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Abstract. Energy spectra and transport properties of armchair nanotubes with curvature induced spin-
orbit interaction are investigated thoroughly. The spin-orbit interaction consists of two terms: the first one
preserves the spin symmetry in rotating frame, while the second one breaks it. It is found that the both
terms are equally important: (i) at scattering on the potential step which mimics a long-range potential
in the nanotubes; (ii) at transport via nanotube quantum dots. It is shown that an armchair nanotube
with the first spin-orbit term works as an ideal spin-filter, while the second term produces a parasitic
inductance.

1 Introduction

Electronic and transport properties of carbon nanotubes
are highly topical subjects in mesoscopic physics (see for
a review [1–4]) due to potential technological applications
in nano-electronics and optical devices [5,6]. Among var-
ious studies of physical properties of carbon nanotubes
(CNTs), a detailed understanding of spin-orbit interac-
tion is crucial for the interpretation of ongoing experi-
ments, as well as for future applications of the nanotubes
in spintronics.

In general, the intrinsic (intraatomic) spin-orbit inter-
action in graphene is weak [7], since carbon atoms have
zero nuclear spins, and the hyperfine interaction of elec-
tron spins with nuclear spins is suppressed. It makes a spin
decoherence in such material to be weak as well, i.e., scat-
tering due to disorder is supposed to be not important.
A full analysis of spin-orbit interaction in CNTs requires,
however, to consider the isospin degree of freedom present
in the honeycomb carbon lattice.

According to a general wisdom, graphene being a zero-
gap semiconductor has a band structure described by a lin-
ear dispersion relation at low energy, similar to massless
Dirac-Weyl fermions [1,8]. For a CNT the quantization
condition leads, however, to metallic or semiconducting
behavior, depending on chirality [2,3]. The curved geome-
try may give rise to a band gap even for metallic CNTs [9].
Such a gap would allow to confine electrons, otherwise
not possible due to the Klein paradox [10]. However, a
precise form of the spin-orbit interaction in a single-layer
graphene nanotube is still not well known.

A consistent approach to introduce the curvature-
induced spin-orbit coupling (SOC) in the low-energy

a e-mail: rashid@theor.jinr.ru

physics of graphene have been developed by Ando [11]
and by others [12–14]. Recent measurements in ultra clean
CNTs [15], at various values of the magnetic field, revealed
the energy splitting which can be associated with a spin-
orbit coupling. Indeed, the measured shifts are compatible
with theoretical predictions [11,14]. However, some fea-
tures are left debatable. Evidently, removing the degener-
acy between quantum levels, the magnetic field generates
new mechanisms as well, which obscure effects related to
a plain spin-orbit coupling (see, for example, discussion
in [16–20]).

It is noteworthy on the pivotal fact that within the
approach developed by Ando [11] one obtains two SOC
terms: one preserves the spin symmetry in the rotat-
ing frame (see below), while the second one breaks this
symmetry. In previous studies [11,14] the role played by
the second term was underestimated. The purpose of the
present paper is twofold. First, to consider consistently a
full curvature-induced spin-orbit coupling in an armchair
nanotube within the approach suggested by Ando [11].
Second, to show that the second term could play an im-
portant role in transport phenomena. In order to illumi-
nate the role of interplay between both terms on electron
transport, we analyze the situation at zero magnetic field,
removing all additional mechanisms related to the mag-
netic field. In contrast to previous studies, we also pro-
vide analytical estimations for the energy spectrum and
transport coefficients for different cases (with and with-
out the second term). Evidently, the analytical approach
gives a fundamental insight into the nature of electronic
and transport properties of CNTs.

The structure of the paper is as follows. In Sec-
tion 2 we derive an explicit formula for eigen spectrum
of the Ando Hamiltonian with a full curvature-induced
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Fig. 1. The coordinate system for the carbon nanotube.

spin-orbit coupling in a CNT. In Section 3 we discuss dif-
ferent symmetries associated with the Hamiltonian and
analyze the current operators. Section 4 is devoted to the
analysis of scattering phenomena at the interface intro-
duced by a potential step and to transport properties of
carbon quantum dots at the preserved spin symmetry. In
Section 5, with the aid of results of Section 6, we dis-
cuss transport effects produced by a full curvature-induced
spin-orbit coupling in an armchair nanotube. Main con-
clusions are summarized in Section 7. Appendix provides
technical details used for analytical solutions.

2 The model

Figure 1 sketches a carbon nanotube and a coordinate
system with respect to the orientation axis of a carbon
nanotube in our analysis. The orbitals corresponding to
the σ bands of graphene are made by linear combinations
of the 2s, 2px, 2py atomic orbitals, whereas the orbitals of
the π band are pz orbitals.

Starting from the tight-binding model, with the aid of
k · p scheme in the vicinity of the Fermi energy (E = 0)
at K and K ′ points of the first Brillouin Zone, Ando
has derived the effective mass Hamiltonian for electrons
on curved surface with spin-orbit interaction (see details
in [11]). We follow this approach and use the effective
mass Hamiltonian as a starting point of our analysis.
This Hamiltonian can be expressed in the form of matrix-
Hamiltonian equation

ĤΨ =
(

0 f̂

f̂ † 0

)(
FK

A

FK
B

)
= E

(
FK

A

FK
B

)
, (1)

with the following definitions

f̂ = γ
(
k̂x − i k̂y

)
+ i

δγ′

4R
σ̂x (r) − 2δγp

R
σ̂y,

k̂x = −i
∂

R∂θ
, k̂y = −i

∂

∂y
,

σ̂x(r) = σ̂x cos θ − σ̂z sin θ. (2)

