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1. INTRODUCTION 

Measurement of hysteresis dependences of magne�
tization is the conventional indirect method for deter�
mining the critical current density of a superconduc�
tor. The relationship between the critical current den�
sity jc of a superconductor and the hysteresis loop of
the magnetization M(H) was obtained in the critical
state model [1]. The modified critical state models
(see, for example, [2–4]), which take into account the
field dependence of the critical current density jc, suc�
cessfully describe magnetization loops that are sym�
metric with respect to the H axis (M = 0). However, for
many superconducting materials, magnetization loops
have a pronounced axial asymmetry with respect to the
H axis (M = 0). The asymmetry of the dependence
M(H) increases with increasing temperature. For
example, in high�temperature superconductors
(HTSCs), the asymmetry of magnetization loops can
manifest itself after the increase in temperature to
~10–30 K [5–7]. 

The asymmetric magnetization loops were ade�
quately described in the framework of the extended
critical state model (ECSM) [8]. In the ECSM, the
total magnetization of a sample is the sum of the equi�
librium magnetization Ms of the surface layer and the
nonequilibrium magnetization Mb of the remaining
volume of the sample. In the surface layer, the vortices
are not pinned due to the interaction with the screen�
ing currents and the surface [9, 10]. The magnetiza�
tion Mb is described by the critical state model [2] with
modified boundary conditions that take into account
the magnetization of the surface layer. The asymmetry

of the magnetization loop is determined by the frac�
tion of the equilibrium magnetization Ms in the total
magnetization of the sample. Asymmetric magnetiza�
tion loops of different superconductors were success�
fully described by the ECSM [5, 6]. However, the use
of this model is complicated by a large number of fit�
ting parameters with the dimension of field, which
cannot be evaluated or tested in other experiments [9].
For promising applications of bulk superconductors
[11–13] (levitation, magnets, electric motors, etc.),
information about the field dependence of the critical
current and about the frozen field is particularly
important [14, 15]. In the framework of the model
proposed in [8], such data cannot be obtained. 

Since 2011, a new ECSM version has been devel�
oped [7], in which the magnetization is determined by
the field distribution in a sample and the asymmetry of
the magnetization loop is related to the depth of the
surface layer with equilibrium magnetization. In this
paper, we have performed a detailed description of the
ECSM, which takes into account the field dependence
of the surface layer depth, and presented the algorithm
for the calculation and parameterization of magneti�
zation loops. The paper is organized as follows. Sec�
tion 2 presents the model equations and demonstrates
the use of the ECSM for the description of magnetiza�
tion loops (Subsections 2.1 and 2.2). Subsection 2.3
discusses the determination of the field dependence of
the bulk critical current density. Section 3 describes
the specific features of the magnetization of heteroge�
neous and granular superconductors and presents the
algorithm for the ECSM description of experimental
magnetization loops. 
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2. THE MODEL 

2.1. Basic Equations

We consider a sample in the form of a cylinder with
the length significantly larger than the size of the base,
so that the demagnetization factor of the sample can
be taken as zero. By definition, the magnetization has

the form M(H) = –H + (H)/μ0, where  is the aver�
aged flux density (magnetic induction) of the mag�
netic field inside the sample and μ0 is the magnetic
constant. For an infinitely long cylindrical sample
with radius R, which is coaxial with the external mag�
netic field, the magnetization is determined by the fol�
lowing expression: 

(1a)

where r is the distance from the cylinder axis. Simi�
larly, for a sample in the form of an infinitely long plate
oriented along the field with a small thickness and
width 2R, we can write 

(1b)

The distribution of the flux density B inside the sample
is determined by Ampére’s circuital law 

(2)

where jc is the local critical current density in the sam�
ple. By choosing the appropriate dependence jc(B)
(see Section 3) and integrating equation (1), we can
determine the distribution B(r), which depends on the
magnetic field H and the magnetization prehistory.
Following [16], we introduce the function 

(3)

Here, jc0 is the value of jc(B) for B = 0. This function
allows us to rewrite equation (2) for the numerical
solution 

(4)

Now, we consider the distribution of the flux den�
sity B in the cylindrical sample for a specific value of
the external field H (Fig. 1). According to the ECSM,
the magnetization of the sample first leads to the pen�
etration of the magnetic flux into the surface layer
(plot AB in Fig. 1). The field distribution in the surface
layer with depth ls does not depend on the magnetiza�
tion prehistory. Let B at the depth ls from the surface be
designated as Bs(H). With an increase in the external
field H, when the value of Bs(H) becomes larger than
zero, the magnetic flux begins to penetrate into the
central region of the sample (plot BC). In the external
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field H = Hp, the magnetic flux reaches the center of
the sample. Therefore, Hp is the field of the complete
penetration of the magnetic flux into the sample. With
a further increase in the magnetic field H, the flux den�
sity B at the center of the sample increases (point E).
When the external field reaches the maximum value
Hm, it begins to decrease. As a result, the frozen flux
remains in the central region of the sample (plot
BDE). The frozen field remains in the sample with a
decrease in the field H to zero, which leads to the
observed hysteresis dependence M(H). Plot CFG in
Fig. 1 corresponds to the frozen field in the sample
after the external field reaches the value –Hm. 

