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1. INTRODUCTION

Conduction electrons in metals and positive ions
form a solid�state plasma that determines the complex
of their electric, galvanomagnetic, kinetic, and super�
conducting properties. The coupling between the sub�
systems of massive positive ions and light fermions
leads to the formation of electron–phonon interac�
tion, which determines the properties of the electron
subsystem. In particular, the effective interaction
between electrons in the solid�state plasma can differ
substantially from the Coulomb interaction of elec�
trons in vacuum and can even change sign. This
important effect forms the basis of the electron–
phonon mechanism of the Cooper instability in tradi�
tional superconductors [1].

The role of mediator, interaction with which ini�
tiates the renormalization of the Coulomb interaction,
can obviously be played by any other subsystem. It is
necessary only that the interaction of the electron gas
with such a subsystem leads to polarization effects
resulting in the production of electrons and holes in
the vicinity of the Fermi surface. In particular, in many
theoretical publications on high�temperature super�
conductors, the role of such a mediator is played by
collective excitations of the subsystem of localized
spins of copper ions. This effect is associated with the
spin�fluctuation mechanism of Cooper instability
leading to the formation of a superconducting phase
with d�wave type symmetry of the order parameter.

In the secondary quantization representation for
fermions, the operator of Coulomb interaction
between electrons contains nondiagonal terms initiat�
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ing the polarization contributions to the groundstate
energy in higher orders of perturbation theory. These
contributions lead to renormalization of the Cooper
interaction between electrons. Therefore, the effective
interaction of electrons in such a substance can differ
significantly from electron–electron interaction in
vacuum. This makes topical the problem formulated
for the first time by Anderson [2], associated with the
possibility of renormalization of the Coulomb interac�
tion between electrons, so that the effective electron–
electron interaction becomes attractive and not repul�
sive even when phonons are disregarded. In other
words, the problem involves searching for conditions
in which the above�mentioned polarization effects in
the electron plasma of solid metals reverse the sign of
the resultant interaction between electrons. The ana�
lytic solution to this problem comes to calculating the
effective pair interaction of electrons with allowance
for many�particle effects in the electron ensemble.
According to Anderson, an equally important problem
is explaining the peculiar properties of the normal
state of many strongly correlated electron systems
above the superconducting transition temperature,
especially in the pseudogap state.

Considerable advances have been made in recent
decades in experimental and theoretical investigations
of superconducting systems with a nonphonon origin
of Cooper pairing. The first experimentally discovered
systems with nontraditional triplet p�wave pairing (the
total spin of a Cooper pair is Stot = 1 and the orbital
angular momentum is l = 1) were the superfluid A and
B phases of 3He with low superconducting transition
temperatures Tc ~ 1 mK [3–5]. Other examples of sys�
tems in which p�wave pairing takes place are 6Li2 and
40K2 molecules in magnetic taps under Feshbach reso�
nance conditions with ultralow superconducting tran�
sition temperatures Tc ~ 10–7 to 10–6 K [6, 7]. It is
assumed that nontraditional p�wave pairing with
superconducting transition temperatures Tc ~ 0.5–1 K
takes place in some heavy�fermion intermetallides
such as U1 – xThxBe13 and UNl2Al3 with high effective
masses m* ~(100–200)me [8, 9]. The p�wave paring is
often mentioned in connection with organic super�
conductors such as α�(BEDT�TTF)2I3 with Tc ~ 5 K
[10]. Finally, p�wave pairing with Tc ~ 1 K is appar�
ently achieved in ruthenates Sr2RuO4 [11] and proba�
bly in layered dichalcogenides CuS2–CuSe2, semi�
metals, and semimetal superlattices InAs–GaSb and
PbTe–SnTe. Nontraditional superconductors with
singlet d�wave pairing (Stot = 0, l = 2) include heavy�
fermion intermetallide UPt3 with m* ~ 200me and Tc ~
0.5 K, as well as a wide class of high�Tc cuprate super�
conductors with superconducting transition tempera�
tures from Tc ~ 36 K for lanthanum�based compounds
to Tc ~ 160 K (the absolute record�highest value of Tc
attained at present in cuprates) for mercury�based
superconductors obtained under pressure. Finally, we
should also mention (in connection with the non�
phonon superconductivity problem) new multiband

superconductors such as MgB2 [12] and iron�ars�
enide�based superconductors with the more tradi�
tional s�wave pairing, which were discovered recently
[13].

Apart from the problems of Cooper pairing in the
above systems, the still unsolved problems associated
with the search for superfluidity in 3D and, especially,
2D (thin films, submonolayers) solutions of 3He in
4He [3–5] and superconductivity in doped graphene
[14] are of considerable interest. Such systems are the
most promising for experimental and theoretical
description of a wide class of physical phenomena,
including nontraditional superconductivity.

In particular, 3He submonolayers adsorbed on var�
ious substrates such as a solid substrate (grafoil) or the
free surface of superfluid 4He permit the various corre�
lation regimes in the system (from ultrararefied Fermi
gas to strongly correlated fermion system [15]) to be
achieved with variation of the number density of parti�
cles in a wide range. This makes solutions ideal objects
for the development and testing of various many�body
methods in condensed matter theory.

Graphene is of considerable importance from the
fundamental and applied viewpoints due to its unique
electronic properties [16, 17]. In the vicinity of the
Fermi level, electrons in graphene exhibit linear dis�
persion, and the energy gap between the valence band
and the conduction band is absent. For this reason,
electrons can be described by the 2D Dirac equation
for zero�mass charged quasiparticles [18]. The proper�
ties of such quasiparticles (like reduced dimensional�
ity, the spinor origin of the spectrum, zero mass, and
the absence of a gap in the spectrum) lead to a number
of nontrivial electronic effects that have no analogs in
other physical systems [19].

Such systems stimulated an intense search for
alternative superconducting pairing mechanisms,
which are based on correlations in the Fermi liquid.
The Kohn–Luttinger mechanism [20] proposed in
1965 is the most promising in this respect. This mech�
anism presumes the transformation of initial repulsive
interaction of two particles in vacuum into effective
attraction in the presence of the fermionic back�
ground. This review describes the main results on
Kohn–Luttinger superconductivity in repulsive Fermi
systems, which have been obtained in the last 50 years.

2. ELECTRON GAS MODEL

The Fermi gas model is the basic model for study�
ing nonphonon superconductivity mechanisms in
low�density electron systems. In the case of an attrac�
tive Fermi gas, the scattering length is negative (a < 0)
and traditional s�wave pairing takes place (total spin
S = 0 and orbital angular momentum l = 0) with the
superconducting transition temperature

(1)Tc
s 0.28εF

π
2 a pF

�����������–⎝ ⎠
⎛ ⎞ .exp≈
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This result was obtained in [21] soon after the formu�
lation of the BCS theory [1]. Result (1) differs from the
classical BCS formula. Namely, the quantity 0.28εF

appears in the preexponential factor instead of the
Debye frequency ωD typical of models of traditional
superconductors.

