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1. INTRODUCTION

It is assumed that the energy spectrum of Fermi
excitations of the normal phase of high�Tc supercon�
ductors forms under the mutual influence of the spin
and charge degrees of freedom [1–9]. Its origin in
the effective Emery model [10–12] with two oxygen
ions per unit cell is associated with a large exchange
coupling between the spins of oxygen holes and cop�
per holes [13]. An important feature of this interac�
tion is that it leads to spin�correlated hoppings [2, 3,
14], i.e., to hoppings accompanied by spin�flip pro�
cesses. As a result, the charge transfer with a simul�
taneous change in the spin moment projection of an
oxygen hole begins to play an important role. In
accordance with the law of conservation of the total
projection of the spin moment of the entire system,
a change in the spin projection of a hole on a copper
ion is initiated.

It is well known that the spin�polaron concept
makes it possible to obtain a correct description of
short�range correlations in constructimg the theory of
the energy structure of the 2D Emery model [2, 3].
With such an approach, strong spin–charge fluctua�
tions are taken into account by extending the basis set
of operators, which includes the multiplicative opera�
tors defined as the product of spin and Fermi operators
pertaining to neighboring sites. Then the construction
of the equations of motion for the set of the basis oper�
ators introduced in this way with the subsequent appli�
cation of the Zwanzig–Mori projection method [4–6,

15, 16] makes it possible to rigorously and self�consis�
tently take into account the short�range spin–fermion
correlations, because the decoupling procedure is not
used for multiplicative operators. As a result, the
Fermi excitation spectrum acquires a dependence on
spin–fermion correlations, which substantially affects
the concentration�dependent evolution of the Fermi
contour.

Experimental investigations of angle�resolved pho�
toemission spectroscopy (ARPES) indicate that the
rigid�band model is inapplicable for describing the
observed transformation of the Fermi surface (FS)
upon an increase in the hole concentration in the sys�
tem [17–21]. In particular, it is found that the Fermi
excitation spectrum in optimally doped cuprates dif�
fers significantly from the spectrum of cuprate insula�
tors. In undoped compounds, an isotropic bottom of
the band is observed in the vicinity of point N = (π/2,
π/2) of the momentum space [17, 22–25], while in
optimally doped cuprates, there appear a large FS with
the center at point M = (π, π) and the region of a plane
band in the form of an extended saddle point in the
(0, π/2)–(0, π) direction [18, 26–31]. For low and
intermediate doping levels, the region of the plane
band is also observed in the (0, π)–(π/2, π) direction.
In the case of intermediate doping, a high�energy
pseudogap exists near points X = {(π, 0), (0, π)} with
an energy on the order of 0.1 eV [23, 32–34].
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We will show that the experimentally observed
peculiarities in the evolution of the FS [17, 22–25] can
easily be explained assuming the spin�polaron origin
of Fermi quasiparticles [2]. The formation mechanism
of such quasiparticles in cuprate superconductors was
demonstrated using the effective Hamiltonian for the
three�band model [10–12] taking into account direct
oxygen–oxygen hoppings in the CuO2 plane as well as
antiferromagnetic (AFM) exchange interaction
between the nearest (Ig) and next�to�nearest (Id)
neighbors. It is significant that in constructing the
spectrum of hole excitations and in calculating the FS,
the actual structure of the CuO2 plane, as well as the
existence of a strong coupling between the spins of
copper ions and oxygen holes, is taken into account.

To describe the magnetic subsystem of the CuO2
plane in La2CuO4, we use the results obtained for a 2D
AFM�frustrated Heisenberg model with S = 1/2. It is
well known that the AFM interaction between the
nearest spins of Cu2+ ions in the CuO2 plane is strong
(on the order of 0.13 eV ≈ 1500 K for La2CuO4 [35])
and considerably exceeds the interplanar exchange.
The interplanar exchange is mainly responsible for the
long�range order observed in the dielectric phase of
CuO2 planes (the characteristic Néel temperature for
La2CuO4 is TN ~ 300 K). However, even for a compar�
atively low doping level in the system by holes, the
long�range AFM order disappears in the entire tem�
perature range. Such a behavior is successfully simu�
lated by introducing frustration [36]. Cluster calcula�
tions indicate a quite large frustration parameter
Id/Ig ~ 0.1 even for undoped LSCO [37]. Quantitative
analysis of the spin subsystem is carried out using the
spherically symmetric self�consistent theory [38–40].

It will be shown that in contrast to the model with
a large number of fitting parameters, the transforma�
tion of the Fermi contour in our case occurs for two
reasons. The first reason is associated with a strong
correlation between the subsystem of localized spins of
copper ions in the state of a quantum spin liquid and
the subsystem of oxygen holes. The second reason is
associated with a change in the correlation character�
istics of the quantum spin liquid, which appear upon
an increase in the doping level.