For each of the plots in Fig. 1, we can write equa�
tion (4) in a more convenient form for further use. For
the surface layer with depth ls, in which the vortices are
not pinned, we have 

(5a)

where Fs(B) is function (3) determined in terms of the
surface supercurrent density js(B) and js0 is the critical
surface current density for B = 0. Figure 2 shows the
field dependences of the equilibrium magnetization of
the surface layer Ms(H), which were calculated
according to equations (1) and (5a) (the calculation
parameters are presented in Subsection 2.2). Also,
Fig. 2 shows the dependence Bs(H). The value of Bs

determines the boundary field for the core of the sam�
ple (cylinder with radius R – ls). 

The magnetization of the central region depends
on the magnetization prehistory. The flux density has
different profiles in the central region for each of the
following magnetization loop branches: (i) the branch
of the initial magnetization with an increase in the
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Fig. 1. Distribution of the flux density B in the cylindrical
sample. Shown are the penetration of the magnetic flux
into the sample (ABC), the frozen flux with variations in
the external field from Hm to H (ABDE), and the frozen
flux with variations in the external field from –Hm to H
(ABCFG). 
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field from zero to Hm (plot BC in Fig. 1); (ii) the
branch M+(H) with a decrease in the external field
from Hm to zero (plots BD and DE in Fig. 1); and
(iii) the branch M(H) with an increase in H from zero
to Hm after the circulation of the external field from
zero to –Hm and back to zero (plots BC, CF, and FG in
Fig. 1). Next, we write the corresponding equations
for the distribution of the flux density B. 

Plot BC: 

(5b)

Plot BD: 

(5c)

Plot DE: 

(5d)

Plot CF: 

(5e)

Plot FG: 

(5f)

The surface supercurrent density js depends on the
surface barrier. However, focusing on the behavior of
the magnetization loop in strong fields, we can ignore
the differences between js(B) and jc(B). Further, we will
assume js = jc. Then, the complete penetration field Hp

is determined using the equation 

(6)

F B( ) F Bs H( )( )– μ0 jc0R 1 ls/R– r/R–( ).–=

F B( ) F Bs H( )( )– μ0 jc0R 1 ls/R– r/R–( ).=
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F B–( ) F Bs H( )( )+ μ0 jc0R 1 ls/R– r/R–( ).=
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R F μ0Hp( )/ μ0 jc0( ).=

For the calculation of the total magnetization of
the loop, we should choose the dependence jc(B),
which determines the functional dependence of F(B)
according to formula (3). It is also necessary to take
into account the dependence of the surface layer depth
ls on the external field. The choice of the dependences
jc(B) and ls(H) will be considered in the next subsec�
tion. 

2.2. Application

The extended critical state model was used to
describe magnetization loops of different supercon�
ductors: textured Bi2223 [7], whiskers Bi2212 [17],
MgB2 [18], Ba0.6K0.4BiO3 [19], and Re123 [20–22],
where Re = Y, Nd, or Eu. The magnetization loops of
the highly porous Bi2223 [4, 23] were also successfully
described by the ECSM [7]. Different dependences
jc(B) were tested in the calculations of the magnetiza�
tion loops. The dependences M(H) calculated using
the Bean model (jc = const) [1] do not reproduce the
shape of experimental magnetization loops. The
Anderson–Kim relationship jc ~ 1/B [24] provides a
good description of the dependence M(H) for H �
Hc2. The exponential dependence jc ~ exp(–B) [2]
adequately describes the behavior of the magnetiza�
tion near Hc2. These dependences, usually, do not lead
to good agreement between the calculated magnetiza�
tion loop and the experimental data in strong and weak
fields simultaneously [3]. In order to solve this prob�
lem, it is necessary to choose such a dependence that
will exhibit a different behavior on different scales.
Based on the performed fitting, we chose the depen�
dence jc(B), which is proportional to 1/B in weak fields
and decreases exponentially in strong fields: 

(7)

