impurity:

(4)

Here, tLk and tRp are the parameters of coupling of the
left and right contacts with the impurity, respectively.

Ĥ0

ĤD ξdσnσ Un↑n↓ D Sz( )
2

+ +
σ

∑=

– SzgμBH A σ S⋅( ),+

aσ
†

aσ
†

T̂ tLkckσ
† aσ tRpdpσ

† aσ h.c.+
pσ

∑+
kσ

∑=

Last term  in the total Hamiltonian of the sys�
tem, which is due to the application to the metal con�
tacts of bias voltage V, is defined as

(5)

3. HILBERT SPACE OF STATES
OF AN ISOLATED SYSTEM

AND ATOMIC REPRESENTATION

Calculation of the transport characteristics of the
system using the Keldysh method [21] is based on
application of the diagram form of perturbation theory
for a nonequilibrium system, in which the time inte�
grals appearing in the S matrix are defined on Keldysh
contour C (Fig. 2). The structure of the diagram series
is known to depend not only on the perturbation oper�
ator in the interaction representation, but also on the
zeroth�approximation Hamiltonian. If we describe
the Hamiltonian of the system in the initial language
of Fermi second�quantization operators, as well as
spin operators, the above formulas lead to the conclu�
sion that the Hamiltonian of the system is not a diag�
onal operator. This considerably complicates averag�
ing over the density matrix corresponding to the
unperturbed Hamiltonian in the above representation.

This technical difficulty can be overcome by pass�

ing to the atomic representation, in which 
becomes a diagonal operator. It is well known that the
construction of such a representation involves the
complete orthonormal set of wavefunctions  (in
our case, n = 1, 2, …, 12) as the basis vectors of the Hil�
bert space of states of the system. In this case, func�

tions  satisfy the Schrödinger equation  =

 with operator , in which bias voltage V is

zero. If we introduce Hubbard operators Xnm =
, the Hamiltonian of the system in the atomic

representation constructed in this wave assumes the
diagonal form

(6)

Since the operator of the number of electrons in the

system commutes with , the basis vectors of the
space of states of the system can be like sets of vectors

V̂ϕ

V̂ϕ eV/2( )aσ
† aσ

σ

∑ eV( )dpσ
† dpσ.
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∑+=

ĤD
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Fig. 2. Temporal Keldysh contour C.
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in each of which the basis vector describes a state with
a fixed number of electrons in the system (0, 1, or 2).
Accordingly, the Hilbert space of the states of the sys�
tem splits into three sectors.

The sector with zero number of electrons is defined
as the space of states specified by an arbitrary linear
superposition of three basis vectors (S = 1):

(7)

The ket�vector on the right�hand side of these and
subsequent expressions is used to identify the states
with a preset number of electrons and the spin projec�
tion of the impurity. The first index of the ket�vector
for this sector corresponds to the absence of electrons
in the system. The second subscript on the ket�vector
indicates the projection of the impurity spin.

The one�fermion sector of the Hilbert space is

defined by a set of six eigenfunctions of operator :

(8)

where the first index on the ket�vector shows the spin
orientation of the electron located on the impurity.
The expansion coefficients have the form

(9)

The effect of the magnetic field is manifested in the
dependence of these expressions on h. For real sys�
tems, the conditions in which the energy of the Zee�
man interaction is lower than the parameters of the
model hold in most cases. Then in the approximation
linear in h, we can easily establish the explicit depen�
dence of the expansion coefficients on the magnetic
field:

(10)

ψ1 0 0,| 〉, ψ2 3, 0 1±,| 〉.= =

ĤD

ψ4 Θ+ ↑ 0,| 〉cos Θ+ ↓ +1,| 〉,sin–=

ψ5 Θ– ↓ 0,| 〉cos Θ– ↑ 1–,| 〉,sin–=

ψ6 A( ) Θ+ ↑ 0,| 〉sin Θ+ ↓ +1,| 〉cos–( ),sgn=

ψ7 A( ) Θ– ↓ 0,| 〉sin Θ– ↑ 1–,| 〉cos+( ),sgn=

ψ8 ↑ +1,| 〉, ψ9 ↓ 1–,| 〉,= =

Θ±sin A( )
1 x±+

2
�����������,sgn=

Θ±cos
1 x±–

2
�����������,=

x± Δ±/ν±, ν± Δ±
2 A2

/2+ ,= =

Δ± Δ g/2 1–( )h, Δ± A/4 D/2,–= =

h μBH.=

Θ±sin Θsin g
2
�� 1–⎝ ⎠
⎛ ⎞ h1 x–

2ν
��������� Θ,sin±≈

Θ±cos Θcos g
2
�� 1–⎝ ⎠
⎛ ⎞ h1 x+

2ν
��������� Θ,cos+−≈

Θsin A( ) 1 x+
2

���������, Θcossgn 1 x–
2

���������,= =

The basis vectors of the two�electron sector are
defined as

(11)

