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1. INTRODUCTION

Graphene is of considerable interest for fundamen�
tal physics and for applications due to its peculiar
transport, pseudorelativistic, and quantum�electrody�
namic properties [1–3]. This combination of graphene
properties is primarily determined by its unique gapless
energy structure consisting of cone�shaped valence and
conduction bands contacting at the corners of the first
Brillouin zone (Dirac points) [4]. It has been estab�
lished that electrons propagating in graphene near
Dirac points resemble massless fermions with linear
dispersion [5] and are characterized by the minimal
conductivity for a zero charge carrier concentration [5,
6], a high mobility [7–9], Klein tunneling [10, 11],
oscillating motion (Zitterbewegung) [12, 13], universal
absorption of light [14], and many other properties
having no analogs in other physical systems.

When in contact with superconductors, graphene
exhibits exotic superconducting properties [15]. In
spite of the fact that the evolution of the Cooper insta�
bility in graphene itself has not yet been confirmed,
experimental evidence [16–21] that graphene in con�
tact with conventional superconductors exhibits super�

conducting properties have been obtained. The fact
that short graphene samples placed between supercon�
ducting contacts can be used to construct Josephson
junctions indicates that Cooper pairs can propagate
coherently in graphene. In this connection, it would be
interesting to find out whether it is possible to modify
graphene structurally or chemically to convert it into a
magnet [22] or even into a real superconductor.

It is known theoretically that a model with conic
dispersion requires the minimal intensity of the pair�
ing interaction for the development of the Cooper
instability [23]. In this connection, there have been
several attempts to analyze theoretically possible
achievement of the superconducting state in doped
monolayer, as well as bilayer, graphene. The role of
topological defects in achieving Cooper pairing in a
graphene monolayer was studied in [24]. In [25], the
phase diagram for spin�singlet superconductivity in a
monolayer was constructed by Uchoa and Castro
Neto in the mean field approximation, and the plas�
mon mechanism of superconductivity leading to low
superconducting transition temperatures in the s�wave
channel was studied for realistic electron concentra�
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tion values. The possibility of inducing superconduc�
tivity in a graphene monolayer due to electron correla�
tions was investigated in [26, 27].

The situation in which the Fermi level is near one of
the van Hove singularities in the density of states of a
graphene monolayer was considered in [28]. It is well
known that these singularities can enhance magnetic
and superconducting fluctuations [29]. In accordance
with the scenario described in [29], the Cooper instabil�
ity occurs due to strong anisotropy of the Fermi contour
for van Hove filling n

vH, which in fact originates from the
Kohn–Luttinger mechanism [30] proposed in 1965 and
assuming the occurrence of superconducting pairing in
systems with purely repulsive interaction [31–33]. It was
noted in [28] that this mechanism can occur in graphene
because the electron–electron scattering becomes
strongly anisotropic; for this reason, a channel with
attraction can be formed when there is a projection onto
harmonics with a nontrivial angular dependence on the
Fermi surface. According to the result obtained in [28],
such the Cooper instability in an idealized graphene
monolayer evolves predominantly in the d�wave channel
and can be responsible for superconducting transition
temperatures up to Tc ~ 10 K depending on the proxim�
ity of the chemical potential level to the van Hove singu�
larity. An analogous conclusion was drawn in [34], where
the Kohn–Luttinger superconductivity in the vicinity of
the van Hove singularity in the graphene monolayer was
studied by the renormalization group method.