In the model of a repulsive Fermi gas, the scattering
length is a > 0 and superconductivity in the low�tem�
perature range emerges in accordance with the Kohn–
Luttinger mechanism. The physical reason for this
pairing mechanism is associated with the effective
interaction of quasiparticles occurring as a result of
polarization of the fermionic background. In fact, due
to the sharp boundary existing in the momentum
space, which is equal to the diameter 2pF of the Fermi
sphere and separates the region of filled states from the
empty states, the effective interaction of quasiparticles
at the Fermi level does not decrease exponentially, but
has an alternating form (Friedel oscillations [22]); in
the 3D case, we have

(2)

If the distance between two electrons in a Cooper pair
is much larger than the atomic spacing, effective inter�
action (2) in the coordinate space has a large number
of maxima and minima (Fig. 1). Then the integrated
effect determined by averaging of Friedel oscillations
over such a potential relief can generally result in the
effective attraction and the occurrence of supercon�
ductivity in the system.

Ueff r( )
2pFr( )cos

2pFr( )3
�������������������� .∼

Kohn and Luttinger [20], who investigated a 3D
electron gas, were the first to pay attention to this
superconductivity mechanism. They showed that the
effective interaction in the first two orders of perturba�
tion theory can be described by the sum of five dia�
grams shown in Fig. 2. The first diagram corresponds
to the initial interaction of two electrons in the Cooper
channel. The next four (Kohn–Luttinger) diagrams
reflect second�order processes and take into account
the polarization effects in the filled Fermi sphere. In
the case of a low�density Fermi gas and a short�range
potential, the contribution to the effective interaction
is determined only by the fourth (exchange) diagram;
in the first two orders of perturbation theory in gas
parameter apF, the expression for Ueff  can be written
in the form

(3)

where Π(p + k) is the static polarization operator
described by the standard Lindhard function [23, 24]

(4)

which is responsible for charge screening in the case of
the electron gas in a metal. Here, εp = p2/2m is the
energy spectrum,

is the Fermi–Dirac distribution function, and μ is the
chemical potential.

It was noted in early publications by Migdal [25]
and Kohn [26], as well as in [20], that at low tempera�
tures (T � εF), the polarization operator contains, in
addition to the regular part, a singular part also, which
is known as the Kohn singularity and has the following
form in the 3D space:

(5)

where  =  for the fourth exchange diagram in
Fig. 2. As we pass to the coordinate space, singular part
Πsing leads to Friedel oscillations (2) in the effective
interaction (see Fig. 1). Thus, the purely repulsive
short�range potential acting between two particles in
vacuum induces the effective interaction in the elec�
tron gas with the competition between repulsion and
attraction. It turns out that the singular part in Ueff

Ueff p k,( ) apF apF( )2Π p k+( ),+=

Π p k+( ) 1
N
���

nF εp1 p k––( ) nF εp1
( )–

εp1
εp1 p– k––

�����������������������������������������,

p1

∑=

nF x( ) ε μ–
T

����������⎝ ⎠
⎛ ⎞exp 1+⎝ ⎠

⎛ ⎞
1–

=

Πsing q̃( ) q̃ 2pF–( ) q̃ 2pF– ,ln∼

q̃ p k+

r

Ueff

ξ0

Fig. 1. Friedel oscillations in the effective interaction of
two particles due to polarization of the fermionic back�
ground: ξ0 is the coherence length of a Cooper pair;
ξ0 � 1/pF.
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Fig. 2. First� and second�order diagrams for effective interaction Ueff. Solid lines with light (dark) arrows correspond to the elec�
tron Green’s function with a spin projection of +1/2 (–1/2). Wavy lines reflect the initial interaction.
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operates in favor of attraction, ensuring a contribution
that always exceeds the repulsive contribution associ�
ated with the regular part of Ueff for the orbital angular
momenta l ≠ 0 of a pair. This leads to superconducting
instability with the critical temperature Tcl ~ exp(⎯l4)
for large orbital angular momenta l � 1. In this case,
conventional pairing in the s�wave channel (l = 0) is
suppressed by purely Coulomb repulsion associated
with the main maximum in Ueff (see Fig. 1), and super�
conductivity is observed for large values of orbital
angular momentum l � 1. It should be noted that for
l ≠ 0, the role of the main maximum is suppressed by
the centrifugal potential, which improves the condi�
tions for the occurrence of superconductivity.

Thus, publication [20] led to the nontrivial conclu�
sion that Fermi systems do not exist in the normal state
at zero temperature because any 3D electron system
with the initial repulsive interaction between particles
at very low temperatures is unstable to the transition to
the superconducting state with a large orbital angular
momentum (l � 1) of the relative motion of a Cooper
pair. However, the estimates for the superconducting
transition temperature obtained in [20] for the realistic
parameters of electron systems in a metal and for
superfluid 3He gave very low values of the supercon�
ducting transition temperature (Tcd ~ 10–16 K for 3He
and Tcd ~ 10–11 K for the metal plasma for the value of
l = 2 considered in [20]). Such a low Tc value was one
of the reasons the Kohn–Luttinger mechanism was
overlooked by researchers for a long time.

It was shown in later publications [27, 28] that the
superconducting transition temperature was underes�
timated in [20] because the asymptotic expression for
large orbital angular momenta l � 1 was used. Indeed,
for l = 1, exact analytic calculations show that the con�
tributions to Ueff corresponding to attraction of quasi�
particles again prevail over the repulsive contributions.
As a result, a 3D repulsive Fermi gas turns out to be
unstable to the superconducting transition with triplet
p�wave pairing at the superconducting transition tem�
perature [27–30], which is determined by the princi�
pal exponential:

(6)

where λ = 2apF/π is the effective 3D Galitskii gas
parameter [31]. It should be noted that for l = 1, the
contribution of the Kohn singularity only increases
Tcp, but does not play a decisive role in the occurrence
of superconductivity.

It was shown in [32] that the superconducting tran�
sition temperature can appreciably be elevated even
for low electron densities by placing a system of neu�
tral particles into a magnetic field. This is due to the

Tcp εF
5π2

4 2 2ln 1–( ) apF( )2
������������������������������������–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp≈

=  εF
13

λ2
����–⎝ ⎠

⎛ ⎞ ,exp

fact that in contrast to s�wave pairing, paramagnetic
suppression of superconductivity does not take place
in the p�wave channel and the value of Tcp may
increase due to the enhancement of the effective inter�
action and due to the specific form of the Kohn singu�
larity. In this case, the critical temperature Tcp corre�
spond to the so�called A1 phase, in which a Cooper
pair is formed by two “up” spins, while the effective
interaction for them is prepared by two “down” spins.