Here, σ̂x,y,z are standard Pauli matrices, and the spinors
of two sub-lattices are

FK
A =

(
FK

A,↑
FK

A,↓

)
, FK

B =
(

FK
B,↑

FK
B,↓

)
. (3)

We preserve the definitions introduced by Ando [11] for
the following parameters:

γ = −√
3V π

ppa/2,

γ′ =
√

3
(
V σ

pp − V π
pp

)
a/2,

p = 1 − 3γ′/8γ. (4)

Here, the quantities V σ
pp and V π

pp are the transfer integrals
for σ and π orbitals, respectively in a flat 2D graphene,
and a is a lattice constant (a = 2.46 Å). The intrinsic
source of the SOC δ = Δ/(3επσ) is defined by:

Δ = i
3�

4m2
ec

2

〈
xl

∣∣∣∣∂V

∂x
p̂y − ∂V

∂y
p̂x

∣∣∣∣ yl

〉
(5)

and επσ = επ
2p − εσ

2p, where V is the atomic potential. The
energy εσ

2p is the energy of σ-orbitals which are localized
between carbon atoms. The energy επ

2p is the energy of
π-orbitals which are directed perpendicular to the nan-
otube surface. In our consideration xl, yl, and zl are local
coordinates; zl-axis is perpendicular to a graphene plane,
and yl-axis is lying along the tube symmetry axis.

Ando suggested to neglect a spin-orbit term pro-
portional to σx, i.e., the term δγ′/(4R)σ̂x(r) in the
Hamiltonian (1). He assumed that a spin projection on
the CNT symmetry axis (y-axis) is a conserved integral
of motion. Based on the perturbative approach result, he
concluded that a spin mixing in the wave function due to
this term is very small. Ando admitted, however, that it
may couple states from bands with different spin quantum
numbers and lead to a small spin relaxation. Although in
reference [19] a different basis was used to derive the effec-
tive Hamiltonian for a single wall CNT, the term break-
ing its spin symmetry (a conservation of ŝz-component)
was obtained as well. Similar to reference [11], it was also
suggested in reference [19] to neglect such a term. In con-
trast, we consider all spin-orbit terms on equal footing,
since even a small perturbation brought about by the sec-
ond term breaks the fundamental spin symmetry of the
total Hamiltonian. In this case all three spin projections
are not conserved in any system. Different bands must be
distinguished by the magnetic quantum number m which
is a projection of the total angular momentum on the sym-
metry axis of the CNT (see below). As a result, this pre-
served fundamental symmetry allows to couple states with
different spins even inside one band. We restrict our con-
sideration by an armchair CNT. In this case the electron-
hole asymmetry observed in the experiment [15] at zero
magnetic field is absent [19,20].

To get rid of the θ dependence in the Hamiltonian (1),
we apply the transformation

Ĥ ′ = ÛĤÛ−1 (6)

with the aid of the unitary operator Û

Û =
(

exp(i θ
2 σ̂y) 0

0 exp(i θ
2 σ̂y)

)
. (7)

http://www.epj.org


Eur. Phys. J. B (2014) 87: 124 Page 3 of 10

As a result, we obtain the Hamiltonian in the transformed
frame

Ĥ ′ = Ĥkin + ĤSOC , (8)

Ĥkin = −iγ
(

τ̂y ⊗ I∂y + τ̂x ⊗ I
1
R

∂θ

)
, (9)

ĤSOC = −λy τ̂y ⊗ σ̂x − λxτ̂x ⊗ σ̂y , (10)

where I is 2 × 2 unity matrix, and

λx = γ (1 + 4δp) /(2R), λy = δγ′/(4R). (11)

We distinguish in the Hamiltonian (8) the kinetic Ĥkin

and the potential ĤSOC terms. Here, the operators τ̂x,y,z

are the Pauli matrices which act on the wave functions of
A- and B-sub-lattices (a pseudo-spin space). Note that
the kinetic term couples the wave functions of A- and
B-sub-lattices, as well as the potential term.

In our consideration, the curvature-induced spin-orbit
coupling is described by two terms: λx and λy. The term
λx depends on: (i) values of the transfer integral V π

pp for π
orbitals; and (ii) combined action produced by a product
of the intrinsic spin-orbit interaction and the difference
between the transfer integrals V π

pp, V σ
pp for π and σ or-

bitals, respectively, in a flat 2D graphene. The term λy

depends on the difference between the transfer integrals
V π

pp, V σ
pp for π and σ orbitals, respectively, in a flat 2D

graphene. Both terms are inversely proportional to the
tube radius, and tend to zero at R → ∞, i.e., in the
limit of a flat graphene. For small nanotubes (small ra-
dius) we might expect, however, that effects produced by
these terms come into particular prominence in transport
phenomena.

Herewith, for the sake of convenience, we use � = 1,
if otherwise it will be not mentioned. At λy = 0, the spin
projection Ŝy = 1

2I ⊗ σ̂y is a constant of motion, since it
commutes with the Hamiltonian [Ŝy, Ĥ ′] = 0. The term
λy �= 0 breaks this symmetry and yields a spin mixing.
Due to an axial symmetry of the CNT, the projection of a
total angular momentum on the nanotube symmetry axis
is always the integral of motion. In our consideration, in
the transformed system the integral of motion Ĵy

Ĵy = I ⊗
(

L̂y +
σ̂y

2

)
= I ⊗

(
−i∂θ +

σ̂y

2

)
,
[
Ĥ, Ĵy

]
= 0

(12)
takes a simple form

Ĵy → Ĵ ′
y = Û ĴyÛ−1 = I ⊗ (−i∂θ) . (13)