The possibility of the competition and coexistence of
the Pomeranchuk instability and the Kohn–Luttinger
superconducting instability in a graphene monolayer was
considered in [35]. In [36], it was found in experiments
with a strongly doped monolayer using angle�resolved
photoemission spectroscopy (ARPES) that multiparticle
interactions substantially deform the Fermi surface,
leading to an extended van Hove singularity at point M of
the hexagonal Brillouin zone. The features of the ground
state were investigated theoretically, and the competition
between the ferromagnetic and superconducting instabil�
ities was analyzed. It was shown that in this competition,
the tendency to superconductivity due to strong modula�
tion of the effective interaction along the Fermi contour
(i.e., due to electron–electron interactions alone) pre�
vails. The superconducting instability evolves predomi�
nantly in the f�wave channel in this case [36]. The com�
petition between the superconducting phase and the spin
density wave phase at van Hove filling and near it in the
monolayer was analyzed in [37] by the functionalization
renormalization group method. It was found that for the
band structure parameters and the Coulomb interactions
obtained by ab initio calculations for graphene and
graphite monolayers [38], superconductivity with the
d + id�wave type of symmetry of the order parameter
prevails in a large domain near the van Hove singularity,
and a change in the related parameters may lead to a tran�
sition to the phase of the spin density wave. According to
[37], far away from the van Hove singularity, the long�
range Coulomb interactions change the form of the

d + id�wave function of a Cooper pair and can facilitate
superconductivity with the f�wave symmetry of the order
parameter.

In accordance with the results obtained in [39], in
the case of bilayer graphene, ferromagnetic instability
in the vicinity of the van Hove singularities dominates
over the Kohn–Luttinger superconductivity. However,
the Coulomb interaction screening function in the
bilayer was calculated earlier in [40] in the random
phase approximation (RPA) in the doped and
undoped regimes. It was found that the static polariza�
tion operator of the doped bilayer contains the Kohn
anomaly much larger than in the case of a monolayer
or a 2D electron gas. It is well known that the singular
part of the polarization operator or the Kohn anomaly
[41–43] facilitates effective attraction between two
particles, ensuring a contribution that always exceeds
the repulsive contribution associated with the regular
part of the polarization operator for the orbital angular
momenta l ≠ 0 of the pair [30]. Thus, we can expect
that the superconducting transition temperature Tc in
the idealized bilayer may exceed the corresponding
value for the idealized monolayer.

It addition, it was shown in earlier publications [44,
45] that the value of Tc can be increased via the Kohn–
Luttinger mechanism even for low concentrations of
charge carriers if we consider the spin�polarized or two�
band situation, as well as a multilayer system. In this
case, the role of the pairing spins up is played by elec�
trons of the first band (layer), while the role of the
screening spins down is played by electrons of the sec�
ond band (layer). Coupling between the electrons of the
two bands occurs via interband (interlayer) Coulomb
interaction. As a result, the following superconductivity
mechanism becomes possible: electrons of one species
form a Cooper pair by polarizing electrons of another
species [44, 45]. This mechanism of superconductivity
is also effective in quasi�two�dimensional systems. Note
that odd�momentum pairing and superconductivity in
vertical graphene heterostructures made up by graphene
layers separated by boron nitride spaces was considered
recently by Guinea and Uchoa [25].

In this work, we investigate the Kohn–Luttinger
Cooper instability in an idealized monolayer and
bilayer of doped graphene using the Born weak�cou�
pling approximation and taking into account the Cou�
lomb repulsion between electrons of the same and of
the nearest carbon atoms in a monolayer, as well as the
interlayer Coulomb repulsion in the case of the bilayer.

The necessity of including the long�range Cou�
lomb interaction in calculating the physical character�
istics of graphene is dictated by the results obtained in
[38], where the partly screened frequency�dependent
Coulomb interaction was calculated ab initio in con�
structing the effective multiparticle model of graphene
and graphite. It was found that the intra�atomic repul�
sion potential in graphene is U = 9.3 eV (an analogous
estimate is given in [46]), which contradicts the intu�
itively expected small value of U and weak�coupling
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limit U < W. The calculations performed in [38] have
demonstrated the fundamental importance of taking
into account the nonlocal Coulomb interaction in
graphene: the Coulomb repulsion of electrons at
neighboring sites amounts to V = 5.5 eV. It should be
noted that the values of U and V estimated by other
researchers (see, e.g., [47]) are much smaller.