The article has the following structure. In Section 2,
the effective Hamiltonian of the Emery model is pre�
sented for the regime of strong but finite Coulomb
repulsion between two holes on a copper ion. This
Hamiltonian acts in the subspace of homeopolar states
of copper ions and describes the strong coupling of
localized spin moments and doped holes. In Section 3,
the method for calculating the spectral and thermody�
namic properties of the system under investigation is
considered. Section 4 is devoted to describing the
operator basis, which makes it possible to take into
account rigorously the short�range spin–charge fluc�
tuations and to determine the excitation spectrum of
spin�polaron quasiparticles. The same section pre�
sents the equations of motion for the basis operators;

as well, we analyze the multicenter spin–charge corr�
elators that play the key role in the formation mecha�
nism of the concentration dependence of the quasi�
particle excitation spectra of the spin�polaron ensem�
ble. Section 5 contains the results of self�consistent
numerical calculations of the concentration depen�
dence of the spin–charge correlation functions; the
effect of these correlators on the evolution of the
energy spectrum of Fermi quasiparticles in cuprate
superconductors is discussed. The main conclusions
following from the results are formulated in Section 6.

2. EFFECTIVE HAMILTONIAN
OF THE MODEL

In the regime of strong electron correlations, the
three�band p–d model [10–12] can be represented by
the effective Hamiltonian [3, 13]

(1)

where

The first term of this Hamiltonian denotes the
energy εd of homeopolar states of copper ions, reduced
by 4τ due to effects of covalence with four nearest oxy�
gen ions. The degree of mixing of oxygen p� and cop�
per d�orbitals is determined by hybridization parame�
ter tpd and dielectric gap width Δpd = εp – εd with charge
transfer, which is equal to the difference between the
hole energy εp at the oxygen ion and εd at the copper
ion; N is the number of copper sites in the CuO2 plane,
which is equal to the number of unit cells.

The second term in formula (1) describes the bind�
ing energy of a doped hole with an oxygen ion. Oper�

ators  = ( , ) in the spinor representation cor�
respond to the hole creation operators with projection
σ = ±1/2 of spin moments on an oxygen ion at the lth
site.

The third term in  corresponds to direct hole
hoppings between the nearest oxygen ions connected
by vectors ρ. The hopping intensity is determined by
the tunneling integral t > 0. We will henceforth assume
that hybridization parameter tpd exceeds the tunneling
integral (tpd > t).

The origin of the fourth term in effective Hamilto�
nian (1) is associated with the inclusion of the second�
order terms in hybridization parameter tpd. The opera�
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tor emerging in this case describes the hoppings of
holes between oxygen ions directly adjoining the cop�

per ion. Operator  is defined as the scalar product of
spin moment vector operator Sf on the copper ion at
the fth site and vector σ = (σx, σy, σz) composed from
Pauli spin matrices. The main feature of this operator
is that it contains the contributions corresponding to
hole hoppings that accompany the spin�flip processes.
In such hoppings, a correlated change in the spin pro�
jection occurs not only at the hole, but also at the cop�
per ion. It will be shown below that allowance for such
contributions considerably affects the formation of the
structure of the spin�polaron spectrum of elementary
excitations and its dependence on the doping level.
Vectors δ and δ' independently assume four values

{±ax, ±ay} = {±gx, ±gy}, where {±gx, ±gy} are the vec�

tors of the nearest neighbors in the copper lattice.
The last term in expression (1) corresponds to the

superexchange interaction between the spin moments
of copper ions. We will confine further analysis to
interaction only between spins within two coordina�
tion spheres:

(2)

In this expression, Ig denotes the exchange integral for
the nearest spins and Id (d = ±gx, ±gy) is the exchange
integral between next�to�nearest spins. It is conve�
nient to express the exchange constants in terms of
frustration parameter p and effective exchange I:

(3)

Quantity p can be associated with the concentration x
of holes per copper atom [41]. This conformity will be
used below for describing the modification of the spin
subsystem under doping.

In deriving the effective Hamiltonian from the
three�band Emery model, we assumed that the Cou�
lomb interaction energy Ud for two holes on a copper
ion is the largest energy parameter of the system (Ud >
Δpd � tpd). The effect of the Coulomb interaction for
two holes at the same oxygen ion, as well as the inter�
action of oxygen holes and copper holes, was disre�
garded.