In virtue of this fact, we consider the wave function in the
form of plane waves

F ′(θ, y) = eimθeikyyΨ, (14)

where the wave function Ψ is a four-component spinor.
The wave function (14) defines the eigenvalues m of the
operator Ĵ ′

y

Ĵ ′
yF ′(θ, y) = mF ′(θ, y), m = ±1/2,±3/2, . . . , (15)
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ky (Å−1)

E
n
er
g
y
E

m
,+

1
(e
V
)

k 1
2 ,+1

m = 1
2

3
2

5
2

7
2

9
2

(b)

Fig. 2. Positive spectrum (see Eqs. (A.4)) Em,−1 (a) and
Em,+1 (b) as a function of the wave number ky . The values of
km,+1 and km,−1 for m = 1/2 at the energy EF = 1 eV (solid
horizontal line) are indicated by vertical dashed lines. The pa-
rameters are R = 17.75 Å, δ = 0.01, p = 0.1, γ = 9

2
1.42 Å eV,

γ′ = γ 8
3
, λx = γ

R
(1/2+ 2δp) = 0.18 eV, λy = δγ′

4R
= 0.0024 eV.

while a quantum number ky is an eigenvalue of the
operator k̂′

y ≡ k̂y

k̂′
yF ′(θ, y) = kyF ′(θ, y). (16)

Taking into account equations (8) and (14), we obtain our
Hamiltonian

Ĥ ′(m, ky) =⎛
⎜⎝

0 0 tm − ity i(λy + λx)
0 0 i(λy − λx) tm − ity

tm + ity −i(λy − λx) 0 0
−i(λy + λx) tm + ity 0 0

⎞
⎟⎠,

(17)

which acts on the spinor Ψ . Here we introduce the
following definitions:

tm =
γ

R
m, ty = γky. (18)

The solution of the eigenvalue problem of
Hamiltonian (17) yields the following four energies
(see Appendix, Eqs. (A.4))

E(+) = +Em,s, E
(−) = −Em,s, s = ±1. (19)

We define all states with E(+) > 0 (E(−) < 0) as a par-
ticle (hole) states. As was mentioned above, there is the
electron-hole symmetry |E(+)| = |E(−)|.

The energy spectrum for a typical CNT as a function of
the continuous variable ky and the quantized projection
of the angular momentum m is shown on Figure 2. For
the sake of illustrations, in numerical calculations we use
the following parameters [11]: V π

pp ∼ −3 eV, V σ
pp ∼ 5 eV,

|p| ∼ 0.1, the bond length d = a/
√

3 ≈ 1.42 Å. For a
given m-value the Fermi energy EF provides four possible
values for ky: ±km,s.

The energy gap ΔEm,s in the CNT is defined by a
minimal distance between negative and positive parts of
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the spectrum (see Eqs. (A.4))

ΔEm,s =2|Em,s(ky = 0)|=2
∣∣∣√t2m + λ2

y + sλx

∣∣∣ ≡ 2E0
m,s.

(20)
At λy = 0 there is a minimal gap ΔE1/2,−1 = 4γδ|p|/R,
which coincides with the value obtained by Ando [11]. At
λx �= 0 and λy �= 0 for p > 0 the minimal gap becomes
even lesser, while for p < 0 it increases. Thus, the compar-
ison of the gap (20) with experimental data would allow
to fix the model parameters (4). The transport does not
persist in the gap, since all eigen modes are evanescent
ones. Evidently, when the spin-orbit interaction (δ = 0) is
zero, one is faced with a plain metallic CNT.

3 Symmetries and current operators

The Hamiltonian (8) has several symmetries. There is a
particle-hole symmetry

M̂aĤ ′M̂−1
a = −Ĥ ′, (21)

defined by the operator

M̂a = τ̂z ⊗ I. (22)

Therefore, energies for the eigenfunctions Ψ and M̂aΨ are
equal in value but opposite in sign. There are two inversion
operators Mθ, My, for θ, y coordinates, respectively,

M̂y = τ̂y ⊗ σ̂y , M̂θ = τ̂y ⊗ σ̂x, (23)

with properties

M̂yĤ
′(k̂y , Ĵy)M̂−1

y = Ĥ ′(−k̂y, Ĵy), (24)

M̂θĤ
′(k̂y, Ĵy)M̂−1

θ = Ĥ ′(k̂y,−Ĵy). (25)

These transformations connect the eigenfunctions with
opposite quantum numbers ky and m.

In virtue of the conservation law for the current
j = jy + jθ

∂

∂t
|Ψ |2 + ∇j = 0, (26)

we obtain a longitudinal and an orbital current operators

ĵy = γτ̂y ⊗ I, ĵθ = γτ̂x ⊗ I. (27)

The same expressions can be obtained from the equation
of motion

v̂ = ˆ̇r = i
[
Ĥ ′, r̂

]
. (28)

For fixed quantum numbers (ky, m), at E > 0 the current
moves in a direction opposite to one of the current at
E < 0. This fact follows from the symmetry relation

M̂−1
a ĵy,θM̂a = −ĵy,θ. (29)

The expectation values of the θ (y)-component of the cur-
rent calculated by means of the eigenfunctions Ψ and MθΨ

(MyΨ) are of opposite sign. This result follows from the
following identities:

M̂−1
θ ĵθM̂θ = −ĵθ, M̂−1

y ĵθM̂y = ĵθ, (30)

M̂−1
θ ĵyM̂θ = ĵy, M̂−1

y ĵyM̂y = −ĵy. (31)

With the aid of the relations

M̂−1
θ Ŝy,zM̂θ = −Ŝy,z, (32)

M̂−1
θ ŜxM̂θ = Ŝx, (33)

M̂−1
y Ŝx,zM̂y = −Ŝx,z, (34)

M̂−1
y ŜyM̂y = Ŝy, (35)

it could be shown that the expectation values of spin pro-
jections onto the local y, z (x, z)-axes for the eigenfunc-
tions Ψ and MθΨ (MyΨ) have also opposite signs.

