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1. INTRODUCTION

Rhombohedral antiferromagnetic crystals MCO3

(M = Mn, Fe, Ni, Co) with the calcite structure have
been intensively studied by Borovik�Romanov and
colleagues since 1956 in order to clarify the character
and specific features of weak ferromagnetism [1]. The
phenomenological theory of this phenomenon was
developed by Dzyaloshinskii in 1957 [2] and its micro�
scopic nature was elucidated by Moriya in 1960 [3]. It
was shown taking into account the symmetry proper�
ties [2] that the existence of weak ferromagnetism is
the natural phenomenon for rhombohedral crystals.
More specifically, weak ferromagnetism takes place
when the minimum of the thermodynamic potential

(1)

corresponds to the state in which the antiferromag�
netic and ferromagnetic vectors l = (M1 – M2)/M and
m = (M1 + M2)/M lie in the basal plane (111). Here,
M1 and M2 are the sublattice magnetizations, M =
2|M1| = 2|M2|, θ and ϕ are the polar and azimuthal
angles of the vector l in the xyz reference frame (the z
axis is parallel to C3). The first, second, and third terms
in Eq. (1) correspond to the exchange energy, uniaxial
anisotropy, and Dzyaloshinskii–Moriya interaction,
respectively.

CoCO3 crystals have the Néel temperature TN =
18.1 K [4], the coordination number Z = 6, the orbital
momentum L = 3 of the free Co2+ ion, and the spin
S = 3/2. The magnetic structure was determined from
the measurements of neutron scattering [5] and cor�
rected in [6]. The measurements [5, 6] revealed the
presence of weak ferromagnetism and the magnetic

Φ 1/2( )Bm
2

1/2( )a θcos
2

+=

– d θ my ϕcos mx ϕsin–( )sin

structure [6] in agreement with the thermodynamic
theory [2].

The available experimental data on the uniaxial
anisotropy constant are controversial: a = 0.1 [4],
3.4 [7], and 24.9 cm1, which corresponds to the g fac�
tor of 3.3 [8, 9]. There are also considerable differ�
ences in values of the g factors measured using antifer�
romagnetic resonance (AFMR) [9, 10] in CoCO3 and
electron paramagnetic resonance (EPR) in its dia�
magnetic analogues with an impurity of Co2+ ions
[11]. According to the calculations [12] of the g fac�
tors, the results of AFMR and EPR should be nearly
the same. The anisotropy and g factor are sensitive to
the impurity with an orbital momentum. Thus, a small
amount of such an impurity will change these param�
eters. However, the exchange integral and TN remain
practically unchanged at a small concentration of the
impurity. However, in [13] the data for the gxy factor
(which is 4.55) found from the measurement of a weak
ferromagnetic moment correspond to the EPR mea�
surements on individual Co2+ ions in diamagnetic
analogues of CoCO3 [11, 12]. Therefore, the initial
experimental parameters can be referred to the nomi�
nally pure CoCO3 crystal.

This work is aimed at working out the method for
calculating the contribution of exchange interaction
to the uniaxial anisotropy of cobalt ions in the axial
crystal field and its verification by the example of
nominally pure CoCO3.

The calculation is based on the following concepts:

(1) The initial data were the experimental results
[13]: the g factor in the basal plane gxy = 4.55; the
effective exchange parameter J' in the (111) plane for
the pair of CoCO3 ions, which was determined in [13]
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from the equation 4kTN = . Here, k is the Boltz�
mann constant. The other “microscopic” parameters
were found from the Abragam and Pryce equations
[12] (see Section 2 below).

(2) Anisotropy of the exchange interaction was
considered according to the Oguchi method [14] with
the inclusion of the g' factors (see Section 2 below). A
pair of ions coupled by the exchange interaction in the
molecular field of the neighbors was considered. In
addition, in contrast to [14], the Dzyaloshinskii–
Moriya interaction was included and the energy of the
molecular field had the off�diagonal form. The calcu�
lation was performed for the lowest doublet level with
the effective spin s = 1/2.

(3) The contribution of the dipole–dipole interac�
tions was calculated according to the method [15] with
the inclusion of the inequivalence of the g factors
along the C3(gz) axis in the basal plane.

2. HAMILTONIAN OF THE Co2+ ION
IN AN AXIAL CRYSTAL FIELD

The Co2+ ion has the electronic configuration 3d7

and appears in the state 4F. The cubic crystal field
splits the 4F term into the orbital singlet and two low�
lying orbital triplets. The lowest triplet can be charac�
terized by the effective orbital momentum L = –αl'
with l ' = 1 [12]. The joint action of the trigonal crystal
field and spin–orbit interaction splits the orbital and
spin levels (S = 3/2) of the lowest triplet into six dou�
blets with an energy spacing between the doublets of
several hundred inverse centimeters [12, 13]. The
Hamiltonian that leads to the above results has the
form

where the first term describes the levels which split in
the trigonal crystal field, and the second and third
terms describe the spin–orbit interaction. Inequality
of α and α' reflects anisotropy of the spin–orbit inter�
action caused by the impurity of excited states [13], is
the effective spin–orbit interaction constant, which is
(–)180 cm–1 for a free ion, the z axis of the reference
frame is parallel to the C3 axis of the crystal.