The energy eigenvalues Ei of the system (i = 1, 2, …,
12) corresponding to eigenstates ψi can be written in
the form

(12)

For one�fermion excitations of the magnetic impu�
rity, transitions between states ψi for which the num�
bers of electrons differ by unity take place. For each
spin projection, ten such transitions exist. In the given
problem, the magnetic�field dependences of the
energy differences of the above transitions play an
important role. This is due to the fact that the energy
splitting in one�fermion transitions in a magnetic field
for electrons with different spin projections underlies
the variation of the dependence of the occupation
numbers on the electric field (see below) and deter�
mines the formation of additional steps on the I–V
curve. Bearing this in mind, we can write the explicit
dependence of transition energies on h with the above�
mentioned accuracy. For σ = +1/2, we have

(13)

where g± = g/2 ± Δ(g/2 – 1)/ν. For σ = –1/2, we have

(14)

x Δ
ν
���, ν Δ2 A2

2
����+ .= =

ψ10 2 0,| 〉, ψ11 12, 2 1±,| 〉.= =

E1 0, E2 3( ) D gh,+−= =

E4 5( ) ξd↑ ↓( ) Δ±– ν±,–=

E6 7( ) ξd↑ ↓( ) Δ±– ν±,+=

E8 9( ) ξd↑ ↓( ) D A/2 gh,+−+ +=

E10 2ξd U, E11 12( )+ 2ξd U D gh.+−+ += =

E1 4, E1 E4 Δ ν ξd– g+h,+ +≈–=

E1 6, Δ ν– ξd– g–h,+≈

E3 5, Δ ν D ξd– g–h,+ + +≈

E3 7, Δ ν– D ξd– g+h,+ +≈

E2 8, A/2 ξd h–+( ),–=

E4 11, Δ ν U D ξd+ + + +( )– g–h,+≈

E5 10, Δ ν U ξd+ + +( )– g+h,+≈

E6 11, Δ ν– U D ξd+ + +( )– g+h,+≈

E7 10, Δ ν– U ξd+ +( )– g–h,+≈

E9 12, U A/2– ξd h–+( ),–=

E1 5, Δ ν ξd– g+h,–+≈

E1 7, Δ ν– ξd– g–h,–≈

E2 4, Δ ν D ξd– g–h,–+ +≈

E2 6, Δ ν– D ξd– g+h,–+≈

E3 9, A/2 ξd h+ +( ),–=

E4 10, Δ ν U ξd+ + +( )– g+h,–≈

E5 12, Δ ν U D ξd+ + + +( )– g–h,–≈
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Using these formulas, we can easily write the
atomic representation of Fermi operator aσ in terms of
the Hubbard operators introduced above:

(15)

To simplify the form of subsequent expressions, we
have introduced the representation parameters
γσ(n, m) =  and have passed from the sum�
mation over two indices (n, m) to single index α(n, m)
[20]. Taking into account the real nature of γσ(n, m)
(see below), we find that the following representation
is realized for the creation operator:

(16)

Evaluating matrix elements , we obtain

(17)

Comparing expressions (17) and (15), we can deter�
mine the values of nonzero parameters γ↑(α) and γ↓(α)
of the representation.

4. FORMULA FOR CURRENT AND SPECTRAL 
FUNCTIONS OF THE SYSTEM

We will calculate tunnel current I through a mag�
netic impurity using the nonequilibrium Keldysh dia�
gram technique [21], in which the role of the unper�
turbed operator is played by operator H0 alone, and all
perturbations are transferred to the tunneling opera�
tor. This is performed using the unitary transformation

E6 10, Δ ν– U ξd+ +( )– g–h,–≈

E7 12, Δ ν– U D ξd+ + +( )– g+h,–≈

E8 11, U A/2– ξd h+ +( ).–=

aσ ψn〈 |aσ ψm| 〉Xn m,

n m,

∑=

≡ γσ n m,( )Xn m,

n m,

∑ γσ α( )Xα
.