4 Analytical results at λy = 0

To understand how the full SOC affects the system prop-
erties, we consider first only λx �= 0, λy = 0. As discussed
above, in this case the operator Ŝy = 1

2I ⊗ σ̂y is an inte-
gral of motion. Therefore, we transform our Hamiltonian
to the frame where the operator Ŝy has a diagonal form

V̂−1ŜyV̂ =
1
2
σ̂z ⊗ I. (36)

Here, the transformation V̂, defined as:

V̂ =
(
exp

(
i
π

4
σ̂x

)
⊗ I
)

P̂23, P̂23 =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ , (37)

consists of a rotation on angle π/2 around x-axis and
the permutation P23. This permutation collects spin up
components of the A- and B-sub-lattices in the upper
part of the spinor Ψ . In virtue of this transformation, the
Hamiltonian (17) gains a block-diagonal structure

Ĥ = V̂−1Ĥ ′V̂ =

⎛
⎜⎝

0 a− 0 0
a+ 0 0 0
0 0 0 b−
0 0 b+ 0

⎞
⎟⎠ , (38)

a± = (tm − λx) ± ity , b± = (tm + λx) ± ity .

One obtains obvious four eigenvalues and eigenvectors

E(±) = ±Em,s, Em,s =
√

(tm + sλx)2 + t2y, (39)

Vm,+1 =
1√
2

(0, 0, 1, zm,+1)
T

, (40)

Vm,−1 =
1√
2

(1, zm,−1, 0, 0)T , (41)

zm,s = ((tm + sλx) + ity) /E. (42)
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Fig. 3. A schematic illustration of the scattering process on a
potential step.

4.1 Scattering on a potential step

We consider first the scattering at the interface introduced
by a potential step of the height V0 as sketched in Figure 3.
On the one hand, the step is assumed to be smooth on the
length scale of a graphene unit cell (an inverse Brillouin
momentum 2π/K) and, therefore, does not induce the in-
tervalley (K → K ′) scattering. On the other hand, it is
assumed to be sharp on the Fermi length scale (λ ∼ 1/kF ).
Since θ and y are independent variables, such a potential
conserves the angular momentum projection m.

Depending on the sign of EF (incoming particle) and
the sign of EF − V0 (outgoing particle) there are four types
of transmission through the step: p-p, p-h, h-p, h-h. We
denote particle by symbol “p”, while a hole by a symbol
“h”. For the sake of illustration, p-p and p-h transmissions
are schematically shown on Figure 3.

Transmission (reflection) of electrons incoming from
the left is controlled by partial coefficients. Namely,
we have |tqq′ |2(|rq

q′ |2) describing transmission (reflection)
probability from the left states with a set of quantum
numbers q = {m, s} to the right states with q′ =
{m′, s′}. Transmission (reflection) probabilities are de-
fined as squares of the scattering-wave-function ampli-
tudes which satisfy the continuity of wave functions. Evi-
dently, since spin is a good quantum number as well as a
quantum number m, the transmission (reflection) proba-
bilities, responsible for the spin-flip process, are absent at
λy = 0: |tm,s

m,s′ |2 = |rm,s
m,s′ |2 = 0 for s �= s′.

Matching the eigenfunctions with the same values
of the angular momentum and spin projections on the
left and right sides of the potential step, we obtain the
following equation:

[(
1
Zq

)
+ rq

q

(
1

Z−1
q

)]
√
|γi(z∗q − zq)|

=
tqq√

|γi(z̃∗q − z̃q)|

(
1
Z̃q

)
. (43)

Here Zq = (zq)sign(EF ) (Z̃q = (z̃q)sign(EF −V0)) are defined
by equation (42), z∗q (z̃∗q ) are complex conjugate, and the
energy E = EF (E = EF −V0) before (after) the step. The
wave functions are normalized to have a unit current flow
along the y-axis. The solution of equation (43) defines the
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Fig. 4. Reflection probabilities on the potential step for the
state m = 1/2, s = −1: analytical estimation (dotted line, red)
and numerical results (solid line, blue) as a function of the po-
tential height V0. (a) λy = 0: a direct reflection Rest

−−(V0) =
|rm,s

m,s(V0)|2 is described by equation (47); (b) λy �= 0: a spin-
flip reflection Rest

−+(V0) = |rm,s
m,−s(V0)|2 is described by equa-

tion (66). EF = 1 eV and the other parameters are the same
as in Figure 2.

reflection and transmission coefficients

rq
q = (Zq − Z̃q)/(Z̃q − Z−1

q ), (44)

tqq = (Zq − Z−1
q )/(Z̃q − Z−1

q )

√∣∣∣∣ z̃q − z̃∗q
zq − z∗q

∣∣∣∣. (45)

In order to reveal the effect of the SOC let us consider
the case of quantum numbers qn : {m = ∓ 1

2 , s = ±1}.
It corresponds to a normal incident direction of electrons
on the potential step for the CNT without the SOC and
δ = 0. Note that the variable zq (z̃q) (see Eq. (42)) depends
on the term tm + sλx. In our case this term transforms to
the form

tm + sλx =
γ

R
(m + s/2 + 2spδ) ⇒ ± γ

R
2pδ, (46)

which depends on a small parameter δ. The Taylor series
expansion of the reflection rqn

qn
(see Eq. (44)) over this

parameter δ enables to us to define the first nonzero term
(omitting unimportant phase factor)

rqn
qn

= δp
γ

R

V0

EF (EF − V0)
+ O(δ2). (47)

The estimation (47) describes remarkably well numerical
results for the scattering until EF or EF −V0 is close to the
gap (see Fig. 4a). Thus, at |EF |  E0

qn
and |EF − V0| 

E0
qn

, where E0
qn

= 2|δpγ|/R is of order 10−4 eV for the
typical parameters of CNTs, there is a weak backward
scattering defined by equation (47).