Here, B1 and B2 are the parameters specifying the
characteristic scales and γ ≈ 1. To ensure that the cal�
culated values of jc tend to zero for B ≥ μ0Hc2, the
parameter B2 must be on the order of 0.1μ0Hc2. Using
expression (7), for the function F(B) we obtain the fol�
lowing equation: 

The branch M+(H) of the magnetization loop is
determined by the dependence of the surface layer
depth ls on the magnetic field. Let the surface layer
depth ls be equal to the depth of penetration of the
magnetic field λ [10, 25]. It should be noted that, in
weak fields, the surface layer depth ls is determined by
the ratio of the external field H to the flux density
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Fig. 2. Magnetic field dependences of the magnetization of
the surface layer and the boundary field: (1) magnetization
of the surface layer in the high�temperature superconduc�
tor (Hirr � Hc2), (2) magnetization of the surface layer in
the low�temperature superconductor (Hirr ≈ Hc2), and
(3) boundary field Bs between the surface layer and the
core of the sample. 
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inside the sample  [9], so that the values of ls can be

larger than λ for μ0H/  > 1 and less than λ for

μ0H/ < 1. In conventional superconductors, the
dependence λ(H), which is associated with the
destruction of Cooper pairs by the magnetic field, is
determined by the following expression [26]: 

(8)

Here, λ0 is the field penetration depth λ for H = 0 and
Hc2 is the second critical field of the superconductor.
When the values of the function ls(H) exceed R, the
dependence M(H) is reversible. In conventional
superconductors, this condition is satisfied near Hc2.
For HTSCs, expression (8) is not satisfied [27]. Actu�
ally, in HTSCs, the magnetization loop becomes
reversible when the magnetic field H exceeds the irre�
versibility field Hirr and Hirr � Hc2 [28]. For simplicity,
the behavior of the dependence ls(H) for HTSCs will
be described using the linear relationship 

(9)

where ls0 ≈ λ0 is the value of ls for H = 0. 

Equations (5)–(9) allow us to find the distributions
of the flux density B for any value of H depending on
the magnetization reversal prehistory. The magnetiza�
tion loops are calculated according to formula (1) with
the obtained distributions of B as functions of r. For
“classical” low�temperature superconductors
(LTSCs), the dependences M(H) are calculated using
expression (8), whereas for HTSCs and “nonclassical”
superconductors, it is appropriate to use relationship
(9). For H = 0, the width of magnetization loops along
the M axis and their asymmetry with respect to the
H axis are determined by the parameters Pw = jc0R and
Pa = ls0/R, respectively. 

Examples of the dependences M(H) calculated
with arbitrary parameters Pw, B1, B2, and γ and differ�
ent values of Pa (from 0 to 1) are shown in Figs. 3a and
3b. Figure 3a depicts the plot of the magnetization
loop of the LTSC, which was calculated using expres�
sion (8) for Hc2 = 20Hp. The magnetization loops cal�
culated for the HTSC according to relationship (9) for
Hirr = 10Hp are shown in Fig. 3b. The axes in Figs. 3a
and 3b are normalized to the field Hp, and the field
quantities are also expressed in terms of Hp. The
parameters used in the calculation are as follows: Pw =
F(μ0Hp)/μ0, B1 = μ0Hp, and B2 = 2μ0Hp for the LTSC
and B2 = 20μ0Hp for HTSC, γ = 1. Figure 3b also
shows the symmetric magnetization loop of the
HTSC, which was calculated with the same parame�
ters but for Hirr = 200Hp. 
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2.3. Critical Current Density

The determination of the critical current density
and its field dependence is the main task of the analysis
of the magnetization loops. The critical state model
[1] gives a simple formula for determining the aver�
aged (over the sample) critical current density from
magnetic measurements: 

for a long cylinder, 
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Fig. 3. (a) Plot of magnetization loops of the low�temper�
ature superconductor (Hirr ≈ Hc2) according to the ECSM
calculation: (1) plot of the initial magnetization, which
coincides with the branch M+(H) for Pa = 1; (2) branch

M+(H) for Pa = 0.3; (3) branch M+(H) for Pa = 0.15; and

(4) branch M+(H) for Pa = 0. (b) Magnetization loops of
the high�temperature superconductor (Hirr � Hc2)
according to the ECSM calculation: (1) plot of the initial
magnetization, which coincides with the branch M+(H)
for Pa = 1; (2) branch M+(H) for Pa = 0.3; (3) branch

M+(H) for Pa = 0.15; (4) branch M+(H) for Pa = 0; and (5)

branch M+(H) for Pa = 0 and Hirr � Hm. 
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and for a long plate with the rectangular cross section
2R × w, 