α

∑≡

ψn〈 |aσ ψm| 〉

aσ
† γσ α( )X α–

, α n m,( )–
α

∑ α m n,( ).= =

ψn〈 |aσ ψm| 〉

a↑ A( )X1 6,sgn X4 11,–[ ] Θ+sin=

+ X1 4, A( )X6 11,sgn+[ ] Θ+cos X2 8,+

+ A( )X7 10,sgn X3 5,–[ ] Θ–sin

+ X5 10, A( )X3 7,
sgn+[ ] Θ– X9 12,

,+cos

a↓ X2 4, A( )X6 10,sgn+[ ] Θ+sin–=

+ A( )X2 6,sgn X4 10,–[ ] Θ+cos X3 9,+

+ A( )X1 7, X5 12,+sgn[ ] Θ–sin

+ X1 5, A( )X7 12,
sgn–[ ] Θ–cos X8 11,

.–

[22], as a result of which we pass from density matrix
ρ(t) to density matrix ρϕ(t):

(18)

Here and below, � = 1. Then the tunneling operator
acquires the time dependence

(19)

Consequently, the expression for calculating current I
also contains the temporal factor,

(20)

where  =  is the operator of the number

of electrons in the left contact. Angle brackets denote
averaging with density matrix ρϕ(t).

Following [21], we introduce the scattering matrix

(21)

where the tunneling operator is written in the interac�
tion representation:

(22)

The integration in formula (21) is carried out over the
Keldysh contour shown in Fig. 2. The operator of
ordering in TC is also defined on this contour [21]. In

writing tunneling operator (t), we used the transi�
tion from operators aσ to the Hubbard operators. This
is due to the fact that the time dependence Xα(τ), as
well as of operators ckσ(τ) and dpσ(τ) in the interaction
representation, can be reduced to multiplication by
the c�numerical function, while this rule does not exist
for aσ(τ) (this prevents from the construction of the
Feynman diagram technique using operators aσ). If
α = α(n, m), we have Xα(τ) = Xαexp[i(En – Em)τ] ≡
Xαexp[iEατ]. Such a simple time dependence makes it
possible to formulate the Wick theorem required for
obtaining recurrent relations in expanding the mean
value of the product of the Hubbard operators from the
zeroth�order density matrix.

ρϕ t( ) iVϕt–( )ρ t( ) iVϕt( ).expexp=

T̂ϕ t( ) tLke ieVt/2– ckσ
† aσ

kσ

∑=

+ tRpe+ieVt/2dpσ
† aσ

pσ

∑ h.c.+

I e dN̂L

dt
��������=

=  ie tLk aσ
† ckσ〈 〉eieVt/2

h.c.–( ),
kσ

∑

N̂L ckσ
† ckσkσ∑

SC TC i T̂I τ( ) τd

C

∫–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp=

T̂I τ( ) tLkγσ α( ) e ieVτ/2– ckσ
† τ( )Xα τ( ) h.c.+[ ]

kσ α,

∑=

+ tRpγσ α( ) eieVτ/2dpσ
† τ( )Xα τ( ) h.c.+[ ].

pσ α,

∑

T̂I
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Let us define four families of nonequilibrium
Green’s functions:

(23)

for which each superscript a and b can assume two val�
ues “+” or “–.” The first superscript a corresponds to
time τa of the first operator appearing in the mean
value ordered over the Keldysh contour. This means
that for a = +(–), operator ckσ(τa) or Xα(τa) in the
interaction representation is taken at instant τ on the
upper (lower) branch of the Keldysh contour. Analo�

gously, for b = +(–), operator X–α( ) or ( ) is

taken at instant τ' on the lower (upper) branch of the
Keldysh contour.

Using representations (15) and (16) and functions

 and  introduced above, we find that the

expression for the current can be written in the form

(24)

Expanding scattering matrix SC in relations (23), we
can easily verify the validity of the equations:

(25)

Using these equations and performing the Fourier
transformation over temporal arguments, we can

Rkσ α,
ab τ τ ',( ) i TCckσ τa( )X α– τb'( )SC〈 〉 0,–=

Rα kσ,
ab τ τ ',( ) i TCXα τa( )ckσ

† τb'( )SC〈 〉 0,–=

Dα β,
ab τ τ ',( ) i TCXα τa( )X β– τb'( )SC〈 〉 0,–=

GLkσ
ab τ τ ',( ) i TCckσ τa( )ckσ

† τb'( )〈 〉 0,–=

τb' ckσ
† τb'

Rkσ α,
ab Rα kσ,

ab

I e tLkγσ α( ) eieVt/2RLkσ α,
++ t t δ+,( ){

kσ α,

∑=

– e ieVt/2– Rα Lkσ,
++ t t δ+,( ) }, δ +0.