We assume that the subsystem of localized spin
moments of copper ions is in the state of a quantum
spin liquid. In this case, the spherical symmetry is pre�
served in the spin space. This means that spin correla�
tion functions Cr =  satisfy the relations

(4)

In addition (α, β = ↑, ↓), we can write

(5)

S̃f

1
2
��

�ˆ exch
Ig

2
��� SfSf g+

fg

∑
Id

2
��� Sf

fd

∑ Sf d+ .⋅+=

Ig 1 p–( )I, Id pI, 0 p 1, I 0.>≤ ≤= =

Sr Sf r+⋅〈 〉

Cr 3 Sf
x y z,( )Sf r+

x y z,( )〈 〉 .=

Sf
x y z,( )〈 〉 0, σαβ Sf⋅〈 〉 0,= =

σαβ Sf Sm×[ ]⋅〈 〉 0.=

It should be noted that the hopping integrals in the
third and fourth terms of Hamiltonian (1) may in fact
differ in sign for different directions of hoppings. It
can easily be seen that these signs can be taken into
account exactly by introducing factors exp{iQ(l – l ')},
where Q = (π, π). After unitary transformation
eiQlcl  cl, these factors vanish, and to reconstruct
the spectrum, it is sufficient to carry out the shift k 
k + Q in the k space at the end of computations.

Below we use the following values of the model
parameters: tpd = 1.3 eV, Δpd = 3.6 eV, Ud = 10.5 eV, t =
0.5 eV, and I = 0.16 eV, which correspond to the gen�
erally accepted values [14, 42, 43]. In this case, τ =
0.47 eV and η = 0.52.

3. MORI–ZWANZIG PROJECTION 
FORMALISM

The problem of describing spin–charge fluctua�
tions can be solved in two stages. The first stage is asso�
ciated with the derivation of closed equations for the
family of two�time Green’s functions, in which the
spin–charge fluctuations of interest are reflected with�
out using linearization methods. At the second stage,
the system of equations for the Green’s functions is
solved numerically with simultaneous determination
of the self�consistent mean values.

The closed system of equations for the two�time
Green’s functions can be derived using the method of
irreducible Green’s functions and the Mori–Zwanzig
projection formalism [4–6, 15, 16]. Let us consider
retarded two�time Green’s functions

(6)

where Ajk = N–1/2 Ajf is the basis set of operators

in the momentum representation and Ajf ( j = 1, …, n)
are the basis operators in the Wannier representation.
The form of these operators, as well as their number n
for a fixed value of quasi�momentum k, is determined
by the specific features of the problem.

Let us write a system of n × n equations of motion
for the Green’s functions introduced above:

(7)

where quantity Kij is the mean value of the anticom�

mutator of basis operators Aik and :

(8)

In accordance with the projection method, the
Green’s functions occurring as a result of commuta�

Gij k t,( ) Aik t( ) Ajk
† 0( )〈 | 〉〈 〉=

=  iθ t( ) Aik t( ) Ajk
† 0( ),[ ]〈 〉 ,–

e ikf–

f∑

ω Aik Ajk
†〈 | 〉〈 〉ω Kij Aik �ˆ,[ ] Ajk

†〈 | 〉〈 〉ω,+=

Ajk
†

Kij Aik Ajk
†,{ }〈 〉 .=
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tion [Aik, ] can be written as a linear superposition
of basis Green’s functions (6):

(9)

where

(10)

The resultant system of equations for the Green’s

functions  is closed; for brevity, this system
can be written in matrix form:

(11)

where  is the unit matrix. In this case, the energy
spectrum Ejk of quasiparticles is determined by the
poles of the Green’s function G(k, ω) and can be
obtained from the dispersion equation

(12)

4. SPIN�POLARON BASIS

The specific form of elements of matrix Kij and
energy matrix Dij(k) depends of the choice of basis
operators {Ajk}. In analyzing effective Hamiltonian (1)
of the Emery model, the minimal set of basis operators
taking into account the strong coupling between the
subsystem of localized spins of copper ions and the
spins of oxygen holes consists of three operators [3]:

(13)

Operator Af1 (Af2) annihilates the hole in the fth cell on
the oxygen ion at site f + ax ( f + ay) located on the px

(py) orbital. A third operator Af3 is introduced to rigor�
ously take into account the spin–fermion correlations.
It is written in the form of the product of the spin oper�
ator corresponding to the fth cell and the operator
written in the form of a linear superposition of four
Fermi operators of oxygen holes pertaining to four
sites, which are nearest to the fth copper ion. It should
be noted that the spinor form of this operator reflects
the SU(2) invariance of the Hamiltonian of the system
and the spin�liquid state of the spin subsystems of cop�
per ions and oxygen holes. It is noteworthy that the
expression for operator Af3 used here includes the
terms corresponding to the above�mentioned spin�flip
processes. All operators in this case are acting in the
Hilbert space of states of effective Hamiltonian (1)
including only the homeopolar states of copper ions.

�ˆ

Aik �ˆ,[ ] Ajk
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l
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Î

det ωÎ D k( )K 1–– 0.=
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A3f
1
2
��S̃f cf δ+ , δ

δ

∑ ax± ay.±,= =

The exact equations of motion for basis opera�
tors (13) have the form

(14)

(15)

(16)

where Δ is a vector running through eight values:
{±gx±ay, ±gy±ax}. This vector connects a copper ion
and next�to�nearest oxygen ions. As before, vector δ
(δ') assumes four values: {±ax, ±ay}. Note that in con�
trast to the first two equations (14) and (15), the right�

i
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hand side of the third equation of motion (16) cannot
be expressed in terms of basis operators (13). The
right�had side of Eq. (16) has acquired new operators
with a more complex structure.