(10b)

where ΔM is the magnetization loop width and ΔM =
M+(H) – M–(H). However, this method gives incor�
rect results in the field range where there is an abrupt
change in the critical current [29–31], for example, in
the vicinity of H = 0. An alternative method for deter�
mining the dependence Jcm(H) is the use of different
analytical expressions for jc(B). The correspondence
of the dependence jc(B) is judged from agreement
between the calculated and experimental magnetiza�
tion loops. The required dependence Jcm(H) is
obtained by replacing B with μ0H in formula (7) and by
choosing the fitting parameters. For symmetric mag�
netization loops, the dependence Jcm(H) expressed by
function (7) coincides over the entire field range,
except for weak fields H, with the curve obtained using
formula (10). In this case, we have ls � R, and the con�
tribution from the equilibrium magnetization Ms is
negligible. For a significant asymmetry of the magne�
tization loop, the values of Jcm obtained from formula
(7) are much greater than those found using formula
(10). 

In the surface layer of the sample, the vortices are
not pinned. Therefore, this layer is not involved in the
supercurrent transport. This decrease in the effective
cross section of the sample should be taken into
account in the determination of the average (over the
sample) critical current density. Thus, the dependence
Jcm(H) should include the decreasing function (7) and

Jcm H( ) 2ΔM H( )
w 1 w/3R–( )
�������������������������,=

the change in the specific area of the core with the
trapped magnetic flux: 

(11)

where S is the surface area of the sample (in the plane
perpendicular to the field) and Skern is the area of the
central region with the pinned vortices. The quantity
Skern is zero for H ≥ Hirr. The change in the area can be
expressed through the depth of the surface layer: 

(12)

where n = 2 for a cylindrical sample and n = 1 for a
thin plate. Figure 4 shows the dependences Jcm(H)
obtained using formulas (10a) and (12) from the mag�
netization loops shown in Fig. 3b, for different values
of ls0. For ls(H) � R, the magnetization loop has a sym�
metric shape, and the curves obtained using formulas
(10) and (12) coincide over the entire field range,
except for weak fields H. The discrepancy between the
curves Jcm(H) obtained from formulas (10) and (12)
increases with an increase in the surface layer depth ls.
The analytical relationship (12) successfully describes
the behavior of the critical current density of the sam�
ple over the entire field range and agrees with the
results presented in [29–31]. 

3. DISCUSSION 

3.1. Applicability of the Model 

The model under consideration is applicable pri�
marily to homogeneous samples in the form of a long
cylinder or plate, for which the magnetization loops
are measured up to strong fields (Hm � Hp). The sur�
face barrier [8] and demagnetization factor [32] are
ignored in the described model, because their influ�
ence on the magnetization is small in fields exceeding
Hp. It should be noted that the penetration of the mag�
netic flux into samples of other shapes [2, 16] occurs in
much the same manner as for the distributions of the
flux density B in Fig. 1. 

In many cases, the magnetization loops of super�
conductors have a secondary peak (fishtail, peak�
effect). Such loops can also be described in terms of
the ECSM [19, 21, 22]. For this purpose, it is neces�
sary to determine the function describing the peak in
the dependence jc(B) and the corresponding dip in the
dependence ls(H). The peak�effect is considered in
detail in [33]. 

The ECSM can also be used to describe magnetiza�
tion loops of inhomogeneous granular superconduc�
tors. In this case, the circulation radius of the screen�
ing current in the calculation will not coincide with
the radius of the sample (see Subsection 3.2). In heter�
ogeneous materials, the magnetization loop can have
an additional diamagnetic contribution [17] (the loop
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Fig. 4. Dependences Jcm(H). Curves were obtained using
formulas (10a) (points) and (12) (lines) from magnetiza�
tion loops 5, 4, and 2 shown in Fig. 3b. (1) Critical current
density for Pa = 0 and Hirr = 200Hp, (2) critical current
density for Pa = 0 and Hirr = 10Hp, and (3) critical current
density for Pa = 0.3 and Hirr = 10Hp. 
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is rotated in the clockwise direction) or paramagnetic
contribution [21, 22] (the loop is rotated in the coun�
terclockwise direction). Also, the experimental
dependence M(H) can be a superposition of the mag�
netization loop of a superconductor and the loop of a
ferromagnet [18]. In these cases, the magnetization of
the sample is the sum of the magnetizations of each of
the magnetic phases. For a qualitative parameteriza�
tion, it is necessary to separate the contribution of the
superconducting phase. Usually, the fraction of the
superconducting phases can be judged from the
change in the magnetization at temperatures above
and below the critical temperature of the supercon�
ductor. 