Rkσ α,
++ t t ',( ) tLkγσ β( )

β

∑=

× τ GLkσ
++ t τ–( )Dαβ

++ τ t '–( ){d

∞–

∞

∫

– GLkσ
+– t τ–( )Dαβ

–+ τ t '–( ) }e ieVτ/2–
,

Rα kσ,
++ t t ',( ) tLkγσ β( )

β

∑=

× τ Dαβ
++ t τ–( )GLkσ

++ τ t '–( ){d

∞–

∞

∫

– Dαβ
+– t τ–( )GLkσ

–+ τ t '–( ) }eieVτ/2
.

obtain the following convenient expression for the
current:

(26)

Here, we have introduced the spectral functions of the
system,

(27)

as well as the spectral functions for the tunnel coupling
of the left contact with the system:

(28)

where  are the initial Green functions of the left
contact:

(29)

Here,

Expression (26) shows that to determine the tunnel
current, we must solve the problem of calculating

spectral functions (ω) and (ω) of the system.
It should be noted that the sums over α and β appear�
ing in the definitions correspond to the inclusion of
the contributions to the current from the transitions of
the system between its states.

5. CALCULATION OF SPECTRAL
FUNCTIONS OF THE SYSTEM

The derivation of equations for Green’s functions

 can be simplified taking into account the follow�
ing two factors. First, operator H0 is additive relative to
the subsystems of two contacts and the system. There�
fore, the mean value of the product of the Fermi and
Hubbard operators splits into the product of the mean
values, each of which contains an operator of only one
type. The second factor appears due to the fact that the

terms of the series for (τ – τ') appearing as a result
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of expansion of density matrix SC vanish when opera�

tor  on average appears an odd number of times.
The mean values of the products of the Fermi opera�
tors in even�order terms can easily be evaluated. As a
result, the infinite series can be contracted into an

exponential so that the definition of  contains the

renormalized scattering matrix :

(30)

which can be defined from the effective interaction
corresponding to only the subsystem of the system and
expressed in terms of the Hubbard operators:

(31)

It should be noted that an analogous procedure was
used earlier to determine the Green’s functions of
quasi�localized electrons in the Anderson model [25].

The matrix elements of the effective interaction
depend on two temporal arguments defined on the
Keldysh contour:

(32)

The above transformations show that in determining

nonequilibrium Green’s functions , we can use
the diagram technique for the Hubbard operators [19,
20], modified in accordance with the Keldysh method
[21].

It is important for further analysis that quantum
transport of electrons involves scattering processes
accompanied by a change in the state of the system. As
a result, an electron arriving at the system from the left
contact can pass to the right contact or return to the
left contact, after which it can tunnel to the region to
the system again. Such processes may initiate a transi�
tion of the system to excited states. Multiple scattering
effects will be taken into account by retaining the
terms of all orders in the parameters of tunnel coupling
of the system with left and right contacts in perturba�

tion theory series for . In diagrammatic language,

this means that functions  must satisfy the system
of equations in graph form well known for Hubbard

T̂I

Dαβ
ab

S̃C

Dαβ
ab τ τ '–( ) i TCXα τa( )X β– τb'( )S̃C〈 〉 0,–=

S̃C TC i τ1 τ2d

C

∫d

C

∫–
⎩
⎨
⎧

exp=
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systems [19, 20], depicted in Fig. 3. Using the defini�
tion of Keldysh contour C (see Fig. 2), we find that the

graph system of equations for  in the frequency
representation (see Fig. 3) corresponds to the analytic
system

(33)

The solution to this system of a large number of linear
equations is substantially simplified if we take into
account the following two factors. The first factor is
that the dependence of the matrix elements of the
interaction on the root vectors is of the split type:

(34)

where

(35)

In this case, using the technique described in [26], we
can reduce the problem to solving a simple system of
equations. The second factor is that we consider the
collinear geometry of the problem, in which the exter�
nal magnetic field is oriented along the anisotropy
axis. In this case, the z projection of the total spin
operator commutes with the Hamiltonian of the sys�
tem, which allows us to classify the states of the system
from the value of this projection. Then γ↑(α)γ↓(α) ≡ 0

for all transitions, and functions (ω) =

(α)γσ'(α) (ω) = δσσ' (ω) are diagonal

functions in the spin index. Therefore, the solution to
the system of equations for the nonequilibrium
Green’s functions splits into two independent sub�
systems for each projection of the spin.
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× Ṽαγ
++
ω( )Dγβ

+– ω( ) Ṽαγ
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Fig. 3. System of equations for nonequilibrium functions
Dαβ.
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In the noncollinear case, however, off�diagonal

components (ω) and (ω) ≠ 0 differ from zero
and the spectral functions of the system can be deter�
mined by solving the set of four equations.