Projecting the right�hand sides of Eqs. (14)–(16)
onto basis (13), we take advantage of the fact that the
spin subsystem is in the state of a quantum spin liquid.
This allows us to calculate the elements of matrices
D(k) and K(k) using the simplifying assumptions asso�
ciated with vanishing of mean values (5). Omitting
intermediate calculations, we write the final expres�
sions (Dij(k) = (k) and Kij(k) = (k)):

(17)

(18)

It can be seen that the matrix elements can be
expressed not only in terms of spin correlators (4) and
kinematic correlators �l–l ', but also in terms of the
spin–charge correlation functions:

(19)

Dji* Kji*

D11 k( ) εp τ– 1 kxcos+( ),+=

D22 k( ) εp τ– 1 kycos+( ),+=

D31 k( ) 2τ+ 1 e
ikx–

+( )K33,=

D32 k( ) 2τ+ 1 e
iky–

+( )K33,=
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τ–

2
���� t–⎝ ⎠
⎛ ⎞ 1 e

ikx+( ) 1 e
iky–

+( ),=

D33 k( ) εp 2t– 5
2
��τ– 4τ+–+⎝ ⎠
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+
τ–

2
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2
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+ τ+ 4M1 C1 1 4γ1 k( )–( )+[
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2
�� x 8�1 4�2+ +( ) L1– 2Q1γ1 k( )+
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K11 K22 1, K12 K13 K23 0,= = = = =

K33
3
4
�� C1γ1 k( ) M1.–+=

M1
1
2
�� A3f

† cf δ+〈 〉 ,

δ

∑=

M2
1
2
�� A3f

† cf Δ+〈 〉 ,

Δ

∑=

M3
1
2
�� A3f

† cf 3δ+〈 〉 ,

δ

∑=

(20)

(21)

in which vector g assumes four values ±gx(y) from the
first coordination sphere for the sublattice of copper
ions and vector d assumes four values ±gx±gy from the
second coordination sphere for the same sublattice. In
further analysis, from the entire set of kinematic corr�
elators

(22)

we will use only two (�l–l ' = �1 if l and l ' are the indi�
ces of the nearest oxygen ions and �l–l ' = �2 if l and l '
are the indices of the next�to�nearest sites in the oxy�
gen lattice).

Since spin–charge correlators (19)–(21) are
important for calculating the concentration�depen�
dent evolution of the spectrum of spin�polaron quasi�
particles, the meaning of these correlators is illustrated
in Figs. 1–3.

The spin–charge correlators Mj ( j = 1, 2, 3) in for�
mula (19) describe the averaged probability amplitude
of the transition of a hole from the p state on the oxy�
gen ion with number f + r to a coherent state described
by superposition of the p states of a hole on four oxy�
gen ions nearest to site f, which correlate with the cop�
per ion in spin variables. Correlator M1 (see Fig. 1)

L1 2 A3 f g+ σ, ,
† A3fσ〈 〉 ,

g

∑=

L2 2 A3 f d+ σ, ,
† A3fσ〈 〉 ,

d

∑=

Q1 cf δ+
† S̃f g+( )σA3fσ〈 〉 ,

δg

∑=

Q2 cf δ+
† S̃f d+( )σA3fσ〈 〉 ,

δd

∑=

�l–l ' clσ
† cl 'σ〈 〉=

f f

Fig. 1. Diagram of the process of transition of a hole from
an oxygen ion at site f + r to the coherent state deter�

mined by operator . The amplitude of this process

determines the value of correlator M1. The dark circle in
the left part of the figure indicates the oxygen ion on
which the hole is located, and light circles show oxygen
ions without a hole. The dashed circle connecting four
oxygen sites in the right part of the figure illustrates the
fact that the hole can equiprobably be at any of the four
oxygen ions. The superposition of these states possesses
the property of coherence in the phase factors as well in
the spin configurations of the copper–oxygen orbitals.
The copper ion participating in the correlated spin
dynamics is denoted by the crossed circle.

A3f
†
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corresponds to r = δ. Correlator M2 (M3) has the same
physical meaning as correlator M1, the only difference
being that a transition of a hole to the above coherent
state occurs from a site located in the second (r = Δ)
(third, r = 2δ) coordination sphere.

In contrast to M1 (M2), correlation function L1 (L2)
describes the probability amplitude of the transition of
a hole not from a fixed oxygen ion, but from the above
coherent superposition (pertaining to site f) to a
coherent superposition of states pertaining to the
nearest (next�to�nearest) site f + g ( f + d) of a copper
ion. Figures 2a and 2b schematically illustrate such an
interpretation.