To gain a better insight into scattering phenomena we
study the current. At λy = 0 the expectation value of the
longitudinal current 〈ĵy〉 is determined by the quantum
number ky . The effect of the SOC is visible in the expec-
tation value of the orbital (θ-) component of the current
(see Appendix, Eq. (A.7))

〈ĵθ〉q =
γ

E
(tm + sλx) , (48)

which depends on the spin-orbit term λx. With the aid
of equations (11) and (18), one obtains that the orbital

http://www.epj.org
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QD

V
0

Fig. 5. A schematic picture of quantum dot in CNT.
Dashed lines correspond to different sets of conserved quantum
numbers.

current is always nonzero. Thus, we can have a persis-
tent current without a magnetic field. In order to un-
derstand this result let us assume that there is a mag-
netic field along the symmetry axis y. It results in the
Aharonov-Bohm magnetic flux passing through the CNT
cross section, which yields the modified quantum num-
ber m′ = m + φ/φ0 (φ – magnetic flux, φ0 – magnetic
flux quanta). Evidently, with the aid of the magnetic field
along the symmetry axis y one can suppress the orbital
current for any value of the quantum number m (without
the Zeeman splitting). Taking into account equations (11),
(18) and (48), we obtain the condition for a zero orbital
current for a magnetic quantum number m

tm′ = −sλx ⇒ φ/φ0 = −
(s

2
+ m

)
− 2sδp. (49)

In particular, for the set of quantum numbers qn = {m =
∓ 1

2 , s = ±1} we obtain 〈ĵθ〉q = 0 at the magnetic flux
φ/φ0 = −2sδp which compensates the SOC term λx at
m = −1/2. Note that at the condition (49) (and λy = 0)
the gap (20) vanishes as well for any m.

Thus, the SOC works as an “effective magnetic field”,
responsible for the orbital motion and, therefore, for the
weak backward scattering (47). In the absence of Zeeman
splitting the applied magnetic field φ/φ0 = −2sδp leads
to zero backward scattering in all orders.

4.2 Quantum dot

The gap in CNTs (due to the SOC) opens a possibility to
create a nanotube quantum dot (QD), by confining parti-
cles in a quantum well with a potential V0(θ(y)−θ(L−y))
(where θ(x) is a Heaviside step functions), as illustrated
in Figure 5. We recall that in the gap there are evanescent
modes only.

The QD energies are located within the gap −E0
q <

E < E0
q (see Eq. (20)). Different sets of quantum num-

bers q = {m, s} determine the full spectrum of the QD.
Matching the eigenfunctions (40) at the y = 0 and y = L
we obtain the following equations:

rl

(
1

z−1
q

)
= a

(
1
z̃q

)
+ b

(
1

z̃−1
q

)
, (50)

rr

(
1
zq

)
= aeikq(E)L

(
1
z̃q

)
+ be−ikq(E)L

(
1

z̃−1
q

)
, (51)

E

V0

-Em,s

ΔE
m

,s

0

-Em,s

0

Em,s
0

Em,s
0

Fig. 6. Grey regions correspond to the area where discrete
spectrum is possible.

where

zq(E) = [(tm + sλx) − κq(E)γ] /E,

κq(E) =
√

(tm + sλx)2 − E2/γ,

z̃q(E) = [(tm + sλx) + ikq(E)γ] /(E − V0),

kq(E) =
√

(E − V0)
2 − (tm + sλx)2/γ. (52)

These equations could be written in the matrix form⎛
⎜⎜⎝

−1 1 1 0
−z−1

q z̃q z̃−1
q 0

0 eikq(E)L e−ikq(E)L −1
0 z̃qe

ikq(E)L z̃−1
q e−ikq(E)L −zq

⎞
⎟⎟⎠
⎛
⎜⎝

rl

a
b
rr

⎞
⎟⎠ = 0.

(53)
Evidently, the solutions exist, if the determinant of equa-
tion (53) is zero. This requirement yields the transcen-
dental equation which defines the eigen spectrum En

q of
the QD:

exp (2ikq(En
q )L)=

(
zq(En

q )z̃q(En
q ) − 1

zq(En
q ) − z̃q(En

q )

)2

, n=1, 2, 3 . . .

(54)

Equation (54) can be transformed to the form

tan(kq(En
q )L) =

(
γ2kq(En

q )κq(En
q )

En
q (En

q − V0) − (tm + sλx)2

)
. (55)

As it was mentioned above, the QD spectrum is defined
in the energy window −E0

q < En
q < E0

q . Its boundaries
are shown on Figure 6. Thus, equation (55) corresponds
to the case λy = 0, when there is no spin scattering. In
other words, in such QDs electron with spin up cannot
scattered into state with spin down and vise versa, without
any additional mechanism.

In order to gain a better insight into the properties
of the QD spectrum, let us consider two limiting cases:
(a) γkq(En

q )  |tm + sλx|; and (b) γkq(En
q ) � |tm + sλx|.