Quantity (ω) was calculated earlier, and

(36)

is the spectral function of the tunnel coupling of the
right contact with the system.

Applying the Keldysh method [21] to system of
equations (33) for the nonequilibrium Green’s func�
tions, we obtain

(37)

where

(38)

The appearance of functions
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in these expressions is associated with the possibility of
transitions between eigenstates of the system. Initial

functions (ω) of the system appearing in this
expression are defined as

(39)

It should be noted that quantity Eα denotes the energy
difference between levels n and m (i.e., Eα = En – Em

for α = α(n, m)). The effect of the magnetic field on
the transition energies essential for the given problem
is determined by formulas (13) and (14). A transition
of the system from state n to state m becomes effective
only when the value of ω is close to the above energy

difference. In this case, function (ω) has a pole
singularity. The number of such poles determines the
number of possible transitions manifested in the I–V
characteristic. Significantly, in zero magnetic field, we

have (ω) = (ω) because the positions of the
poles and the values of the representation parameters
for both functions coincide in this case. The applica�
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Fig. 4. Dependence of nonequilibrium occupation numbers on the electric field energy for parameters tL = tR = t/100, εd = A =

0.005 , D = 0.003 , U = 0.01 , T = 1 K, g = 2, and h = 0. The inset shows possible electron transitions between energy levels
of the system.
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tion of a magnetic field leads to splitting of the energy
levels. As a result, the change in the energy of the sys�
tem upon a transition of an electron from a contact to
the system becomes a function of the electron spin
projection. Therefore, the number of the observed
transitions accompanied with an increase in the num�
ber of steps on the I–V curve increases in the magnetic
field. Since these peculiarities are manifested above all

in function (ω), we can demonstrate this effect as
follows. Let us consider the terms

appearing in functions (ω) and (ω) and cor�
responding to transitions (2, 8) and (3, 9). It can be
seen that in zero magnetic field, the above terms
have the same pole ω = ω0 = A/2 + ξd corresponding
to these transitions. In a magnetic field, however,
two transitions initiated by two poles (ω = )
appear. It is this scenario that determines the occur�
rence of additional steps on the I–V curves upon
application of magnetic field. In addition, the pecu�
liarities considered here underlie the modification of
the dependence of the occupation numbers on the
electric field upon the application of h (see Fig. 5
below). It should be noted that the qualitative pat�
tern of the effect of the magnetic field for other terms

of functions (ω) and (ω) does not differ from
this pattern.

Constructing the system of equations for functions

(ω) and (ω) analogously and solving it, we
obtain

(40)

6. CURRENT AND SYSTEM
OF QUANTUM KINETIC EQUATIONS

FOR OCCUPATION NUMBERS

Using the expressions derived above for the spectral
functions of the system, we arrive at the following for�
mula for current:
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Writing the components of mass operator (ω)
in explicit form, we obtain

(42)

where

(43)

Function Λσ is responsible for the radiation shift of the
energy levels of the system due to the effect of the left
and right contacts. As noted above, in discussing the
terms in the Hamiltonian of the system, we use here
the assumption that the contacts are broadband met�
als. This allows us in specific calculations to disregard
the shift Λσ as well as the frequency dependence of
level�broadening functions Γσ = ΓLσ + ΓRσ =

π( gLσ + gRσ) [27]. In this expression, tL(R) is the
parameter of electron hopping from the last site of the
left (right) contact to the level of the magnetic atom
and gL(R)σ is the spin�dependent density of states of the
left (right) contact. An important property of expres�
sion (42) derived for the current is associated with its

proportionality to product  and, hence, meets the
necessary physical requirements [13].
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To derive the system of kinetic equations for occu�
pation numbers, we will use the relation

(44)

Calculating function (ω) in accordance with the

technique described above, we obtain

(45)

where ωα = ω + Eα – eV/2. In writing this equation,
we used the following property: in the collinear geom�
etry of the problem considered here, only one of two

parameters (α) and γ↓(α) of the representation for

each one�fermion transition differs from zero. For this
reason, we choose the value of spin projection σ for the
quantities appearing in expression (45), such that
γσ(α) ≠ 0.