In the case of a low�density 2D repulsive Fermi gas,
the effective interaction in the first two orders of pertur�
bation theory in the gas parameter has the form [33, 34]

(7)

where f0 = 1/2ln(pFr0) is the 2D Bloom gas parameter
[35], Π(p + k) is the 2D polarization operator, and r0

is the range of the potential.
In the 2D situation, the effective interaction in the

coordinate space also contains Friedel oscillations

(8)

which are much stronger than oscillations (2) in the
3D case. However, the 2D Kohn singularity in the
momentum space has one�sided character [36]:

(9)

for  = (p + k) ≤ 2pF and is ineffective for the problem
of superconductivity. Thus, a 2D repulsive Fermi gas
remains in the normal state at least in the first two
orders of perturbation theory in gas parameter f0. Nev�
ertheless, it was shown in [33] that superconducting
p�wave pairing appears in the next (third) order of per�
turbation theory in f0, in which the singular contribu�
tion to the effective interaction has the form

(10)

Exact calculations [37] of the superconducting transi�
tion temperature taking into account all irreducible
third�order diagrams leads to the expression

(11)

In this case, the superconducting transition tempera�
ture is estimated as 10–4 K [33, 37] for the limiting
densities for which the Fermi�gas description is still
applicable. This estimate is closer to the realistic values
predicted for 3He monolayers on the 4He surface [38].

Another possibility to sharply increase Tc at low
density is associated with the analysis of the two�band
situation or a multilayer system. In this case, the role
of “up” spins is played by electrons from the first band
(layer), while the role of “down” spins is played by
electrons of the second band (layer). The coupling
between electrons of the two bands is accomplished via
interband Coulomb interaction. As a result, the fol�
lowing mechanism of superconducting pairing is pos�
sible: electrons of one species form a Cooper pair by

Ueff p k,( ) f0 f 0
2Π p k+( ),+=

Ueff r( ) f 0
2 2pFr( )cos

2pFr( )2
��������������������,∼

Πsing q̃( ) f 0
2
Re q̃ 2pF–∼ 0=

q̃

Πsing q̃( ) f 0
3
Re 2pF q̃– .∼

Tcp εF
1

6.1f 0
3

���������–⎝ ⎠
⎛ ⎞ .∼
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polarizing electrons of the other species [39, 40]. This
mechanism of interaction is also effective in quasi�
two�dimensional systems.

It should be noted that some authors [41, 42] also
studied the effect of split�off energy bands on the
properties of the normal state in the basic models for
repulsive Fermi systems. For example, nontrivial cor�
rections to the Galitskii–Bloom Fermi�gas expansion
appear due to antibound states [41] in the 2D Hubbard
model or due to a singularity in the Landau quasipar�
ticle f�function in a repulsive 2D Fermi gas at low elec�
tron density [42]. It was shown in [41, 42], however,
that these corrections do not destroy the Landau
Fermi�liquid picture in the 3D or in the 2D case.

3. HUBBARD MODEL

The Hubbard model [44], which is one of funda�
mental models for describing peculiar properties of
cuprates, has become very popular in connection with
the discovery of high�temperature superconductivity
[43]. The Hubbard model is a special case of a more
general model of interacting electrons whose band
structure can be described using the tight�binding
method; in fact, the Hubbard model is the minimal
model taking into account the band motion of elec�
trons in a solid along with strong electron–electron
interaction [45–49]. This model is especially impor�
tant for describing narrow�band metals [37]. In the
secondary quantization representation, the Hamilto�
nian of such a model can be written in the form

(12)

where (cfσ) is the creation (annihilation) operator
for an electron with spin projection σ = ±1/2 at the f
site, ε is the single�site electron energy, and μ is the
chemical potential of the system. In expression (12),

is the operator of the particles density at site f, matrix
element tfm determines the intensity of electron hop�
pings from site f to site m, and U is the Coulomb inter�
action parameter for two electrons located at the same
site and having opposite projections of the spin
moment (Hubbard repulsion).

Since a large body of experimental data indicated
that the main dynamics of Fermi excitations in
cuprates evolves in the CuO2 planes, the 2D Hubbard
model on a simple square lattice was mainly used to
describe the nonphonon mechanisms of high�temper�

Ĥ ε μ–( )nfσ

fσ

∑ tfmcfσ
† cmσ

fmσ

∑+=

+ U nf↑nf↓,

f

∑

cfσ
†

nf nfσ

σ

∑ cfσ
† cfσ

σ

∑= =

ature superconductivity. In the momentum space, the
Hamiltonian of the Hubbard model has the form

(13)

where the electron energy taking into account distant
hoppings, whose intensity is determined by parame�
ters t2 and t3, is described by the expression

(14)

where d is the intersite distance. It should be noted
that in simulating electron spectrum (14) and con�
structing the phase diagram of the superconducting
state in the Hubbard model, it becomes important to
exceed the bounds of the nearest�neighbor approxi�
mation (t2 ≠ 0, t3 ≠ 0). This is due to the fact that the
main contribution to the effective coupling constant
comes from the interaction of electrons on the Fermi
surface with a geometry depending on the structure of
the energy spectrum. The fact that the inclusion of dis�
tant hoppings shifts the Van Hove singularity in the
density of electron states from half�filling (n = 1) to
the regions of lower or higher electron densities
(Fig. 3) also plays an important role. It should be
noted that the inclusion of hoppings to the third coor�
dination sphere of the square lattice (t3 ≠ 0) can lead to
a qualitative change in the Fermi surface geometry

Ĥ εp μ–( )cpσ
† cpσ

pσ

∑=

+ U cp↑
† cp ' q↓+

† cp q↓+ cp '↑,

pp 'q

∑

εp 2t1 pxdcos pydcos+( ) 4t2 pxd pydcoscos+=

+ 2t3 2pxdcos 2pydcos+( ),

1.0

0.8

0.6

0.2

1.0 1.50.5

ρ|t1|

2.0
n

0.4

ky
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0

Fig. 3. Modification of the electron density of states and
the shift of the Van Hove singularity in the Hubbard model
on a square lattice upon a change in the hopping integral:
t2 = t3= 0 (solid curve), t2 = 0.15, t3 = 0 (dotted curve), t2 =
0.15, t3 = 0.1 (dashed curve), and t2 = 0.44, t3 = 0 (dot�
and�dash curve). The inset shows the formation of a mul�
tisheet Fermi contour for the set of parameters t2 = 0.44,

t3 = ⎯0.1, and µ = 2 (all parameters are given in units of ).t1
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(in particular, to the formation of a multisheet Fermi
contour; see the inset to Fig. 3).