In case (a), with the aid of equation (52) we have:

γkq(En
q ) ≈ |En

q − V0|  tm + sλx, zq(En
q ) ≈ ±i . (56)

As a result, equation (54) transforms to the form

exp
(

2i
|En

q − V0|
γ

L

)
≈
(±i z̃q(En

q ) − 1
±i − z̃q(En

q )

)2

≈ const.

(57)
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At the condition En+1
q − En

q � V0 it yields an equidis-
tant spectrum similar to the one of the harmonic oscillator
potential:

En+1
q − En

q ≈ γπ

L
. (58)

In case (b), at small kq(En
q ) we obtain

γkn
q (En

q ) =
√

(En
q − V0)2 − (tm + sλx)2 � tm + sλx,

zq(En
q ) ≈ ±1. (59)

As a result, equation (54) takes the form

exp
(
2ikn

q (En
q )L

) ≈ 1. (60)

At the condition En+1
q − En

q � tm + sλx it defines the
spectrum similar to the one of the quantum well potential:

En+1
q − En

q ≈
(γπ

L

)2 2n + 1
2(tm + sλx)

. (61)

Both limits (low-and high-energies) should be fulfilled for
long nanotubes.

5 General case

5.1 Scattering on a potential step

Analytical solutions of the eigenvalue problem for the
Hamiltonian (17) with nonzero λx and λy are presented
in Appendix. With the aid of these results we reconsider
the scattering at the interface introduced by a potential
step of the height V0 (Fig. 3). Unfortunately, analytical ex-
pressions for the general case are too cumbersome, and we
present mostly numerical results. We use the same typical
values for graphene nanotubes (as in the previous section)
to demonstrate a general tendency.

The expectation value of the orbital (θ) current
component (see Appendix, Eq. (A.7))

〈ĵθ〉m,s =
γtm
E

⎛
⎝1 + s

λ2
x√

λ2
x(t2m + λ2

y) + t2yλ2
y

⎞
⎠ (62)

essentially depends on the spin-orbit term λy �= 0, ignored
in literature (see Fig. 7).

The orbital current becomes zero at

|m| = 1/2, s = −1, |ty| =
λx

λy

√
λ2

x − λ2
y − t2m, (63)

which corresponds to the energy E = ±1.199 eV for the
parameters listed in the caption of Figure 2. To avoid the
additional back scattering due to non-normal incidence of
electrons on the potential step, we use this energy and the
quantum number m = 1/2 for incoming electron to trace
the transmission and reflection events as a function of V0

(Fig. 8).
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Fig. 7. Current 〈ĵθ〉q (see Eq. (62)) as a function of the wave
number ky for the eigenstate with q = {m = 1/2, s = −1} at
λx �= 0 for: λy �= 0 (solid line) and λy = 0 (dashed line). The
other parameters are the same as in Figure 2. At ky ≈ 0.19 Å−1

the current is zero.
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Fig. 8. Dependence of reflection (a), (b) and transmission (c),
(d) probabilities for normal incidence at m = 1/2, EF =
1.199 eV on the height of the potential step V0 (eV). The
parameters are the same as in Figure 2.

For energies E − V0 ≤ 0.5 eV the conductance

G =
e2

h

(∣∣∣tm,+1
m,+1

∣∣∣2 +
∣∣∣tm,−1

m,−1

∣∣∣2 +
∣∣∣tm,+1

m,−1

∣∣∣2 +
∣∣∣tm,−1

m,+1

∣∣∣2
)

(64)
is dominated by the transmission without spin-flip (see
Figs. 8a, 8c), i.e., by the probabilities T++ = |tm,+1

m,+1|2
and T−− = |tm,−1

m,−1|2, while the reflection is suppressed. At
E−V0 > 0.5 eV the SOC gives rise to the direct reflection
R++ = |rm,+1

m,+1 |2 (without spin-flip), which grows rather
rapidly. Within the energy gap −E0

m,+1 < EF − V0 <

−E0
m,−1 and E0

m,−1 < EF − V0 < E0
m,+1 (E0

1/2,+1 ≈
0.36 eV) the transmission probability T−− ≈ 1, while
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the transmission probability T++ is almost suppressed,
since the reflection probability R++ ≈ 1. Although the
probability T−− is a dominant process, the probability
T+− = |tm,+1

m,−1|2 produces a parasitic loss of this dominance
due to λy term in the SOC. Note that the transmission
probability T−+ = |tm,−1

m,+1|2 is completely suppressed in
this energy window.

This mechanism resembles in appearance to the one
considered for one-dimensional electron system formed
in semiconductor heterostructures showing strong Rashba
spin-orbit interaction in the presence of weak magnetic
field [21]. In our case, the spin-filter effect is brought about
by a relatively weak curvature-induced SOC which cre-
ates the “effective magnetic field”. It is noteworthy that
at λy = 0 the filter would be even more efficient due to
the absence of the inter-channel scattering.

There is a full reflection zone which corresponds to the
SOC’s induced gap of the width ΔE1/2,−1 = 2×0.7 meV ≈
16 K for chosen parameters. In this energy interval the
evanescent modes exist only. In contrast to the case con-
sidered in the previous section (λy = 0), there is a mixing
of spin components. In general, the back scattering

Gbs =
e2

h

(
|rm,+1

m,+1 |2 + |rm,−1
m,−1|2 + |rm,+1

m,−1|2 + |rm,−1
m,+1 |2

)
(65)

being small increases on two order in magnitude in the
presence of the SOC induced by λy term (compare the
inserts on Figs. 8a, 8b). For completeness, we consider
reflection for qn = {m = ± 1