We will confine further analysis to only the trans�
port properties of the magnetic system for the regime
of the tunnel coupling between the system and a con�
tact at low temperatures. This case is observed in
experiments most often [28, 29]. In the mathematical
language, this regime corresponds to the fulfillment of
the inequalities T, Γσ � Eα, which indicates small val�
ues of the temperature and energy level broadening as
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compared to the spacing between these levels. In this
case, we can write

(46)

where the following notation has been introduced:

It can easily be verified that under the above assump�
tions, the main contribution to the tunnel current
comes from diagonal terms (I ≈ ); therefore,

(47)

7. TRANSPORT PROPERTIES
OF A MAGNETIC IMPURITY

In numerical calculations, all energy parameters
were measured in the units of . It follows from
experimental [30–32] and theoretical [33, 34] publi�
cations that the model parameters satisfy the following
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Fig. 6. I–V curves for a magnetic atom for parameters from Fig. 5: (a) D = 0.003  and (b) D = –0.003 . The insets in (a) and
(b) show the magnetoresistance of the structure and a segment on the I–V curve with a NCD.
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relations: ,  > , , , . This range of
parameters also includes the relations for which the
condition Γσ � Eα of the tunnel coupling between the
system and the contacts is observed. Since W � h, we
assume that gLσ = gRσ = 1/W [27].

Let us first consider the results of numerically solv�
ing the set of kinetic equations for occupation num�
bers, which were determined under the condition

 = 1. Figure 4 shows the dependences of the

nonequilibrium occupation numbers N of the states of
the “electrons + magnetic impurity” system on the
energy eV of the electric field for h = 0.

We assume for definiteness that in equilibrium (tL =
tR = 0), the ground state of the system under investiga�
tion for D > 0 is the state free of electrons with Sz = 0,
ψ1 (N1 ≈ 1). Then, under nonequilibrium conditions in
which multiple inelastic scattering processes are acti�
vated, the upper energy states of the magnetic impurity
must be populated. This is demonstrated in Fig. 4. It
can be seen that N1 starts deviating considerably from
the equilibrium value even at zero voltage. To find the
reason for the peculiarities appearing in the behavior
of the occupation numbers and the current for V ≠ 0,
we must analyze the corresponding analytic expres�
sions (46) and (47). Since W/2 � Eα, eV/2 � λα, κα,
the main effects are observed in the range of eV/2 ~ Eα.
Indeed, disregarding small corrections to energy Eα <
0 (> 0) of transition α, we can see that in the tunnel
regime for eV/2 < Eα and tL = tR, the upper level
remains unfilled, Nm = 0 (Nn = 0), and the contribu�
tion to the current from this transition is zero (Iαα = 0).
In turn, when eV/2 > Eα, the population of levels is the
same (Nn = Nm) and the contribution to the current
from such a channel is other than zero (Iαα =

2eΓLσΓRσbα (α)/Γσ). Let us return to Fig. 4. The
lowest transition energy is E3, 5 ≈ 0.0013. However,
with increasing V, in region eV/2 ~ E3, 5, no significant
changes are observed in the population probability dis�
tribution of the levels and in the I–V characteristic
(see the dotted curve in Fig. 6a below). This is due to
the fact that lower�lying states ψ4, 5 (see the dashed
curve in Fig. 4) are almost empty. The population of
these states becomes significant only when the electric
field energy approaches the doubled energy of the next
transition (E1, 4 ≈ ⎯0.0017). As a result, states ψ4, 5 and
ψ2, 3 are populated simultaneously (dotted curve in
Fig. 4). It can be seen that the corresponding step sin�
gularity appears on the I–V curve also.

The inset to Fig. 4 shows the arrangement of all
energy levels of the system for the chosen parameters.
Arrows with digits show possible transitions with a
change in the number of electrons by unity. The transi�
tion number corresponds to the number of a step singu�
larity on the curve. In particular, arrows with digits 1 and
2 denote the transitions between the states of the zero�

tL tR A D εd h

Nii 1=
12∑

γσ
2

electron and one�electron sectors of the Hilbert space
considered above. As the voltage increases, new and new
channels corresponding to one�electron and two�elec�
tron states are involved in the transport. For large values
of eV, the populations of all states become equiprobable.
The I–V curve has the step form typical of the regime of
weak coupling of the nanostructure with the contacts,
which was observed in experiments [28, 29]. It is impor�
tant that the disregard of nonequilibrium excitation of
the magnetic atom as a result of inelastic scattering of
charge carriers leads to a much simple I–V characteristic
(see the dashed curve in Fig. 6a below).