Since the operator  + Sz commutes with the
Hamiltonian, the energy levels can be described by the
eigenvalues mj = ±1/2, ±3/2, ±5/2. The characteristic
equation for the magnetic quantum number mj = ±1/2
can be obtained with the use of the corresponding
wave functions | , Sz〉 [12, 13]. The solution of the
equation can be found by introducing the parameter x
defined by the relation E = (1/2)αλ(x + 3). In this
case, E(mj = ±1/2) corresponds to three doublet
energy levels. The states mj = ±1/2 of the lower doublet
can be represented in the form [12, 13] |±1/2〉 = a| ,

3Jxy'

Ĥ Δ 1 lz'
2

–( ) αλlz' Sz– α'λ lx' Sx ly' Sy+( ),–=

lz'

lz'

1+−

±3/2〉 + b|0, ±1/2〉 + c|±1, /2〉. The normalization
condition a2 + b2 + c2 = 1, the value gxy = 4.55, the

relations a : b : c =  :  : , the expression Δ =

 +  + (x + 3), and Eqs. (2) for the g

factors allow finding the quantities gz, Δ, x, α, a, b, and
c (the parameter p = (α/α')2 is set to 0.6 to 2 [13]). The
expressions for the g factors have the form [12]

(2)

The lower doublet state can be described by the effec�
tive spin s = 1/2. Thus, the relation between the real
spin S = 3/2 and the effective spin s = 1/2 can be writ�
ten in the form Sxy = ηxysxy, Sz = ηzsz [16, 17]. Accord�

ing to [17],  = 4(  + b2)2J ' = ,  =

(3a2 + b2 – c2)J ' = , dxy =  for the ground state
of the pair of ions in CoCO3. Here, J ' is the isotropic
exchange constant for the pair of ions. The quantities

 =  and  =  (the g' factors), in particular,
reflect the effect of the orbital momentum on the
parameter J '. The values of a, b and c for α, p and Δ are
given in [13] and in Table 1,  is the effective
exchange parameter along the C3 axis.

3. ANISOTROPY OF EXCHANGE 
INTERACTION IN CoCO3 CRYSTALS

We consider the exchange interaction of a pair of
Co2+ ions in the environment of the nearest neighbors.
There are five such neighbors for each ion in the pair
and we determine their influence from the molecular
field [14]. The initial Hamiltonian (S = 3/2) of the iso�
tropic exchange interaction of the pair in the molecu�
lar field (in an arbitrary reference frame) has the form

(3)

1+−
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Table 1. Parameters a, b, and c for p = 1.0 in CoCO3 [13]

p α Δ, cm–1 a b c

1.0 1.2 –230 –0.59 0.69 –0.40
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Taking into account the anisotropic exchange and the
Dzyaloshinskii–Moriya interaction, the effective
Hamiltonian for the lower doublet (mj = ±1/2) in the
reference frame xyz can be written as

(4)

Here, the first term in square brackets corresponds
to the anisotropy of the exchange interaction energy of
the pair and the second term is the Dzyaloshinskii–
Moriya interaction and the molecular field, 〈s〉 is the
temperature�average spin operator projected to the
corresponding axes of the reference frame xyz. The
exchange term written in the molecular�field approxi�
mation can be transformed to (–)5J'g'〈s〉z(sz1 – sz2) by
rotating the reference frame xyz to the angle β such
that sinβ = ( /g')sinθ, cosβ = ( /g')cosθ [18],
where θ is the angle between the z axis and the molec�
ular field. At T = 0, Hamiltonian (4) can be written in
the form

(5)

As is seen, under the assumption  =  = 1, Eq. (5)
corresponds to the Oguchi Hamiltonian [14] neglect�
ing the Dzyaloshinskii–Moriya interaction. In

Ĥ Jxy' sx1sx2 sy1sy2+( ) Jz' sz1sz2+[ ]=

+ dxy sx1sy2 sx2sy1–( ) 5 Jxy' s〈 〉 x sx1 sx2–( )[{–

+ s〈 〉 y sy1 sy2–( ) ] Jz' s〈 〉 z sz1 sz2–( )[ ]+ }.

gxy' gz'

Ĥ J ' gxy' gz'–( ) gxy'2
/g'

2( ) θsin
2

– gxy'+[ ]sx1sx2{=

+ gxy' sy1sy2 gxy' gz'–( ) gxy'2
/g'

2( ) θsin
2
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– 5/2( )g' sz1 sz2–( ) }