Thus, the allowance for distant hoppings can mod�
ify the phase diagram determining the range of super�
conducting states with various types of the order
parameter symmetry.

In the Hubbard model, perturbation theory can be
constructed in two limiting cases, viz., the Born
approximation with a shallow potential well (U � W,
where W = 2zt is the bandwidth and z is the number of
the nearest neighbors) and an arbitrary electron den�
sity, and in the case of strong coupling (U � W) and a
low electron density. The application of the weak cou�
pling approximation (U � W) for analyzing the possi�
bility of Kohn–Luttinger pairing makes it possible to
calculate Ueff for the Cooper channel in the electron
density range n ~ 1 (in the vicinity of half�filling) using
diagrams of no higher than the second order in the
interaction (see Fig. 2). In the opposite limit of strong
coupling (U � W), the use of diagrams of only the first
and second orders is valid only for a low electron den�
sity n � 1, for which the Galitskii–Bloom Fermi gas
expansion is valid [31, 35].

In [50], the authors analyzed the conditions of the
Kohn–Luttinger superconductivity realization in the 2D
Hubbard model with Hamiltonian (13) in the weak�cou�
pling limit (U � W) in the nearest neighbor approxima�
tion (t2 = t3 = 0) at the low electron densities (pFd � 1):

(15)

where m = 1/(2t1d
2) is the band mass of an electron. It

can be seen that the initial electron spectrum in the
chosen approximation for pFd � 1 almost coincides
with the spectrum of a noninteracting Fermi gas, and
the Hubbard Hamiltonian itself is identically equiva�
lent to the Hamiltonian of a weakly nonideal Fermi
gas with a short�range repulsion between particles. To
verify the possibility of a superconducting transition in
this approximation, the effective initial vertex for the
Cooper channel was calculated up to the second order
of perturbation theory inclusively:

(16)

where Π(p + k) is polarization operator (4).
To solve the Bethe–Saltpeter integral equation, in

[50] the eigenfunctions of the irreducible representa�
tions of symmetry group C4v of the square lattice have
been used. This group is known to have five irreducible
representations [51], for each of which the integral
equation has its own solution. Among these represen�
tations, there are four 1D representations A1, A2, B1,
and B2, which correspond to singlet pairing, as well as
a 2D representation E corresponding to triplet pairing.

The explicit form of orthonormal functions (φ)
(superscript “α” denotes an irreducible representa�

εp μ– 2t1 pxdcos pydcos+( ) μ–=

≈
p2 pF

2–
2m

�������������
px

4 py
4+( )d2

24m
���������������������–

px
6 py

6+( )d4

720m
���������������������,+

Ueff p k,( ) U U2Π p k+( ),+=

gm
α( )

tion, m is the number of the basis function of the repre�
sentation α, and φ is the angle characterizing the direc�
tion of the momentum  lying on the Fermi contour
relative to the px axis) and the symmetry classification
of superconducting order parameter Δ(α)(φ) are
defined as

(17)

To solve the problem of superconducting pairing,
function Ueff(p, k) was expanded into a series with
functions (17), after that the sign of expressions for

 was analyzed. As a result, it was shown that the 2D
electron system described by the Hubbard model for a
small occupancy and for U � W is unstable to the pair�
ing with the dxy�wave type of symmetry of the order
parameter Δ(φ).

The weak�coupling limit (U < W) in the 3D and 2D
Hubbard models in the vicinity of half�filling was ana�
lyzed in [52, 53]. In the 2D case [53], for n ≈ 1 in the
nearest neighbor approximation, the electron spec�
trum becomes quasi�hyperbolic [56],

(18)

for small values of pxd < 1 and pyd < 1 in the vicinity of
corner points (0, ±π) and (±π, 0), at which the Fermi
surface almost touches the Brillouin zone (Fig. 4). In
expression (18), the band mass is m = 1/(2t1d2) as
before. It is well known that the density of electron
states in these regions near the Van Hove singularity is
logarithmically large (g(E) ~ ln(t/ ), where μ � t is
the chemical potential in the vicinity of half�filling). It
can be seen from Fig. 4 that there are two almost pla�
nar regions near the Fermi surface, which satisfy the
ideal nesting condition for the exactly half�filled state
(n = 1):

(19)

where Q = (π/d, π/d) is the nesting vector for a 2D
square lattice. In these regions, the polarization oper�
ator is enhanced by the Kohn singularity, as well as by
the Van Hove singularity, and has the form [53, 56]
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Π(Q) ~ ln2(t/ ). In this case, the parameter of per�
turbation theory is the quantity

(20)

and the expression for the effective interaction in the
second order of perturbation theory in f0 has the form
[53]

(21)

Since the expression for the Cooper loop for n ≈ 1 con�
tains, apart from the conventional Cooper logarithm,
the logarithm of the Van Hove singularity as well, we
can ultimately write

(22)

where ξp = εp – μ. Therefore, the equation for the tem�
perature of the superconducting transition to the
phase with the �wave symmetry of the order

parameter derived in [53] in the main logarithmic
approximation has the form

(23)

Hence, the superconducting transition temperature is
given by

(24)

This expression shows that the small value of  for

f0 � 1 is compensated by the large value of ln3(t/ ) � 1.
The results obtained in [50] on dxy�wave pairing for

n � 0.6 and �wave pairing for n ~ 1 [52, 23] in the

strong coupling limit were subsequently confirmed by
other authors too. In [54], the phase diagram of the
superconducting state was constructed in the 2D Hub�
bard model at low and intermediate electron densities;
this diagram reflected the dependence of the competi�
tion of various symmetry types of the order parameter
on integral t2 of electron hopping to the next�to�near�
est neighbors sites. The phase diagram obtained in the
second order of perturbation theory shows that for t2 = 0,
in the range of low electron densities 0 < n < 0.52,
superconductivity with the dxy�wave type of the order
parameter symmetry is realized in the first two orders
of perturbation theory; in the interval 0.52 < n < 0.58,
the ground state corresponds to a phase with p�wave
pairing, while for n > 0.58, �wave pairing

appears. Analogous results were obtained in [55] using
the renormalized group method.