2. IDEALIZED GRAPHENE MONOLAYER

In the hexagonal lattice of graphene, each unit cell
contains two carbon atoms; therefore, the entire lat�
tice can be divided into two sublattices A and B. In the
Shubin–Vonsovsky (extended Hubbard) model, the
Hamiltonian for the graphene monolayer taking into
account electron hoppings between the nearest and
next�to�nearest atoms, as well as the Coulomb repul�
sion between electrons of the same atom and of adja�
cent atoms in the Wanier representation, has the form

(1)

(2)

(3)

Here, operators (afσ) create (annihilate) an elec�
tron with spin projection σ = ±1/2 at site f of sublattice

A;  = afσ denotes the operators of the number of
fermions at the f site of sublattice A (analogous nota�
tion is used for sublattice B). Vector δ connects the
nearest atoms of the hexagonal lattice. In the Hamil�
tonian, the symbol 〈〈 〉〉 indicates that summation is
carried out only over next�to�nearest neighbors.

Passing to the momentum space and performing
the Bogoliubov transformation,

(4)

we diagonalize Hamiltonian , which acquires the
form

(5)

The two�band energy spectrum is described by the
expressions [4]

(6)

where the following notation has been introduced:

Ĥ Ĥ0 Ĥint,+=
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A
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(7)

(8)

(9)

The coefficients of the Bogoliubov transformation
have the form

(10)

In the Bogoliubov representation, interaction
operator (3) is defined by the following expression
including operators α1kσ and α2kσ:

(11)

where Δ is the Kronecker symbol, while (k, p|q, s)

and (k, p|q, s) are the initial amplitudes. The
quantity

(12)

(13)

describes the intensity of the interaction of fermions
with parallel spin projections, while the quantity

(14)

(15)

corresponds to the interaction of Fermi quasiparticles
with antiparallel spin projections. Indices i, j, l, m can
acquire values of 1 or 2.

Using the Born weak coupling approximation
(with the hierarchy W > U > V of the model parame�
ters, where W is the bandwidth for the upper and lower
branches of the energy spectrum (6) and (7) of
graphene for the case of t2 = 0), we can consider the
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scattering amplitude in the Cooper channel, confining
our analysis to only second�order diagrams in the
effective interaction of two electrons with opposite
values of the momentum and spin and using quantity

(p, k) for it. Graphically, this quantity is determined
by the sum of the diagrams shown in Fig. 1. Solid lines
with light (dark) arrows correspond to Green’s func�
tions for electrons with opposite values of spin projec�

tions +  . It is well known that the possibility of

Cooper pairing is determined by the characteristics of
the energy spectrum near the Fermi level and by the
effective interaction of electrons located near the Fermi
surface [49]. Assuming that the chemical potential in
doped graphene falls into the upper energy band E1k and
analyzing the conditions for the occurrence of Kohn–
Luttinger superconductivity, we can consider the situa�
tion in which the initial and final momenta also belong
to the upper subband. This is reflected in Fig. 1 via indi�
ces α1 (upper band) and α2 (lower band).

The first diagram in Fig. 1 corresponds to the initial
interaction of two electrons in the Cooper channel.
The next (Kohn–Luttinger) diagrams in Fig. 1

describe second�order scattering processes, δ (p, k),
and take into account the polarization effects of the
filled Fermi sphere. Two solid lines without arrows in
these diagrams indicate summation over both spin
projections. Wavy lines correspond to the initial inter�
action. Scattering of electrons with identical spin pro�
jections corresponds only to the intersite contribution.
If electrons with different spin projections interact, the
scattering amplitude is determined by the sum of the
Hubbard and intersite repulsions. Thus, in the pres�
ence of the short�range Coulomb interaction alone,

the correction δ (p, k) to the effective interaction is
determined by the last exchange diagram only. If the
Coulomb interaction of electrons at neighboring lattice
sites of graphene is taken into account, all diagrams in
Fig. 1 contribute to the renormalized amplitude.