Correlators Q1 and Q2 (21) reflect the averaged
amplitudes of the processes in which it is not charge
transfer that takes place, but the spin partner partici�
pating in the formation of the spin�coherent states
changes: for correlator Q1, the spin partner is the cop�
per ion at site f + g, while the spin partner for correla�
tor Q2 is the copper ion at site f + d. The corresponding
processes are illustrated in Fig. 3.

All spin–fermion correlators appearing in the the�
ory can be calculated using the spectral theorem
applied to the corresponding Green’s functions. For
these functions, the system of closed equations can be
written using the above equations of motion. To calcu�
late kinematic correlators (22), we must use Green’s
functions G11(k, ω) and G12(k, ω). To determine spin–
charge correlators Mj ( j = 1, 2, 3), the Green’s func�
tion G13(k, ω) is used, while the Green’s function used
for calculating correlators Lj ( j = 1, 2) is G33(k, ω).

The set of basis operators (13) introduced above is
insufficient for calculating correlators Qj ( j = 1, 2). If,
however, we introduce additional operators

(23)

and calculate Green’s functions G34(k, ω) =

 and G35(k, ω) = , we can
easily find correlators Qj ( j = 1, 2).

In writing the equations of motion for Green’s
functions G34(k, ω) and G35(k, ω), commutator [A3,

] will be projected, as before, onto initial basis (13).
In this case, there is no need to calculate new matrix
elements of energy matrix D(k). All we need to addi�
tionally obtain correlators Qj ( j = 1, 2) are the matrix
elements

(24)

(25)
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�ˆ

A3k A4k
†,{ }〈 〉

=  C1
1
4
��γ1 k( ) 3

4
�� 2C2 C3 M1– M2– M3–+ + ,+

A3k A5k
†,{ }〈 〉

=  C2
1
2
��γ1 k( ) C1 C4+[ ] 1

4
��γ2 k( ) M2 M4+[ ].–+

ff f + g f + g

f + d f + d

ff

(a)

(b)

Fig. 2. Diagrams of the processes determining correlation
functions L1 and L2. Prior to the transition, the coherent
superposition of one�hole states corresponded to site f;
after the transition, it corresponds to site f + g (a) or f + d
(b). The remaining notation is the same as in Fig. 1.

ff f + g f + g

f + d f + d

ff

(a)

(b)

Fig. 3. Diagrams of the processes determining correlation
functions Q1 and Q2. In the initial state, the spin–charge
coherence was formed relative to site f. In the final state,
the charge coherence relative to site f is preserved, while
the spin coherence is formed relative to site f + g (for the
process determining correlator Q1) or relative to site f + d
(for the process determining correlator Q2). The remaining
notation is the same as in the previous figures.
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5. RESULTS OF NUMERICAL CALCULATION 
OF CORRELATION FUNCTIONS

AND ENERGY SPECTRUM

To calculate the energy structure of spin�polaron
quasiparticles self�consistently, we must know, apart
from the spin–charge and kinematic correlators, the
concentration dependence of pair spin correlation
functions (4) for three coordinate spheres: C1 for r = g;
C2 for r = d, and C3 for r = 2g. These correlation func�
tions C1, C2, and C3, as well as gap ΔQ(p) in the mag�
netic excitation spectrum in the vicinity of point Q =
(π, π) of the Brillouin zone, can be calculated using
the spherically symmetric self�consistent approach for
a frustrated antiferromagnet (see [44] and literature
cited therein). In this case, ΔQ is a linear function of
inverse magnetic correlation length ξ–1. On the other
hand, according to the neutron scattering and nuclear
magnetic resonance data (see, e.g., [45, 46]), ξ–1 is
determined by doping level x and increases for LSCO
by several times with increasing x in the interval 0.03–
0.3. Accordingly, the values of frustrations introduced
above (see table) correspond to the case when the spin
gap increases by a factor of 2.5 upon an increase in p
from 0.15 to 0.3.

The table contains the spin correlators calculated
according to this technique for five parameters of frus�
trartion p. Henceforth, we will assume that these val�
ues correspond to five values of hole concentration x.

All the parameters of the problem were calculated
self�consistently as follows. For a given doping level x,
the values of spin correlators Cj ( j = 1, 2, 3) were deter�
mined from the table. Then nine correlations func�
tions Mj ( j = 1, 2, 3), �j, Lj, and Qj ( j = 1, 2) were cal�
culated by iterations. At each iteration step, chemical
potential μ was determined by solving the equation
determining the total concentration of oxygen holes.

The results of self�consistent numerical calcula�
tions of correlation functions are shown in Fig. 4. It
can be seen that in the absence of doping (x = 0), all
functions shown in Fig. 4 vanish as expected. Upon
doping, the values of these functions increase in abso�
lute value. This increase is especially strong for func�
tions M1, M2 and L1, L2. Such a behavior leads to a
considerable modification of the excitation spectrum
of spin�polaron states. It should be noted that in the
approximation of a single oxygen hole, all these corre�
lators are disregarded.