In the immediate vicinity of the half�filling (0.95 <
n < 1), where strong competition between supercon�
ductivity and antiferromagnetism takes place, the
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problem of the Cooper instability was considered in
[56, 57]. In these publications, the so�called parquet
diagrams were summed up and the following relation
was obtained for μ ~ Tc:

(25)

This relation leads to an elegant estimate of the maxi�
mal superconducting transition temperature:

(26)

It should be noted that the maximal superconduct�
ing transition temperature in the 2D Hubbard model
was also obtained in [58] in the regime U/W ~ 1 for
optimal electron concentrations n ~ 0.8–0.9. Accord�
ing to the estimate obtained in [58], the superconduct�
ing transition temperature at the maximum can reach

desirable values  ≈ 100 K, which are realistic for
optimally doped cuprate superconductors.

4. SHUBIN–VONSOVSKY MODEL

The important question concerning the role of full
Coulomb interaction in nonphonon superconductiv�
ity mechanisms, which in fact includes not only short�
range Hubbard repulsion, but also the long�range
component, was considered in [59]. The authors of
[59] considered the 3D jelly model for realistic values
of electron densities with rS ≤ 20, where
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Fig. 4. Fermi surface in the case of a nearly half�filled band
(n ≈ 1) in the 2D Hubbard model on a square lattice, where
Q = (π/d, π/d) is the nesting vector.
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is the Wigner–Seitz correlation radius and aB = ε0/me2

is the Bohr radius of electron (� = 1). In calculation of
the effective interaction, the contributions of the first
and second orders of perturbation theory associated
with all diagrams in Fig. 2 were taken into account. It
was noted in [59] that previous investigations of
Kohn–Luttinger superconductivity were limited to
the inclusion of only short�range Coulomb interaction
U of electrons in view of computational difficulties
associated with taking into account the Fourier trans�
form of the long�range Coulomb repulsion Vq, which
depends on q in the first� and second�order diagrams.
As a result, the strong initial Coulomb repulsion in the
first order of perturbation theory (first diagram in
Fig. 2) was disregarded, and the contribution to the
effective interaction of electrons in the Cooper chan�
nel was due only to the last exchange diagram in Fig. 2.
This contribution was attractive by nature and ensured
p�wave pairing in the 3D case [27, 28] and the d�wave
pairing in the 2D case [29, 58] in the Hubbard model.

In [59], the long�range Coulomb interaction Vq was
chosen in the form of the Fourier transform of the
Yukawa potential

Vq has the following standard form in the 3D case:

(28)

where κ is the inverse screening length. It was con�
cluded in [59] from the results of calculations that
small and intermediate values of Hubbard repulsion U
in the presence of the long�range part of Coulomb
interaction (28) do not induce realization of the Coo�
per instability in 3D and 2D Fermi systems in the
p�wave and d�wave channels, irrespective of the value
of the small screening length. The pairing that occurs
for large orbital angular momenta (l ≥ 3) leads to
almost zero values of the superconducting transition
temperature for any realistic value of the Fermi energy.
Thus, anomalous pairing associated with strong Cou�
lomb repulsion is impossible according to the authors
of [59], because the corresponding energy of conden�
sation for Cooper pairs is several times lower than the
energy of condensation associated with electron–
phonon interaction.

The rising interest in the role of the long�range inter�
site Coulomb correlations in the structure of the phase
diagram of high�Tc superconductors has made the
extended Hubbard model popular. This model takes
into account not only one�site Hubbard repulsion, but
the interaction of electrons at different sites of the crys�
tal lattice (in the Russian literature, this model is usually
referred to as the Shubin–Vonsovsky model [60]).

Historically, this model was formulated almost
immediately after the origination of quantum
mechanics and is a predecessor of some important
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Vq
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models in condensed matter theory (in particular, the
s–d( f) model and the Hubbard model). The Shubin–
Vonsovsky model was actively used in analyzing
polaron states in solids [61] and the metal–insulator
transition [62], as well as in studying the effect of the
intersite Coulomb interaction on the superconducting
properties of strongly correlated systems [63–65].

In the Wannier representation, the Hamiltonian of
the Shubin–Vonsovsky model can be written in the
form

(29)

where the last term corresponds to the allowance for
energy Vfm of the Coulomb interaction of electrons
from different sites of the crystal lattice and  is the
total density operator. The last three terms in Hamil�
tonian (29) together reflect the fact that the screening
radius in the systems under investigation may be by
several times larger than the unit cell parameter [62].
This ensures an advantage of the Shubin–Vonsovsky
model, in which the intersite Coulomb interaction is
taken into account within several coordination
spheres. In the momentum representation, Hamilto�
nian (29) assumes the form

(30)

where the Fourier transform of the Coulomb interac�
tion of electrons at the nearest sites (V1) and at the
next�to�nearest sites (V2) in the 2D case on the square
lattice has the form

(31)

The authors of [66] contributed to the discussion
[58, 59] by analyzing the conditions for the occurrence
of superconducting Kohn–Luttinger pairing in the 3D
and 2D Shubin–Vonsovsky models with Coulomb
repulsion of electrons at neighboring sites (V1 ≠ 0,
V2 = 0). Instead of Yukawa potential (28) used as the
Fourier transform of the intersite interaction, the situ�
ation of extremely strong Coulomb repulsion
(U � V1 � W) was considered. In the low electron
density limit (pFd � 1), it was shown that even in this
most unfavorable case for the occurrence of effective
attraction and superconductivity, the contribution
from intersite Coulomb repulsion V1 to the effective
interaction in the p�wave channel is proportional to
(pFd)3 in the 3D case and to (pFd)2 in the 2D case in
accordance with the general quantum�mechanical
results for slow particles in vacuum [51]. However,
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these repulsive contributions cannot compensate con�
tributions favoring attraction and proportional to
(pFd)2 in the 3D case and to 1/ln3[1/(pFd)2] in the 2D
case. It should be noted in this connection that the
effective attraction appears only if the fermionic back�
ground is filled.

Thus, the previous results on Kohn–Luttinger
superconducting p�wave pairing being attained both in
the 2D and 3D Hubbard model with repulsion in the
strong coupling limit (U � W) at low electron density
hold even when strong Coulomb repulsion of electrons
at neighboring sites (V1 � W) is included in the Shu�
bin–Vonsovsky model. As a result, the same expres�
sions (6) and (11) for the temperature of the supercon�
ducting transition to the phase with p�wave type sym�
metry, like in the absence of interstitial Coulomb
repulsion (V1 = 0), are obtained in the 3D and 2D
cases. Allowance for V1 changes only the preexponen�
tial factor [37]; therefore, superconducting p�wave
pairing can be realized in Fermi systems with purely
Coulomb repulsion [66] in the absence of electron–
phonon interaction.