2 , s = ∓1}, which corresponds
to a normal incidence for the CNT without the SOC. The
expansion of reflection amplitudes over the parameter δ,
which is responsible for the intrinsic graphene spin-orbit
interaction, leads to the results

rm,s
m,s = δp

γ

R

V0

EinEout
+ O(δ2), (66)

rm,s
m,−s =

λy

2t2m
V0

[(
E2

in − 4t2m
)
(Ein − 2|tm|)2

]1/4

×Z1/Z2 + O
(
δ2
)
, (67)

Z1 = sign (Eout)
√

E2
out − 4t2m − (Eout − 2|tm|) , (68)

Z2 = (Eout − 2|tm|)
√

E2
in − 4t2m + sign (Ein)

× sign (Eout) (Ein − 2|tm|)
√

E2
out − 4t2m. (69)

Here, we use the following notations: Ein = EF , Eout =
EF − V0, omitting unimportant phase factors. The direct
reflection amplitude (66) is described in the lowest or-
der by the same formula (47) as for the case λy = 0.
Indeed, the term λy contributes to the direct scattering
only in the second order with respect to the strength δ. Its
contribution is, therefore, negligible in a direct scattering.
The spin-flip reflection appears, however, due to λy term
solely. Equations (66) and (67), reproduce remarkably well
the complex behavior of reflection displayed on Figure 8b
(for comparison see Fig. 4b). The reflection probabilities
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Fig. 9. Reflection probabilities as a function of the angular mo-
mentum projection m. The energy of incoming (outgoing) elec-
tron is EF = 1 eV(EF − V0 = −1 eV). The panel (a) displays
the direct reflection probabilities: R−− = |rm,−1

m,−1 |2 (solid, red)

and R++ = |rm,+1
m,+1 |2 (dashed, blue). The panel (b) displays the

reflection probabilities with the spin-flip: R−+ = |rm,−1
m,+1 |2 =

|rm,+1
m,−1|2. The parameters are the same as in Figure 2.

for different m are displayed on Figure 9. The direct re-
flection (without the spin-flip) grows rapidly with the in-
crease of the magnetic quantum number m (see Fig. 9a).
In contrast, the spin-flip reflection probabilities tends to
zero with the increase of the magnetic quantum number
(see Fig. 9b). In comparison with the case λy = 0, the
minimum in the reflection probability |rm,−1

m,−1 |2 is slightly
shifted from m′ = 1/2 + 2pδ (see the insert in Fig. 9a).
In contrast to the case with λy = 0, the direct reflec-
tion probability |rm,−1

m,−1|2 cannot be turned to zero by the
Aharonov-Bohm magnetic flux alone, created by the mag-
netic field along the nanotube symmetry (y-) axis. The
larger is the quantum number m the smaller is the trans-
mission probability.

The maximal magnetic quantum number m which
corresponds to a complete reflection could be deter-
mined from the condition that the longitudinal current
〈ĵy〉m,s = 0 (see Appendix). This condition requires ty =
γky = 0 after the potential step. Note that the quantum
number s is not conserved at λy �= 0. As a result, one
obtains with the aid of equation (A.4) for the energy of
outgoing electron the condition

ty = 0 ⇒ |EF − V0| = E0
m,s ≡ |Em,s(ky = 0)|, (70)

Em,s(ky = 0) =
√

t2m + λ2
y + sλx, s = ±1. (71)

At fixed parameters {EF , V0, λx,y, R}, one defines the
boundaries

C± = t2m =
( γ

R
m
)2

= (|EF − V0| ∓ λx)2 − λ2
y . (72)

Note that C− > C+, and, therefore, the maximal m = M
is determined as:

M =
R

γ

√
C−. (73)

For all |m| ≥ M the transmition probability Ts− ≡ 0 for
s = ±1. In particular, for our choice of parameters the
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Fig. 10. The QD energy spectrum as a function of applied
potential V0. The levels with a quantum number m = 3/2 are
displayed for the nanotube with a length L = 100 Å. The other
parameters are the same as in Figure 2. At different values of
the applied potential, levels either cross (left insert) or repel
(right insert) each other.

reflection probability R−− = |rm,−1
m,−1|2 = 1 at M ≈ 7/2

(compare with Fig. 9a).
From now on we can define the critical angle of the

complete reflection. In virtue of results from Appendix we
obtain for the critical angle

tan(φ) =
〈jθ〉q
〈jy〉q =

tM
ty

(
1 +

λ2
x − λ2

y

W

)
, (74)

W =
√

λ2
yE2

F + t2M (λ2
x − λ2

y), (75)

where the critical value of the magnetic quantum number
m is related to the variable tM

tM =
√

C− =
√

(|EF − V0| + λx)2 − λ2
y. (76)

We use s = +1 in equation (74), since ty(s = +1) < ty(s =
−1), where ty is defined by equation (A.8)

ty = γks =
√

E2
F + λ2

y − t2M − λ2
x − 2sW. (77)

These equations might provide some hint on the contribu-
tion of different SOC terms at experimental measurements
of the critical angle.

5.2 Basic features of quantum dot

The energy spectrum of QD is defined by the minimal
gap for a given angular momentum m: −E0

m,−1 < En
m <

E0
m,−1. The mixing of spin components could lead to the

interaction between spectra inherited from the ones with
different spin projection for the case λy = 0. In particular,
a crossing/anti-crossing behavior of two levels depends on
their symmetry with respect to the inversion of the y-
axis (see Fig. 10). Two levels with the same parity Ψ1,2 =
s1,2M̂yΨ1,2 (when s1 = s2) anti-cross, while a different
sign s1 = −s2 leads to the level crossing. Other properties
of discrete levels are very similar to properties of those
obtained at λy = 0.