Γ̃

1
2
�� 1

2
��–⎝ ⎠

⎛ ⎞

Γ̃

Γ̃

After the introduction of the analytical expressions
for the diagrams, we obtain the following analytic
expression for the effective interaction in Fig. 1:

(16)

where

(17)

Here, we have introduced the following notation for
generalized susceptibilities:

(18)

where

are the Fermi–Dirac distribution functions, and ener�
gies Eik are defined by expressions (6). For the sake of
compactness, we have introduced the notation for the
combinations of momenta:

(19)

Knowing the renormalized expression for the
effective interaction, we can pass to analysis of the
conditions for the emergence of superconductivity in
the system under investigation. It is well known [49]
that the emergence of Cooper instability can be estab�
lished from analysis of the homogeneous part of the
Bethe–Saltpeter equation. In this case, the depen�
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Fig. 1. First� and second�order diagrams for the effective interaction of electrons in graphene monolayer and bilayer. Solid lines

with light (dark) arrows correspond to the Green’s functions for electrons with spin projections +   and energies corre�

sponding to graphene energy bands αi, αj, αl, and αm. In diagrams for the monolayer (Section 2), subscripts i = j = 1; subscripts
l and m can acquire values of 1 or 2. In the case of the bilayer (Section 3), subscripts i and j acquire values of 1 or 2, while subscripts
l and m acquire values of 1, 2, 3, or 4. Momenta qi are defined by relation (19).
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dence of the scattering amplitude Γ(p, k) on momen�
tum k can be factorized, which gives the integral equa�
tion for the superconducting order parameter Δ(p).
After integrating over isoenergetic contours, we can
reduce the problem of the Cooper instability to the
eigenvalue problem [33, 50–54]

(20)

where superconducting order parameter Δ( ) plays the
role of the eigenvector, and eigenvalues λ satisfy the
relation λ–1 ≈ ln(Tc/W). In this case, momenta  and 
lie on the Fermi surface and vF( ) is the Fermi velocity.

To solve Eq. (20), we write its kernel as the super�
position of eigenfunctions each of which belongs to
one of irreducible representations of symmetry group
C6v of the hexagonal lattice. It is well known that this
symmetry group has six irreducible representations
[55]: four 1D and two 2D representations. For each
representation, Eq. (20) has a solution with its own
effective coupling constant λ. We will henceforth use
the following notation for the classification of the order
parameter symmetries: representation A1 corresponds
to the s�wave symmetry type; B1 and B2 correspond to
the f�wave symmetry; E1, to the p + ip�wave symmetry
type; and E2, to the d + id�wave symmetry type.

For each irreducible representation ν, we will seek
the solution to Eq. (20) in the form

(21)

where m is the number of the eigenfunction belonging
to representation ν and φ is the angle determining the
direction of momentum  relative to the px axis. The

explicit form of the orthonormal functions (φ) is
defined by the expressions

m ∈ [0, ∞),
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1
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Here, subscripts m for the 2D representations E1 and E2

run through the values for which coefficients (2m + 1)
and (2m + 2), respectively, are not multiples of three.

The basis functions satisfy the orthonormality con�
ditions

(23)

Substituting expression (21) into Eq. (20), integrat�
ing with respect to angles, and using condition (23), we
obtain

(24)

where

(25)

Since Tc ~ Wexp(1/λ), each negative eigenvalue λ
ν

corresponds to the superconducting phase with the
order parameter symmetry ν. Generally speaking, the
expansion of the order parameter Δ(ν)(φ) in eigenfunc�
tions includes a large number of harmonics; however,
the main contribution is determined by only some of
these harmonics. The highest value of the supercon�
ducting transition temperature corresponds to the
modulus of the largest value of λ

ν
.

Figure 2a shows the calculated dependences of the
effective coupling constant λ on carrier concentration
n for various symmetry types of the superconducting
order parameter for the set of parameters t2 = 0, U =
2|t1|, and V = 0. It can be seen that for low electron
densities 1 < n < 1.12, in the vicinity of the van Hove
singularity, the competition occurs between the super�
conducting phases with the f�wave symmetry type,
whose contribution is determined by the harmonics

and the d + id�wave symmetry type corresponding to 2D
representation E2. In the electron concentration range
1 < n < 1.12, the d + id�wave pairing prevails, while for
1.12 < n < n

vH, superconductivity with the f�wave sym�
metry type of the order parameter is stabilized.