A similar analysis was carried out in [67] for the
extended Hubbard model in the Born weak coupling
approximation, and the results were the same as in
[66]. Moreover, it was noted in [67] that even in the
weak coupling regime (W > U > V), in which control�
lable calculations can be performed, the effect of long�
range Coulomb interactions is suppressed in view of
the deterioration of the conditions for the evolution of
the Cooper instability. As a matter of fact, long�range
interactions in the lattice models usually contribute
only to certain pairing channels and do not affect
other channels. At the same time, the polarization
contributions described by the diagrams in Fig. 2 have
components in all channels, and more than one such
component usually favors attraction. In such a situa�
tion, long�range interactions probably either do not
affect at all the main component of the effective inter�
action leading to pairing, or they suppress the princi�
pal components without influencing secondary ones.

In this connection, a phase diagram was con�
structed in [67] on using the extended Hubbard model
with the Kohn–Luttinger mechanism; this diagram
visually reflected the result of competition of super�
conducting phases with different types of order
parameter symmetry. The effective coupling constant
was calculated using the following expression for the
renormalized scattering amplitude in the Cooper
channel:

(32)

where Vp–q is the Fourier transform of the interstitial
Coulomb repulsion (31) and Π(p + q) is Lindhard
function (4). Thus, the interstitial Coulomb interac�
tion V in [67] was taken into account only in the first
order of perturbation theory, and the polarization con�
tributions were determined only by the terms of the
order U2. It was shown [67] that long�range interaction

Ueff p q,( ) U Vp–q U2Π p q+( ),+ +=

has a tendency to suppress anomalous pairing in some
channels; in spite of this the Kohn–Luttinger super�
conductivity survives in the entire range of electron
concentrations 0 < n < 1 and for all relations between
the model parameters.

It was noted in [68] that effective interaction Ueff(q)
is characterized by a quadratic dependence on quasi�
momentum only in the range of qd � 1. Beyond this
range, it is important that the momentum dependence
of Vq is determined by periodic functions. As a result,
the behavior of Ueff(q) is substantially modified as
compared to the momentum dependence of the Fou�
rier transform of the Yukawa potential. These factors
considerably affect the conditions for the Cooper
instability for large electron density values, when the
Fermi surface does not exhibit spherical symmetry.
Therefore, it should be expected that the conditions
for superconducting pairing according to the Kohn–
Luttinger mechanism are determined not only by
dynamic effects associated with Coulomb interac�
tions, but also by Brillouin zone effects.

The effect of the Coulomb interaction of electrons
from the first and second coordination spheres on the
realization of the Cooper instability was taken into
account in [68] using the Shubin–Vonsovsky model in
the Born weak coupling approximation (W > U > V).
Accordingly, in the calculating the scattering ampli�
tude in the Cooper channel, effective interaction
Ueff(p, k) determined in graph form by the sum of the
five diagrams (see Fig. 2) was used as the effective
interaction of two electrons with opposite values of
momentum and spin. The analytic form of this inter�
action is

(33)

where the second�order corrections are given by

(34)

If the intersite Coulomb interaction is taken into
account only in the first order and only for electrons at
the nearest sites (V1 ≠ 0 and V2 = 0 in formula (31)),
and the excitation spectrum is described by only one
hopping parameter (t1 ≠ 0, t2 = t3 = 0), the phase dia�
gram of superconducting states for U =  contains
five regions (Fig. 5). In constructing this diagram, we
used expression (32) for the effective interaction of
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electrons in the Cooper channel; in this expression,
the contributions proportional to UV and V2 and
appearing in expression (34) are disregarded. The seg�
ments of the phase diagram lying on the abscissa axis
(V1 = 0) agree with the regions on the phase diagram
obtained in [54] for the Hubbard model.

Since the first order of perturbations theory in the
intersite Coulomb interaction always has a tendency to
suppress the superconducting pairing, the possibility
of the Cooper instability realization based on the
Kohn–Luttinger mechanism is associated with the
occurrence (in the second order of perturbation the�
ory) of contributions to the effective interaction
matrix for the Cooper channel (34), which correspond
to attraction and are quite intense. Thus, when the
Kohn–Luttinger effects in the intersite Coulomb
interaction are taken into account, it is necessary to

use complete expression (33), (34) for Ueff(p, q) and
not reduced expression (32). With such an approach,
the polarization effects proportional to UV and V2

considerably modify and complicate the structure of
the phase diagram (Fig. 6a) even for small values of V1.
With increasing parameter V1 of the intersite Coulomb
interaction, the value of  for Tc ~ Wexp(⎯1/ )
increases (W = 8t1 is the 2D bandwidth for t2 = t3 = 0).
In this case, only the three phases corresponding to the
dxy�wave, p�wave, and s�wave types of symmetry of the
superconducting order parameter are stabilized. It
should be noted that in the range of high electron con�
centrations and for 0.25 < V1/  < 0.5, the Kohn–
Luttinger polarization effects lead to the occurrence of
the superconducting s�wave phase. This qualitative
effect visually demonstrates the importance of taking
into account the second�order processes in calculating
the effective interaction of electrons in the Cooper
channel and in constructing the phase diagram in
Fig. 6. Quantitative comparison of various partial con�
tributions to the total effective interaction shows that
s�wave pairing is associated with the polarization con�
tributions proportional to V2; the main contribution in
this case for a square lattice is determined by the angu�
lar harmonic

Such a scenario of achieving superconducting s�
wave pairing due to higher angular harmonics corre�
lates well with the experimental data obtained recently
in [69], in which the results of investigating a super�
conductor based on iron arsenide KFe2As2 using pho�
toemission spectroscopy with ultrahigh angular reso�
lution were presented. It was found that this com�
pound is a nodal (containing gap zeros)
superconductor with the s�wave type symmetry of the
order parameter, which has eight points at which the
gap vanishes.
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Figure 7a shows the angular dependence of the
superconducting order parameter Δ(s)(φ),

(35)

calculated in [68] for the region of the phase diagram
in which the s�wave pairing takes place for high elec�
tron densities. This dependence demonstrates the
existence of the eight nodal points at which the gap
vanishes; the position of these points on the Fermi
contour (Fig. 7b) in calculations [68] is in qualitative
agreement with the picture described in [69].

An analogous scenario of superconductivity real�
ization is also observed in the p�wave channel; in this
case, superconductivity obtained taking into account
the second order of perturbation theory in the Cou�
lomb interaction is suppressed by the initial repulsion
only for the first harmonic:

The main contribution to Δ(p)( ) comes from the
function of the next harmonic of p�wave pairing:

The effect of the long�range Coulomb repulsion
(V2 ≠ 0) and distant electron hoppings (t2 ≠ 0, t3 ≠ 0) on
the phase diagram of the superconducting state in the
Shubin–Vonsovsky model was also analyzed in [68].
Figure 8 shows the modification of the phase diagram
of the Shubin–Vonsovsky model, which is observed
upon an increase in Hubbard repulsion parameter U.
It can be seen that in the range of low electron densi�
ties, as well as in the range of densities close to the Van
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Hove singularity, the superconducting phase with the

�wave symmetry of the order parameter is

achieved with quite large values of  ~ 0.1–0.2. This
result is important for analyzing the possibility of
achieving the Kohn–Luttinger mechanism in high�Tc

superconductors. It should be noted that for  ~ 0.2,
the superconducting transition temperatures can

reach the values  ~ 100 K, which are realistic for

curates.