6 Summary

Within the approach suggested by Ando (see details
in [11]), we solved analytically the eigenvalue problem for
the effective mass Hamiltonian for electrons on curved sur-
face with the spin-orbit interaction. In particular, with the
aid of transformation (7), we obtained explicit expressions
for a low energy spectrum and eigenstates of armchair car-
bon nanotubes. These findings have been used to analyze
transport properties of CNT with curvature-induced SOC
(see Eq. (11)) at different limits.

We have analyzed effects produced by the SOC on the
scattering of electrons at the interface introduced by the
potential step of height V0. The effect of the SOC becomes
especially drastic when the height of the potential barrier
can be controlled to reach conditions allowing to produce
a spin-filter effect. At this condition only one spin com-
ponent is dominant in the transmission over the CNT.
Note that this phenomenon occurs due to the ”effective
magnetic field” which is brought about by the curvature
induced SOC. The SOC term λy yields, however, a para-
site loss (∼10−3) of the spin-filter effect.

The gap in CNTs (due to the SOC) opens a possi-
bility to create a nanotube quantum dot. In the limit of
the preserved spin symmetry we have calculated the QD
eigenstates with the aid of the transcendental equation. At
low energy limit the spectrum is similar to the one of the
quantum well potential, while for large energies it carries
features of the harmonic oscillator spectrum. In such QDs
the electron with spin up cannot scatter into state with
spin down and vise versa, without any additional mecha-
nism. However, the SOC term λy mixes these states and
yields the anti-crossing effect. This mechanism may af-
fect the spin relaxation phenomenon in the system under
consideration, in addition to an electron-phonon coupling
mechanism [16].

There was a belief that the curvature induced SOC in
graphene, restricted by the first term, leads only to very
weak back scattering [11]. We have demonstrated, how-
ever, that the second term, ignored in a previous anal-
ysis, produces the inter-channel scattering, which could
increase the back scattering by a few orders of magnitude
and enrich transport phenomena in carbon nanotubes.

K.N.P. and M.P. are grateful for the congenial hospitality at
UIB and JINR. This work was supported in part by RFBR
Grant 14-02-00723, integration Grant No. 29 from the Siberian
Branch of the RAS and Slovak Grant Agency VEGA Grant
No. 2/0037/13.

Appendix: An eigenvalue problem for Ĥ′

We suggest to use the eigenstate in the form

F ′(θ, y) = eimθeikyy

⎛
⎜⎝

A
B
C
D

⎞
⎟⎠ , m = ±1/2,±3/2, . . . (A.1)
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to solve the eigenvalue problem Ĥ ′F ′ = EF ′ for
the Hamiltonian (8). As a result, one obtains the
Hamiltonian (17). In virtue of the unitary transformation

Ṽ = P̂123τ̂x ⊗ exp
(
i
π

4
σ̂x

)

=
1√
2

⎛
⎜⎜⎜⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 0 1 i
0 0 i 1
1 i 0 0
i 1 0 0

⎞
⎟⎟⎟⎠

=
1√
2

⎛
⎜⎜⎜⎝

1 i 0 0
0 0 1 i
0 0 i 1
i 1 0 0

⎞
⎟⎟⎟⎠ (A.2)

our Hamiltonian (17) becomes real

ˆ̃H = Ṽ −1Ĥ ′Ṽ

=

⎛
⎜⎜⎜⎝

−λx − λy 0 ty tm

0 λx + λy tm −ty

ty tm λx − λy 0
tm −ty 0 −λx + λy

⎞
⎟⎟⎟⎠ (A.3)

with notations (18). The eigenvalues of the
Hamiltonian (A.3) are

E = ±Em,s,

Em,s =
√

t2m + t2y + λ2
y + λ2

x + 2Dm,s, s = ±1,

Dm,s = s
√

λ2
x

(
t2m + λ2

y

)
+ t2yλ2

y . (A.4)

Eigenvectors have rather simple form

Vm,s =
1

Nm,s

(
−Dm,s + λy(E − λy)

tm(λx + λy)
,

−ty(λx − λy)
−Dm,s + λx(E − λx)

,
ty
tm

(−Dm,s + λy(E − λy))
(−Dm,s + λx(E − λx))

, 1

)T

,

(A.5)

where the values E = ±Em,s, Dm,s are defined by
equation (A.4), and the norm Nm,s is:

Nm,s =
√

(F1 + F2 + F3)/M + 1,

F1 = (Dm,s − λy(E − λy))2 (Dm,s − λx(E − λx))2 ,

F2 = t2mt2y(λ
2
x − λ2

y)2,

F3 = t2y(λx + λy)2 (Dm,s − λy(E − λy))2 ,

M = t2m(λx + λy)2(Dm,s − λx(E − λx))2. (A.6)

The expectation value of the current for eigenspinors (A.5)
could be calculated with the aid of the definitions (27) and

the transformation (A.2). As a result, we obtain

〈ĵy〉m,s =
γty
E

(
1 +

λ2
y

Dm,s

)
,

〈ĵθ〉m,s =
γtm
E

(
1 +

λ2
x

Dm,s

)
. (A.7)

To solve a scattering problem we need the eigenspinors
for a fixed value of the energy E. Using the dispersion
relation (A.4), we obtain

km,s =
1
γ

√
E2 +λ2

y −t2m −λ2
x − 2s

√
λ2

yE2 + t2m
(
λ2

x − λ2
y

)
.

(A.8)

Substituting the value of km,s from equation (A.8),
the spinor (A.5) becomes Vm,s(ty = γkm,s) with the
parameter Dm,s simplified to the form

Dm,s = s
√

λ2
yE2 + t2m(λ2

x − λ2
y) − λ2

y. (A.9)
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