It should be noted that to avoid the summation of
parquet diagrams [56, 57], we do not analyze here the
electron concentration ranges which are not too close
to the van Hove singularity (Fig. 3).

The account of the intersite Coulomb interaction
considerably affects the competition between super�
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conducting phases. This can be seen from Fig. 2b
which shows the λ(n) dependences for parameters
t2 = 0, U = 2|t1|, and V = 0.5|t1|. Comparison with
Fig. 2a shows that the switching of the intersite Cou�
lomb interaction suppresses Cooper pairing in the
d + id�wave channel for low electron densities; how�
ever, it leads to superconductivity with this type of
symmetry in the vicinity of the van Hove singularity. As
a result, the f�wave pairing takes place in the electron
concentration range 1 < n < 1.22. It should be noted
that this result is in qualitative agreement with the
results obtained in [37].

The switching of electron hoppings t2 to the next�to�
nearest carbon atoms in the graphene monolayer does
not qualitatively affect the competition between the
superconducting phases of different symmetry types,
which is illustrated in Fig. 2b [58]. Such a behavior of
the system can be explained by the fact that an account
of hoppings t2 > 0.2 or t2 < 0 does not noticeably modify
the density of electron states of the monolayer in the
range of carrier concentrations between the Dirac point
and both van Hove singularities (Fig. 3). However, the

inclusion of hoppings t2 leads to an increase in the abso�
lute values of the effective interaction and, hence, to
higher superconducting transition temperatures in the
idealized graphene monolayer [58].

3. IDEALIZED GRAPHENE BILAYER

Let us consider an idealized graphene bilayer,
assuming that two monolayers are arranged in accor�
dance with the AB type (i.e., one monolayer is turned
through 60° relative to the other monolayer) [59, 60].
We choose the arrangement of the sublattices in the lay�
ers in such a way that the sites from different layers
located one above another belong to sublattice A, while
the remaining sites belong to sublattice B (Fig. 4). In
this case, the Hamiltonian of the graphene bilayer in the
Wanier representation has the form

(26)

(27)
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Ĥ0 ε μ–( ) n̂ifσ
A

ifσ

∑ n̂igσ
B

igσ

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

– t1 a1fσ
† b1 f δ+ σ, , a2fσ

† b2 f δ– σ, , H.c.+ +( )
fδσ

∑

– t2 aifσ
† aimσ

fm〈 〉〈 〉 σ

∑ bigσ
† binσ

gm〈 〉〈 〉 σ

∑ H.c.+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

iσ

∑

– γ1 a1fσ
† a2fσ H.c.+( )

fσ

∑ γ3 b1gσ
† b2 g δ+ σ, , H.c.+( )

gδσ

∑–

– γ4 a1fσ
† b2 f δ– σ, , a2fσ

† b1 f δ+ σ, , H.c.+ +( ),

fδσ

∑

n

−0.20

1.10 1.15 1.251.201.00

−0.10

0

(b)

1.05
−0.25

−0.15

−0.05

f2

f1

p + ip
d + id

−0.05

1.10 1.15 1.251.201.00

−0.02

0

(a)

1.05

−0.04

−0.01

f2

f1

p + ip
d + id

−0.03

−0.06

λ

Fig. 2. Dependences of λ on carrier concentration n in the
graphene monolayer: (a) t2 = 0, U = 2|t1|, and V = 0;
(b) t2 = 0, U = 2|t1|, and V = 0.5|t1|.

n

2

0.5 1.0 2.01.50

4

6
ρ|t1|

Fig. 3. Modification of the electron density of states for the
graphene monolayer upon switching of the hoppings to the
next�to�nearest atoms for t2 = (0) solid curve), t2 = –0.2|t1|
(dashed curve), and t2 = 0.2|t1| (dotted curve).
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(28)