5. t–J MODEL

After Anderson formulated his idea [2] that the
electronic properties of cuprate superconductors can
be described by the Hubbard model in the strong�cou�
pling limit (U � W), the so�called t–J model has
become extremely popular. The Hamiltonian of the
t⎯J model with a released constraint has the form [70]

(36)

In fact, it is a model with a strong Coulomb repulsion
between electrons at the same site and with a weak
antiferromagnetic interaction J > 0 at neighboring
sites. Thus, the hierarchy of the model parameters has
the form U � {J, t}. The phase diagram of the t–J
model constructed in [70] is shown in Fig. 9.
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For the realistic parameters of optimally doped
cuprate superconductors (J/t ~ 0.5, n = 2εF/W =
0.85), we can obtain the following estimate for the
superconducting transition temperature:

(37)

It is important that an analogous estimate of the super�
conducting transition temperature for the �wave

pairing was obtained in [71] using a more rigorous the�
ory for optimally doped cuprates by employing the
Hubbard operator technique.

It should be noted that the development of the
Kohn–Luttinger ideology for the strong�coupling
regime for a nearly half�filling has become one of the
most topical trends in the theory of superconductivity
in strongly correlated systems. However, the solution
of this problem requires taking into account strong
single�site correlations in all orders of perturbation
theory. The intersite correlations should be described
with allowance for second�order contributions. One of
the scenarios of the development of the theory is asso�
ciated with the use of the atomic representation [72]
and diagram technique for the Hubbard operators
[73]. The models in which the Kohn–Luttinger renor�
malizations can be taken into account include the
generalized t–J–V model [74–76] and the t–J*–V
model with three�center interactions (the important
role of such interactions in describing the supercon�
ducting state was studied in [77–84]). These models
are effective low�energy versions of the Shubin–Vons�
ovsky model.
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6. IDEALIZED MONOLAYER
OF DOPED GRAPHENE

The popularity of the Kohn–Luttinger mechanism
continues to increase due to its possible implementa�
tion in other important physical systems. For example,
the conditions of its occurrence in topological super�
fluid liquids [85], as well as in an idealized doped
graphene monolayer, in which the effect of nonmag�
netic impurities and the Van der Waals potential of the
substrate are disregarded, are being actively discussed
at present.

One of the most interesting properties of graphene
is associated with the possibility of controlling the
position of the chemical potential in this material by
applying an electric field and, hence, by changing the
type of charge carriers (electrons or holes). It was
shown experimentally [86] that short graphene sam�
ples can be used to construct Josephson junctions by
placing them between superconducting contacts. This
means that Cooper pairs can propagate coherently in
graphene. This result suggests that graphene can prob�
ably be modified structurally or chemically so that it
becomes a magnet [87] or even a real superconductor.

It is known that, theoretically, the model with con�
ical dispersion requires the minimal intensity of the
pairing interaction for the development of Cooper
instability [88]. In this connection, several attempts
have been made to theoretically analyze the possibility
of the superconducting state in doped graphene. The
role of topological defects in Cooper pairing in this
material was studied in [89]. In [90], a phase diagram
was obtained in the mean�field approximation for the
spin�singlet superconductivity in graphene; the plas�
mon superconductivity mechanism leading to low
superconducting transition temperatures in the s�wave
channel was investigated for realistic values of electron
concentrations. The possibility of inducing supercon�
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Fig. 9. Phase diagram of the superconducting state in the
2D t–J model for small and intermediate values of electron
density.
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ductivity in graphene by electron correlations was
investigated in [91, 92]. In [93], the functional renor�
malization group method was employed to study the
competition between the superconducting phase with
the d + id symmetry type of the order parameter and
the phase of the spin density wave on the Van Hove sin�
gularity in the density of electron states of graphene. In
the vicinity of the Van Hove singularity, superconduct�
ing phases with the d + id�wave and f�wave types of the
order parameter symmetry were found.

In [94], the situation was considered with the
Fermi level near one of the Van Hove singularities in
the density of states of graphene. It is well known that
these singularities can enhance magnetic and super�
conducting fluctuations [95]. According to the sce�
nario described in [94], the Cooper instability appears
due to anisotropy of the Fermi contour for Van Hove
filling n

vH, which in fact is related to the Kohn–Lut�
tinger mechanism. It was noted [94] that the imple�
mentation of this mechanism in graphene is possible
because the electron–electron scattering becomes
strongly anisotropic and, hence, a channel with
attraction may appear for some harmonics with a non�
trivial angular dependence on the Fermi surface. Such
a Cooper instability in an idealized graphene mono�
layer can ensure superconducting transition tempera�
tures up to Tc ~ 1 K depending on the ability to tune
the chemical potential level to the Van Hove singular�
ity to the greatest possible extent. It should be noted
that only the Coulomb repulsion of electrons at one
site was taken into account in calculations. As men�
tioned above, the existence of the Van der Waals poten�
tial of the substrate and nonmagnetic impurities were
ignored.

The possibility of competition and coexistence of
the Pomeranchuk instability and the Kohn–Luttinger
superconducting instability in graphene was consid�
ered in [96]. In [97–99], it was shown by the Kohn–
Luttinger mechanism that chiral superconductivity of
the d + id�wave type can be achieved in a doped
graphene monolayer. Using the renormalization group
method, the authors of [97–99] in fact proved that the
Cooper instability evolves simultaneously in two
degenerate d�wave channels.

Our recent publication [100] was devoted to analyz�
ing Kohn–Luttinger superconductivity in an idealized
doped graphene monolayer taking into account the
Coulomb repulsion of electrons on the same and near�
est carbon atoms in the Born weak coupling approxima�
tion. The necessity of taking into account the long�
range Coulomb interaction in calculating the physical
characteristics was dictated by the results of recent work
[101], in which the partly screened frequency�depen�
dent Coulomb interaction was calculated ab initio in
constructing the effective many�body model of
graphene and graphite. It was found that the one�
atomic repulsion in graphene amounts to U = 9.3 eV,
which contradicts the intuitively predicted small value
of U and weak coupling (U < W). Calculations demon�

strated the fundamental importance of taking into
account nonlocal Coulomb interaction in graphene
because the Coulomb repulsion of electrons located at
neighboring sites is V = 5.5 eV according to ab initio
calculations [101]. It should be noted that other
researchers consider the value of V to be much smaller.