The dependence of the dispersion curve for spin�
polaron excitations from spin–charge correlations is
determined exclusively by matrix elements D33(k) and

K33. This can easily be seen if we write dispersion equa�
tion (12) in explicit form:

(26)

where the following functions have been introduced
for brevity:

Here and below, we use standard notation for the
invariants of the square lattice:

In the region of hole doping under investigation, spin�
polaron excitation spectrum E1k is determined for
each value of the quasi�momentum by solving cubic
dispersion equation (26) with the lowest values of
energy.

If the integral t of direct oxygen–oxygen hoppings
is equal to zero, expression (26) is considerably simpli�
fied and assumes the form

(27)

It can be seen that in this case, one of the roots of the
cubic equation, which generates dispersion level εp,
splits off. This level corresponds to the unbound oxy�
gen orbital. From this it follows that the admixture of
this orbital to spin�polaron states is due only to p–p
tunneling.

Figure 5 shows the modification of the dispersion
relation of spin�polaron excitations upon a change in
hole concentration x. It can be seen that for low dop�

ω εp–( )3 ω εp–( )2
2τ– 1 γ1 k( )+( ) Λ k( )+{ }–

+ ω εp–( ) 2τ–Λ k( ) 16τ+
2 K33–[ ] 1 γ1 k( )+( ){

+ 4t τ– t–( )χ k( ) }

+ 4tχ k( ) 8τ+
2 K33 Λ k( ) τ– t–( )–[ ] 0,=

Λ k( )
D33 k( )

K33

������������� εp, χ k( )– 1 2γ1 k( ) γ2 k( ).+ += =

γ1 k( ) 1
2
�� kx( )cos ky( )cos+( ),=

γ2 k( ) kx( ) ky( ),coscos=

γ3 k( ) 1
2
�� 2kx( )cos 2ky( )cos+( ).=

ω εp–( )2 ω εp–( ) 2τ– 1 γ1 k( )+( ) Λ k( )+{ }–[

+ 2τ–Λ k( ) 16τ+
2 K33–( ) 1 γ1 k( )+( ) ] ω εp–( ) 0.=

Doping levels x and corresponding values of frustration
parameter p and spin correlation functions

x p C1 C2 C3

0.03 0.15 –0.287 0.124 0.0950

0.07 0.21 –0.255 0.075 0.0640

0.15 0.25 –0.231 0.036 0.0510

0.22 0.275 –0.214 0.009 0.0450

0.30 0.30 –0.194 –0.0222 0.0457
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ing levels x = 0.03 and 0.07 (bold curves 1 and 2 in
Fig. 5), the Fermi surface forms a hole pocket in the
vicinity of point (π/2, π/2) of the Brillouin zone. As
noted in [47], the physical reason for the dispersion
minimum in the vicinity of this point is associated with
antiferromagnetic fluctuations manifested in spin cor�
relation functions Cj.

Upon an increase in hole concentration x, the
spin–charge correlators rapidly increase to the values
for which the role of magnetic correlators becomes
insignificant. The width of the spin�polaron band
increases in this case, and the dispersion minimum
shifts to point M(π, π) of the Brillouin zone. This

result is clearly demonstrated by the bold curves 3–5 in
Fig. 5.

It should be noted that if we disregard the spin–
charge correlators, the minimum of the dispersion
relation is shifted upon doping only slightly in the
direction of point M of the Brillouin zone, but remains
at an appreciable distance from it. Such a behavior is
depicted by the thin curves in Fig. 5, which describe
the evolution of the band structure of spin polarons
upon doping in the absence of spin–charge correla�
tions (i.e., in the case when all correlation functions
Mj, Lj, Qj, and �j are equal to zero,

Another important effect observed when spin–
charge correlators are taken into account is a consid�
erable decrease in the energy of polaron states, which
can easily be traced by comparing the bold and fine
curves in Fig. 5. The dispersion curves calculated with
allowance for spin–charge correlations (bold curves in
Fig. 5) are noticeably shifted downwards on the energy
scale upon an increase in the doping level, while the
dispersion relations calculated without taking into
account spin–charge correlators (fine curves in Fig. 5)
are shifted upwards.