When the magnetic field is applied, the degeneracy
in energy for the states of the system with opposite
projections of the total spin is removed in accordance
with expression (12). Consequently, the energies of the
transitions associated with these states also become
different. In this case, the excited state with the total
spin projection of the same polarity as that of the mag�
netic field is activated sooner than the state with the
total spin projection of the opposite sign. This is
depicted in Fig. 5, which shows the N8, 9(eV) depen�
dences disregarding (solid curve) and taking into
account (dashed and dotted curves, respectively) the
magnetic field. The nonequilibrium occupation num�
bers of other states that are degenerate for h = 0 behave
analogously after the application of the magnetic field.
As a result, the number of the Coulomb steps on the I–
V curve increases, which is clearly seen from compar�
ison of the solid (h ≠ 0) and dotted (h = 0) curves in
Fig. 6a. As a result of modification of the I–V charac�
teristic, instead of the plateau on the I–V curve in zero
magnetic field, current jumps can take place for h ≠ 0.
Thus, the system under investigation possesses a mag�
netoresistance MR = (G(h)/G(0) – 1) × 100% (G =
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⎯0.003 |. The inset shows the magnetoresistance of the
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dI/dV is the differential conductivity) with an ampli�
tude that can reach 105% (see the inset to Fig. 6a).

The I–V curves in Fig. 6b for h = 0 and h ≠ 0 (the
dotted and solid curves, respectively) plotted for the
opposite sign of the anisotropy parameter of the mag�
netic impurity (D < 0) contain segments with a nega�
tive differential conductivity (NDC). Two such seg�
ments are shown in detail in the inset to Fig. 6b. As
noted above, for electric field energy eV/2 ~ Eα, the

I⎯V curve exhibits a jump on the order of Iαα =

2eΓLσΓRσbα (α)/Γσ, which is associated with the
population of a new excited state of the system. How�
ever, since the completeness condition must be satis�
fied in the nonequilibrium regime, occupation num�
bers differing from zero at lower voltages decrease. For
this reason, the total current may decrease even when
an additional channel for the electron transport is acti�
vated. As a result, the condition for the emergence of a
NDC has the form

(48)

Thus, by changing the crystal surroundings of a mag�
netic atom or a molecule (e.g., by placing them in
topologically nonequivalent positions on the substrate
[17]), we can substantially modify the transport prop�
erties of atomic�scale systems.

If the mutual variation of the “new” and “old”
occupation numbers is especially significant, this leads
to enhancement of the NDC effect. Such a situation is
observed in the case of asymmetry in the tunnel cou�
pling of contacts with the structure (tL > tR, ΓLσ � ΓRσ).
Figure 7 shows the I–V curves for an asymmetric cou�
pling between the magnetic structure and the contacts
in zero (dotted curve) and nonzero (solid curve) mag�
netic fields. In the range –eV/2 ~ E6, 11 ≈ 0.01, the cur�
rent changes more strongly than in an analogous situ�
ation (eV/2 ~ E6, 11) for tL = tR (see the inset to Fig. 6b).
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Fig. 8. Nonequilibrium occupation numbers of the system in the case of an asymmetric coupling of the magnetic atom with the
contacts for the parameters from Fig. 5 and tL = t/50 and tR = tL/10.
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To find the reason for this difference, let us analyze the
evolution of the population of states of the system. For
V < 0, the electron flow to the region of the right con�
tact dominates. However, under the conditions con�
sidered here, the transition of electrons from the level
of the system to the right contact is suppressed to a
considerable extent, and for large absolute values of V,
electrons are accumulated in the system; as a result,
predominant population of two�electron states (N10,
N11, and N12) takes place with a simultaneous sharp
decrease in the population of the remaining states (see
region eV < –0.02 in Fig. 8). Therefore, the modulus
of the current decreases by a larger value as compared
to the case of a symmetric tunnel coupling (tL = tR). It
is important that such an NDC effect is not observed
upon the application of the field of the opposite polar�
ity (eV/2 ~ E6, 11). For V > 0, only zero�electron states
(N1, N2, and N3) are mainly populated for the above
reasons. As a result, the total current remains almost
unchanged for eV ~ E6, 11 because this transition
occurs between one� and two�electron states.