Here, we have used notation analogous to that for
Hamiltonian (1) for a monolayer in Section 2. Index
i = 1, 2 in Hamiltonian (26) denotes the number of the
monolayer. We assume that one�site energies are iden�
tical (εA1 = εA2 = εB1 = εB2 = ε). Interlayer electron
hopping parameters are denoted by γ1, γ3, γ4 (see
Fig. 4). The last three terms in Hamiltonian (26) take
into account the interlayer Coulomb interaction of
electrons in atoms A1 and A2, B1 and B2, and A1 and B2;
the intensities of these interactions are denoted by G1,
G3, and G4, respectively.

Passing to the momentum space, it is convenient to

write Hamiltonian  in matrix form:

where εk = t2fk – ε and quantity fk is defined by expres�
sion (7).

Hamiltonian  can be diagonalized using the
Bogoliubov transformation

(29)

It acquires the form

(30)

According to the results of [61, 62], the interlayer
hoppings γ4 are relatively weak, so it allows us to
assume that γ4 = 0 for convenience of diagonaliza�
tion of the Hamiltonian. In this case, the four�band
energy spectrum of the graphene bilayer is described
by the expressions

Ĥint U n̂if↑
A n̂if↓

A

if

∑ n̂ig↑
B n̂ig↓

B

ig

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

+ V n̂ifσ
A n̂i f δ+ σ, ,

B

fδσ

∑ G1 n̂1fσ
A n̂2fσ

A

fσ

∑+

+ G3 n̂1gσ
B n̂2 g δ+ σ, ,

B

gδσ

∑ G4 n̂1fσ
A n̂2 f δ– σ, ,

B(
fδσ

∑+

+ n̂2fσ
A n̂1 f δ+ σ, ,

B ).

Ĥ0

Ĥ0

εk γ1 t1uk* γ4uk

γ1 εk γ4uk* t1uk

t1uk γ4uk εk γ3uk*

γ4uk* t1uk* γ3uk εk⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ a1kσ

a2kσ

b1kσ

b2kσ⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,

kσ

∑=

Ĥ0

αikσ wi1 k( )a1kσ wi2 k( )a2kσ+=

+ wi3 k( )b1kσ wi4 k( )b2kσ, i+ 1 2 3 4., , ,=

Ĥ0 Eikαikσ
† αikσ.

kσ

∑
i 1=

4

∑=

(31)

where quantity uk is defined by expression (8).

Analysis of the conditions for the occurrence of
Kohn–Luttinger superconductivity in the graphene
bilayer is carried out in accordance with the general
scheme described in Section 2. We consider the situa�
tion in which, as a result of doping, the chemical
potential of the bilayer is in the two upper energy bands
E1k and E2k as shown in Fig. 5a. In this case, the initial
and final momenta of electrons in the Cooper channel
also belong to the upper two bands; for this reason,
indices i and j in the Kohn–Luttinger diagrams for a
bilayer (see Fig. 1) acquire the values 1 or 2. Writing
the analytical expressions for the diagrams, we obtain
the analytic expression for the effective interaction of
electrons in the Cooper channel of the graphene
bilayer in Fig. 1, which can subsequently be used for
analyzing the homogeneous part of the Bethe–Saltpe�
ter equation. When solving eigenvalue problem (20),
integration is carried out with the allowance for the
multisheet nature of isoenergetic contours (Fig. 5b).