In the hexagonal lattice of graphene, each unit cell
corresponds to two carbon atoms; therefore, the entire
lattice can be split into two sublattices A and B. The
Hamiltonian of the Shubin–Vonsovsky model for
graphene, which takes into account electrons hop�
pings between the nearest and next�to�nearest atoms,
as well as the Coulomb repulsion of electrons on the
same and on neighboring atoms, has the following
form in the Wannier representations:

(38)
where in the real space

(39)

(40)

Operators (afσ) in expressions (39) and (40) create
(annihilate) an electron with spin projection σ = ±1/2
at site f of sublattice A. At the same time, expression

denotes the operator of fermion density at site f of sub�
lattice A (analogous notation can be used for sublattice
B). In Hamiltonian (38)–(40), angle brackets 
indicate that the summation is carried out only over
the nearest neighbors, while  indicates that the
summation is performed over the next�to�nearest
neighbors.

Passing to the momentum space and performing
the Bogoliubov u–v transformation,

(41)

where αkσ and βkσ are the operators describing the
dynamics of electrons in the upper and lower bands of

graphene, we can diagonalize Hamiltonian . The

interacting part  of the Hamiltonian was written in
[100] in the representation of Bogoliubov operators
(41); we derived the expression for the effective inter�
action of electrons taking into account the polariza�
tion contributions described by the diagrams in Fig. 2.

The possibility of Cooper pairing is determined by
the characteristics of the energy spectrum in the vicin�
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ity of the Fermi level and by the effective interaction of
electrons near the Fermi surface [21]. We assumed in
[100] that upon doping of graphene, the chemical
potential gets into the upper band; accordingly, in ana�
lyzing the conditions for anomalous pairing, we con�
sidered the polarization contributions associated with
the Coulomb interaction of electrons with energies
corresponding to only one or both branches of the
energy spectrum of graphene (both Dirac cones).

Figure 10 shows the dependences of the effective
coupling constant on the electron concentration,
which were obtained taking into account the effective
interaction of electrons with the energies correspond�
ing to both branches of the graphene energy spectrum
for the set of parameters t2 = 0.2 , U = 3 , and

V = 0.5 . It can be seen that for electron densities
1 < n < 1.13, competition appears between supercon�
ducting phase of the d + id�wave type of the order
parameter symmetry, which are described by 2D rep�
resentation E2, and the superconducting phase with
the f�wave  type of symmetry. For electron concentra�
tions 1.18 < n < 1.25, the ground state of the system
corresponds to the superconducting phase with the
d + id�wave type symmetry of order parameter.

Analysis carried out in [100] revealed that the
inclusion of electron hoppings to next�to�nearest car�
bon atoms (t2) does not qualitatively affect the compe�
tition between superconducting phases. Such a behav�
ior of the system can be explained by the fact that acti�
vation of hoppings t2 > 0 or t2 < 0 leads to only a
quantitative change in the electron density of states in
graphene, but does not affect its dependence on the
carrier concentration (Fig. 11). As a result, allowance
for distant hoppings in t2 leads to an increase in the
absolute values of the effective interaction and, hence,

t1 t1

t1

to a higher superconducting transition temperature in
doped graphene [100].

The possibility of Cooper pairing in graphene was
analyzed in [102] in the opposite strong�coupling limit
U � t on the basis of the kinematic mechanism of
superconductivity using the diagram technique for the
Hubbard operators [49, 73]. As mentioned above, the
feasibility of the strong�coupling limit for graphene
was announced in [101].

7. CONCLUSIONS

In this review, we have demonstrated the instability
of the normal state of a repulsive electron gas and of
electron systems on the lattice to the transition to the
superconducting phase in accordance with the Kohn–
Luttinger mechanism for various electron models. The
initial conclusion concerning Cooper instability for
the model of a repulsive Fermi gas with a quadratic
dispersion relation was generalized for electrons in real
crystalline solids considered in the tight binding
approximation. The difference between the dispersion
relation for electrons from the quadratic law leads to a
number of additional peculiarities associated with the
effects of the Brillouin zone. For example, it turned
out that the form of the electron energy spectrum
determined by hopping parameters affects the con�
centration dependence of the superconducting transi�
tion temperature as well as the order parameter sym�
metry. As a result, there is a change in the structure of
the phase diagram that determines the regions of
achievement of superconducting phases with different
types of the order parameter symmetry. However, the
conclusion concerning the possibility of Cooper insta�
bility with the Kohn–Luttinger mechanism in the

Fig. 10. Dependence of λ on carrier concentration n taking
into account the effective interaction of electrons with
energies corresponding to both branches of the graphene
spectrum for t2 = 0.2 , U = 3 , and V = 0.5 ; t1 = 1,

t2 = 0.2, U = 3, V = 0.5.
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Fig. 11. Modification of the electron density of states in
graphene with the inclusion of hoppings to the next�to�
nearest atoms for t2 = –0.2  (dashed curve), t2 = 0 (solid

curve), t2 = 0.2  (dotted curve).
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electron plasma in the tight binding approximation
generally holds.

In this review, it was illustrated that the universal
nature of the Kohn–Luttinger mechanism is pre�
served even if we take into account the finiteness of the
screening radius in repulsive Fermi systems. At the
same time, investigations based on the Shubin–Vons�
ovsky model demonstrated that it is important to take
into account the Coulomb repulsion of electrons at
different sites of crystal lattice. In this case, the phase
diagram of the superconducting state changes, and the
superconducting transition temperature can be
increased under certain conditions.

We also showed that the Kohn–Luttinger mecha�
nism of superconducting pairing can be realized in
systems with a linear dispersion relation. This was
demonstrated for an idealized graphene monolayer
possessing a hexagonal lattice with two carbon atoms
per unit cell. It was shown that the polarization effects
in such a system lead to an effective attraction in the
Cooper channel.

The above arguments lead to the conclusion about
the universal nature of the Kohn–Luttinger mecha�
nism for the formation of Cooper instability in repul�
sive Fermi systems and for superconducting pairing
with a nonzero orbital angular momentum. It should
also be noted that in many cases this mechanism leads
to quite high superconducting transition temperatures
(as shown in [40], especially in the two�band situation
with a wide and a narrow band). Moreover, for elec�
tron concentrations close to the Van Hove singularity
in the electron density of states, the superconducting
transition temperatures increase still further and may
reach the values of the order of 100 K even in the one�
band case for intermediate values of the ratio of the
Hubbard repulsion parameter to the conduction band
width (U/W).
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