Concluding the section, we note that in the system
under investigation, switching between the states with

different projections of total spin  is achieved with

a high probability. Figure 9 shows the (eV) depen�
dences at temperatures T = 1 K (solid curve) and T =

10 K (dashed curve). The behavior of  at lower
temperatures indicates that for electric field energies
⎯0.075 ≤ eV ≤ –0.05, the system is in the superposition
of three two�electron states with zero total spin projec�
tions. In the interval – 0.01 < eV < – 0.005, the total
spin projection is 1/2; for – 0.005 < eV < 0.005, the

zero�electron states with  = 1 is realized with a
probability of 90%. For eV = 0.05, three states with

 = 0 are predominantly populated again. As
expected, enhancement of thermal fluctuations in the
system suppresses the effect of switching between spin
states (see dashed curve in Fig. 9). Such a possibility of
controlling the magnetic state of the object at atomic
level under the action of an external electric field may
turn out to be promising for applications of data
recording and storage in nanoelectronics.

8. CONCLUSIONS

The development of the theory of quantum trans�
port of electrons through atomic�scale magnetic
structures performed in this study taking into account
multiple scattering is based on application of the
Keldysh method and the diagram technique for the
Hubbard operators. Using the atomic representation,
we have demonstrated that calculation of the tunnel
current can be reduced to determining the spectral
functions of the object. These functions were calcu�
lated using the nonequilibrium diagram technique for
the Hubbard operators, applied to a multilevel system

Stot
z

Stot
z

Stot
z

Stot
z

Stot
z

with a nonequidistant energy spectrum and with an
effective time�dependent interaction.

This concept was used in analyzing the transport
properties of a magnetic impurity in the tunnel junc�
tion with two paramagnetic metals in an external mag�
netic field at finite temperatures. The effect of the sub�
strate was treated as the action of the crystal field on
the states of the magnetic impurity and was simulated
by introducing the term describing one�ion anisotropy
with parameter D into the Hamiltonian.

The main task in our investigations is associated
with taking into account multiple scattering of con�
duction electrons from the magnetic impurity in the
case of a nonequilibrium distribution of the popula�
tion of states (occupation numbers). As a result of such
processes, the main contribution to the quantum
transport of electrons comes from the states that were
not populated in the case of the equilibrium distribu�
tion, and the corresponding current channel would be
ineffective. Thus, multiple scattering processes make
possible transitions of the system from excited states to
even higher�lying energy states [10] and are mani�
fested as a renormalization of the I–V characteristics.

Numerical solution of the system of kinetic equa�
tions for occupation numbers followed by calculation
of the current showed that the I–V curve of the mag�
netic atomic system has singularities in the form of
steps typical of the Coulomb blockade effect and
observed in earlier experiments [28, 29]. It is shown
that application of a magnetic field, when the degen�
eracy in the energy of transitions between the states for
electrons with spin projections of +1/2 and –1/2 is
removed, the I–V characteristics acquire experimen�
tally observed fine singularities in the form of new
inflections. As a result, a high magnetoresistance
(MR ~ 105 %) appears at the impurity atom.

Our calculations show that for electric field energies
on the order of transition energy Eα, the NDC effect
occurs in the system under investigation. In the NDC
formation, the following two factors are significant. The
first is associated with the above�mentioned effect of
multiple inelastic scattering. The second factor is due to
concordant types of behavior of nonequilibrium occu�
pation numbers of the system, when the requirement
that the sum of these numbers must be equal to unity is
imposed in view of completeness of the diagonal Hub�
bard operators. We have demonstrated that the NDC
effect in practical realization can be enhanced by
changing the crystal surroundings of the magnetic
impurity or due to asymmetric coupling with the con�
tacts. In the latter case, we have demonstrated the pos�
sibility of switching between the configurations of the
“magnetic impurity + electrons” system, in which elec�
trons have different projections of the total spin.

Analysis of the effect of multiple scattering on the
quantum transport of electrons through an anisotropic
atom has been performed for a particular case when
the magnetic field direction is collinear to the anisot�
ropy axis. As noted above, the solution of the system of
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equations for nonequilibrium Green’s function is sub�
stantially simplified in this case.

In the noncollinear situation, the total spectral
functions of the system cannot be generally classified
using the projection of the spin moment. In this case,
each function of the system contains all transitions
corresponding to the representation parameters γ↑(α)
and γ↓(α). Under such conditions, an increase in the
magnetic field affects the shift of transition energies as
well as the intensities of the transitions. It should be
emphasized, however, that the qualitative features of
the effect of the magnetic field on the transport char�
acteristics of the system under investigation with
allowance for multiple scattering effects are fully man�
ifested in the collinear geometry.
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