– d ' sz1sy2 sy1sz2–( ) gxy'2
/g'

2( ) θ 2γ.cossin

gxy' gz'

Eq. (5), the signs belonging to the other reference

frame are omitted, g' = , γ is the
angle describing the deviation of the sublattice mag�
netic moment from the antiferromagnetic axis owing
to the Dzyaloshinskii–Moriya interaction [19].
Hamiltonian (5) written in the space of the wave func�

tions ψ1 = αiαj, ψ2 = (1/ )(αiβj + βiαj), ψ3 =

(1/ )(αiβj – βiαj), ψ4 = βiβj (where αi, αj and βi, βj

are the wave functions of the spin 1/2 directed up and
down, respectively, in the lattice sites i and j) is pre�
sented in Table 2. At this choice of the wave functions
[13, 20], the energy levels of the pair are characterized
by the spin S ' = 0 and 1 (the diagonal components of
pair Hamiltonian agree with [13, 20] under the condi�
tion  =  = 1).

With the use of the above Hamiltonian, the charac�
teristic equation can be written in the following form

(6)

Here, A = (1/4)J'[(  – )( /g'2)sin2θ + ], C =

⎯(1/4)J'(  + ), B = (1/4)J'[–2(  –
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Table 2. Hamiltonian (5) represented in the space of the corresponding wave functions

ψ1 ψ2 ψ3 ψ4

ψ1 0

ψ2 –5J'g'

ψ3 –5J'g'

ψ4 0

J '/4( )
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2
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In this work, we calculated the angular dependence
of the energy levels of a Co2+ ion in a CoCO3 crystal for
the case of (see Table 1) Δ = –230 cm–1, p = 1.0, α =
1.2; J' = 5.12 cm–1,  = 3.24,  = 1.90, d ' =

1.63 cm–1.

The Dzyaloshinskii constant d ' was determined
from the ratio of the experimental Dzyaloshinskii and
exchange fields and the relation between d ' and J ' [1, 9].

The results are presented in the figure. Curves 1 and
3 correspond to the lower and upper energy levels of a
Co2+ ion in a CoCO3 crystal (S ' = 1, mS ' = –1 and
S ' = 1, mS ' = –1). The values of the spin S' and mS' can
be found from the dependence of the energy levels on
the angle θ. In particular, the curve 2 corresponds to
two energy levels independent of the angle, which is
the case for S ' = 0 or 1 and mS ' = 0. The solid fitting
curve (4) for the lowest energy level at T = 0 is described
by the function ω = 2[(b/2) + (aex/2)cos2θ] cm–1

(its angular part corresponds to the magnetic anisot�
ropy energy per one Co2+ ion in the CoCO3 crystal).
Here, aex = 35.2 cm–1 is the anisotropic exchange con�
stant. The values of aex are nearly independent of p, α,
and Δ, at least within the ranges of the parameters
given in Table 2 and in [13].

The theoretical value aex = 35.2 cm–1 is the closest
to the experiment [8] (24.9 cm–1). However, the dis�
crepancy between the calculation in [8] is approxi�
mately 5 cm–1 if one takes into account the experi�
mental error [8]. It is worth mentioning that in [8] the

gxy' gz'

intensity of the peak caused by the single�magnon
transition and partly responsible for the magnitude of
the uniaxial anisotropy field in CoCO3 is quite low.
This remained unclear to Eremenko et al. [8]. They
noted that the intensities of single�magnon light scat�
tering and exciton lines were of the same order of mag�
nitude for all previously studied antiferromagnetic
compounds of the Co2+ ion, which was not observed in
the experiment [8]. This fact inspires some doubts in
the purity of the CoCO3 samples used in [8]. An
approximately 17% discrepancy between the experi�
ment [8] and the calculation apparently can be
explained by the effect of impurities.

4. DIPOLE CONTRIBUTION 
TO THE ANISOTROPY ENERGY

The detailed calculation of the contribution of the
dipole–dipole interactions to the anisotropy energy of
the crystals with the calcite structure was performed in
[21] without inclusion of the inequivalence of the
g factors. The expression for the anisotropy energy
determined by the dipole–dipole interactions taking
into account the non�equivalent values of the g factors
(gxy = 4.55 [13], gz = 3.21) has the form

Here, aH = 4.641 Å and cH = 15.023 Å are hexagonal
lattice constants in the basis plane and along the C3

axis, respectively;  are the lattice sums given

in [15],  = 5.01. As a result, one has adip =

0.92 cm–1.

5. CONCLUSIONS

It was shown that the method of the performed cal�
culation can be used to estimate the uniaxial magnetic
anisotropy in compounds containing Co2+ ions in the
axial crystal field. Comparison of the contributions to
the uniaxial anisotropy constant found by the pro�
posed method with the results of [8] indicates the pres�
ence of impurities in the samples of [8].
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