Let us now consider the dependences of effective
coupling constant λ on carrier concentration n for var�
ious types of symmetry of the superconducting order
parameter in the graphene bilayer. It should be noted

Eik ε Ak Bk±± t2fk,–=

Ak
1
4
�� 2a2 4 bk

2 2 dk
2+ +( ),=

Bk
1
4
�� dk

2 dk
2 2a2– 4 bk

2+( ) a4+(=

+ 4a2 bk
2 4abk

2dk* 4abk*
2
dk ),+ +

a γ1, bk t1uk*, dk γ3uk*,= = =

B2

A2

γ3

γ4

t2

t1A1
B1

γ1

Fig. 4. Crystal structure of the graphene bilayer. Carbon
atoms A1 and B1 in the lower layer are shown by white and
black balls; atoms A2 and B2 in the upper layer are shown by
black and gray balls. Intralayer electron hoppings are
marked by t1 and t2; γ1, γ3, and γ4 show the interplanar hops.
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that in numerical calculations for the graphene bilayer
for γ1 = γ3 = γ4 = 0 and G1 = G3 = G4 = 0, we get a lim�
iting transition to the results obtained in Section 2 for
a graphene monolayer. Figure 7 shows the λ(n) depen�
dences determined for the bilayer with the set of
parameters t2 = 0, U = 2|t1|, γ1 = 0.12|t1|, γ3 = 0.1|t1|, γ4 =
0, and V = G1 = G3 = G4 = 0.5|t1|. The values of the
intralayer and interlayer hopping integrals used here
are close to the values determined in [61, 62] for
graphite. The electron density of states for the
graphene bilayer for the given set of parameters is

shown in Fig. 6. To demonstrate the effect of the inter�
layer Coulomb interaction, we chose the maximal pos�
sible values of intensity G1, G3, and G4 for which the
weak�coupling approximation is still applicable.
Comparison with Fig. 2b shows that the allowance for
the interlayer interactions does not change the
domains of superconductivity with the f� and d + id�
wave symmetry types; however, it leads to a significant
increase in the absolute values of the effective coupling
constant and, hence, to an increase in the supercon�
ducting transition temperature.

(a) (b)Ek

ky

kx

μ

k

Fig. 5. (a) Energy structure of the graphene bilayer near Dirac points and (b) formation of the multisheet Fermi contour at weak
doping.

n
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0.4
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ρ|t1|

0.6

0.8

1.0

1.2

Fig. 6. Dependence of the electron density of states for the
graphene bilayer per unit cell of one layer on the electron
concentration for the set of parameters t2 = 0, γ1 = 0.12|t1|,
γ3 = 0.1|t1|, and U = 2|t1|.

n

−0.6

1.10 1.15 1.251.201.00

−0.3

0

1.05

−0.4

−0.2

f2

f1

p + ip
d + id

λ

−0.1

−0.5

Fig. 7. Dependence of λ on carrier concentration n in the
graphene bilayer for the set of parameters t2 = 0, U = 2|t1|,
γ1 = 0.12|t1|, γ3 = 0.1|t1|, V = 0.5|t1|, and G1 = G3 = G4 =
0.5|t1| (all parameters are given in the units of |t1|).
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4. CONCLUSIONS

We have analyzed the conditions for the emergence
of superconducting Kohn–Luttinger pairing in sys�
tems with a linear dispersion relation using as an
example an idealized graphene monolayer and bilayer,
disregarding the Van der Waals potential of the sub�
strate and impurities. The electronic structure of
graphene is described using the tight binding method
in the Shubin–Vonsovsky model taking into account
not only the Coulomb repulsion of electrons on the
same carbon atom, but also the intersite Coulomb
interaction. It is shown that the inclusion of the
Kohn–Luttinger renormalizations up to the second
order of perturbation theory inclusively and the allow�
ance for the intersite Coulomb interaction determine
to a considerable extent the competition between the
superconducting phases with the f� and (d + id)�wave
types of the order parameter symmetry. They also lead
to an increase in the absolute values of the effective
interaction and, hence, to higher superconducting
transition temperatures for the idealized graphene
monolayer.

The results obtained for the graphene monolayer
are generalized to the case of an idealized graphene
bilayer consisting of two monolayers interacting via
Coulomb repulsion between the layers. It is shown that
the analysis of the idealized bilayer system of graphene
leads to a considerably higher value of the supercon�
ducting transition temperature in the context of the
Kohn–Luttinger mechanism.
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