Such a behavior of the one�particle spectrum of
Fermi excitations should obviously affect the behavior

of the total energy E =  of the system, which can
be written in the form

(28)

�ˆ〈 〉

E εd 4τ xεp 16t�1– 4τ– x/4 2�1 �2+ +( )+ + +=

+ 4τ+M1 2 I1C1 I2C2+( ).+

0.15

0.01

�(j = 1, 2)

x

0.04

0.30

(c)

0 0.100.05 0.20 0.25

�1

�2
0.03

0.02

0

−0.01

0.05

0.15

0

Lj, Qj (j = 1, 2)

x

1.0

0.30

(b)

0 0.100.05 0.20 0.25

L1
L2

0.5

−0.5

1.5

Q1
Q2

0.15

−0.4

Mj (j = 1, 2, 3)

x

0

0.30

(a)

0 0.100.05 0.20 0.25

M1
M2

−0.2

−0.6
M3

−0.5

−0.3

−0.1

0.1

−0.7

Fig. 4. Concentration dependences of correlation func�
tions: (a) Mj ( j = 1, 2, 3); (b) Lj and Qj ( j = 1, 2), and (c) �j
( j = 1, 2).

Fig. 5. Dispersion curves for the lower spin�polaron band.
Bold curves are calculated taking into account all correla�
tion functions for five values of the doping level: curve 1 for
x = 0.03; 2 for x = 0.07; 3 for x = 0.15, 4 for x = 0.22, and
5 for x = 0.3. Dashed lines denote the positions of the
chemical potential for corresponding concentration x.
Fine curves are the dispersion curves calculated for the
same five values of x taking into account only spin correla�
tors Cj (all spin–charge correlation functions Mj, Lj, Qj,
and �j were assumed to be zero).
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The dependence of total energy E of the system on
doping level x is shown by the solid curve in Fig. 6. For
comparison, the dashed curve in this figure shows the
dependence of the total energy calculated disregarding
the spin–charge correlators. It can be seen that if cor�
relators Mj, Lj, and Qj are ignored, energy E increases
with hole concentration x. When the spin–charge cor�
relators are taken into account, the total energy of the
system decreases with increasing x. It follows from
expression (28) and the curves in Fig. 4 that the
decrease in energy E is mainly due to correlator M1.

An important feature of the spin�polaron approach
to describing the spectral properties of high�tempera�
ture superconductors is associated with a substantial
decrease in the spectral density of quasiparticles in the
lower spin�polaron band. It should be noted that it is
this feature of the spectral intensity that ensures a large
FS for optimally doped and overdoped cuprate
HTSCs in spite of the fact that the hole concentration
in the CuO2 plane is relatively low in this case.

Figure 7 shows the spectral intensity Z1(k) of bare
holes, which corresponds to the lower band of spin
polarons. Its behavior can be determined from the
expression for Green’s function Gh(k, ω):

(29)

The vanishing of function Z1(k) at point Γ of the Bril�
louin zone corresponds, in particular, to the result
obtained in [48] from an analysis of the spin�fermion
model in the one�hole approximation. The maximal
value of the spectral intensity (slightly exceeding 0.8)
is attained at point M of the Brillouin zone. For con�
ventional fermions, the spectral intensity Z1(k) would
be equal to four for any value of quasi�momentum k.

It should be emphasized that the substantial
decrease in the spectral intensity of the correlation
function of spin�polaron quasiparticles occurs for a

Gh k ω,( ) Ajk Ajk
†〈 | 〉〈 〉ω

j 1=

2

∑
Z1 k( )
ω E1k–
��������������.= =

totally different reason than in the Hubbard model. It
is well known that renormalization of the spectral
intensity for Hubbard fermions is determined by factor
1 – n/2 and is almost unnoticeable for a low density n
of quasiparticles. This is because the strong interaction
in the Hubbard model exists between fermions them�
selves. If the number of fermions is small, the renor�
malizations of the spectral intensity of the correlation
function of the corresponding quasiparticles are also
insignificant.

A different situation takes place in the effective
Emery model considered here. As noted above, holes
strongly interact not with one another, but with the
spin subsystem. Since the spin moment in the regime
considered here is located at each copper ion, spin�
polaron states are formed for any doping level. Since
antibound triplet states of the spin of a copper ion and
of an oxygen hole are high�energy states, they are
almost unpopulated. For this reason, the spectral
weight of spin�polaron quasiparticles is determined
only by singlet bound states whose number is one�
third that of triplet states. This explains the decrease in
the spectral intensity of spin�polaron quasiparticles.

As a result, the maximal population of each state in
the quasi�momentum space is substantially smaller as
compared to the case of free fermions. A quantitative
characteristic of the population density of k�states can
be parameter P defined as the ratio of the number of
holes within the Fermi contour to the number of the k�
states of the Brillouin zone, bounded by the Fermi
contour. For P = 1, each k�state of the Brillouin zone
should be filled. In actual practice, P < 1, and the
smaller the value of P, the “looser” the filling of the k�
states by spin�polaron quasiparticles. Figure 8 shows

−2

Energy

x

0

0.30 0.1 0.2

−1

−3

1

Fig. 6. Concentration dependences of the total energy: the
solid curve was calculated taking into account spin–charge
correlators Mj, Lj, Qj, and �j, while the dashed line was
calculated disregarding these correlators.