The grain size distribution function in the critical
state model was taken into account in [3]. The simula�
tion showed that, for the lognormal or Gaussian func�
tion of the grain size distribution, the shape of the
magnetization loop remains qualitatively unchanged
for different distribution parameters. The same con�
clusion was drawn in [34]. 

3.2. Scale of Circulation of the Screening Current 

For granular superconductors, there is an ambigu�
ity in choosing the size R, which determines the circu�
lation region of the screening current [18, 35]. The size
R can be chosen as the radius of the sample or as the
effective radius of the grains. The supercurrent can
also circulate in clusters consisting of several grains. In
order to determine the critical current density from
magnetic measurements, it is necessary to establish
the scale of the circulation of the screening current,
because the magnetization loop width is characterized
by the parameter Pw = jc0R. The asymmetry of the
magnetization loop is characterized by the parameter
Pa = ls0/R; i.e., it also depends on the circulation
radius of the supercurrent R. For the known magnetic
field penetration depth λ0, using the asymmetry
parameter we can estimate the circulation scale of the
screening current as R ~ λ0/Pa. The value of λ0 can be
estimated using the London model for the reversible
part of the magnetization loop. According to the Lon�
don model [36], the equilibrium magnetization is
described by the expression 

where ϕ0 is the magnetic flux quantum and η is a con�
stant of the order of unity. 

For the analyzed granular superconductors [4, 7,
18, 20–22], the magnetization loops are successfully
described by the ECSM (formulas (1)–(9)) with the
effective grain radius as the value of R. The effective
radius satisfying the fit is greater than or equal to the
averaged grain radius determined from scanning elec�
tron microscopy images. 

M
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32π2λ0
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������������������
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3.3. Parameterization

Let us list the main steps in the calculation of the
magnetization loop of a superconductor. 

1. If there is a contribution to the magnetization
from nonsuperconducting phases, it is necessary to
obtain the magnetization loop of the superconducting
phase by filtering other contributions. In the obtained
magnetization loop of the superconducting phase, the
magnetization M must tend to zero with increasing
field H up to Hc2. 

2. The parameters of the superconductor λ, Hirr,
and Hc2 can be evaluated [37] and used in the fitting.
The magnetic field Hc2 is determined as a field in
which the dependence M(H) intersects with the H
axis. The field Hirr is determined as the value of H
above which the loop becomes reversible. 

3. The dependence ls(H) (formula (8) or (9)) and
the parameter B2 ~ 0.1μ0Hc2 are found from the esti�
mated values of Hirr and Hc2. 

4. The measured magnetization loop is used to
construct the curve ΔM(H). This curve is fitted by rela�
tionship (12), which allows us to determine the
parameter B1. 

5. The dependence M(H) is calculated according to
formulas (1)–(5) and (7) and then compared with the
experimental loop. If the values of Hirr and Hc2 were
not determined previously, the parameters of the
dependences jc(B) and ls(H) are chosen from the best
fit of the calculated dependences and experimental
magnetization loops. The main fitting parameters of
the model Pw = jc0R and Pa = ls0/R determine the width
of the magnetization loop along the M axis and its
asymmetry relative to the H axis, respectively. The
parameter Pw is comparable in order of magnitude
with Hp (Hp and Pw exactly coincide for the field�inde�
pendent current density jc(B) = jc0 [1]). 

6. For granular superconductors, the circulation
radius is estimated from the asymmetry of the loop
(R ~ λ0/Pa). The average grain size determined from
scanning electron microscopy images can also be
used. At the end, the value of jc0 = Pw/R is determined. 

4. CONCLUSIONS 

In this paper, an extended critical state model was
described. The model allows the calculation and
parameterization of magnetization loops of type�II
superconductors and takes into account the equilib�
rium magnetization of the surface layer. The asymme�
try of the magnetization loop depends on the ratio of
the surface layer depth to the sample size. 

A new analytical expression was proposed for the
dependence of the critical current density jc on the
magnetic field (7), which adequately describes the
behavior of the critical current density jc in weak and
strong fields. It was established that the critical current
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density depends on the size and shape of the sample,
because the surface layer of the sample with a thick�
ness ~ λ is not involved in the supercurrent transport. 

The analysis of the ECSM, as applied to the
parameterization of magnetization loops of polycrys�
talline superconductors, was carried out. In granular
superconductors, the asymmetry of the magnetization
loop makes it possible to determine the characteristic
scale of circulation of the screening current and the
bulk critical current density. 
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