1.0

0.8

0.6

0.4

0.2

0

Γ

X

X '

Z1(k)

Fig. 7. Spectral density of bare holes for the lower band of
spin polarons as a function of the quasi�momentum in the
first quarter of the Brillouin zone. Calculations were per�
formed for x = 0.03.
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the dependence of parameter P on doping level x. It
can be seen that occupation parameter P is much
smaller than unity and varies insignificantly in the
doping interval 0 < x < 0.3 under investigation. The
nonanalytic behavior of P in the vicinity of x = xc ~
0.12 is associated with a change in the topology of the
structure of Fermi contours, which takes place at xc.

An important characteristic determining the low�
temperature thermodynamics of the quasiparticle
ensemble is the density of states. Figure 9 shows the
variation of the density of states upon doping. It can be
seen that at low values of hole concentration x, there
are two Van Hove singularities located above chemical
potential μ on the energy scale. As the value of x
increases in the interval [0.03, 0.3] under investiga�
tion, the chemical potential passes sequentially
through the two singularities. For large values of dop�
ing level, the lower singularity disappears, and only
one Van Hove singularity is preserved. Such a dynam�
ics of the relative variation of the chemical potential
and the peaks in the density of states is important for
describing the superconducting phase of cuprate
HTSCs, since it is well known that the maximal super�
conducting transition temperature in these com�
pounds is attained at a doping level for which the
chemical potential is in the vicinity of the Van Hove
singularities.

6. CONCLUSIONS

Our analysis of the structure of Fermi quasiparti�
cles and the energy spectrum in the effective 2D
Emery model has led to the following conclusions.

1. Strong spin�fermion correlations between local�
ized spins of copper ions and holes at the nearest oxy�
gen ions form the basis of the spin�polaron origin of
Fermi quasiparticles in the CuO2 plane of HTSCs. The
dispersion equation determining the spectrum of the
Fermi excitations of such quasiparticles contains
functions expressed in terms of multicenter spin and

spin�fermion correlators as coefficients. The set of fer�
mion and spin�fermion operators introduced here is
sufficient for a self�consistent description of the spin�
polaron concept and for calculating the multicenter
spin�fermion correlators appearing in the theory.

2. It is found as a result of numerical solution of the
self�consistency equation that multicenter spin–
charge correlators exhibit a strong concentration
dependence. This results in a change in the spectrum

0.05

P

x

0.15

0.30 0.1 0.2

0.10

0.20

Fig. 8. Concentration dependence of occupancy parame�
ter P(x).
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of spin�polaron excitations upon an increase in the
number of oxygen holes. We have demonstrated a
modification of the energy structure of spin�polaron
quasiparticles upon an increase in hole concentration
x from a lower doping level x = 0.03, for which the
Fermi surface forms a small hole pocket in the vicinity
of point (π/2, π/2) of the Brillouin zone, to a high level
x = 0.3, for which a large Fermi surface is centered at
point (π, π) (see Fig. 5). A considerable modification
of the density of Fermi states upon an increase in the
doping level is observed. At low hole concentrations in
the system, the density of states exhibits two Van Hove
singularities, while at a higher doping level, there
remains only one singularity. This indicates the inap�
plicability of the rigid�band model for describing the
spectrum of Fermi excitations of cuprate supercon�
ductors.

3. Spin–charge correlations between the localized
spin subsystem and the itinerant fermion system in the
effective 2D Emery model cause a significant decrease
in the energy of spin�polaron states upon an increase
in oxygen hole concentration x. It should be noted in
this connection that in the one�hole approximation,
the dispersion curves are shifted towards higher ener�
gies upon an increase in x.

4. The substantial decrease in the spectral weight of
the correlation function for Fermi quasiparticles has a
simple spin�polaron origin. In the formation of spin�
polaron states, the initial energy level splits into two
levels due to the strong exchange coupling between the
spins of holes on the copper and oxygen ions. In this
case, three triplet states possess a high energy, while
one singlet state with a lower energy serves as the basis
for the formation of collective spin�polaron quasipar�
ticles. Since the relative weight of singlet states is one�
third that of the triplet states, the spectral intensity for
lower�lying (i.e., spin�polaron) states decreases when
the above�mentioned splitting of the energy level is
taken into account and a strong tendency to populate
only singlet states is observed.

5. The above conclusions confirm the hypothesis of
the spin�polaron origin of Fermi quasiparticles in the
normal phase of copper oxides. At the same time, the
investigation of Cooper instability in an ensemble of
such spin�polaron quasiparticles becomes an urgent
problem. It can easily be seen that the approach devel�
oped in this study makes it possible indeed to describe
the superconducting phase of cuprate HTSCs taking
into account the actual structure of the CuO2 plane
and strong spin–fermion correlations. Significantly,
Cooper instability is observed in a system of quasipar�
ticles whose energy structure matches the ARPES
data. This, however, is beyond the scope of this study
and is the object of a separate analysis.
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