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The existence of space inhomogeneous superconductor insulator state (SISIS) found out earlier in polycrystalline samples of high-
𝑇
𝐶
system Ba

0.6
K
0.4
BiO
3
(𝑇
𝐶
≈ 30K) is confirmed on Ba

0.6
K
0.4
BiO
3
single crystal. At 𝑇∗ (𝑇∗ < 𝑇

𝐶
, 𝑇
∗
≈ 17K) the transition from

the homogeneous superconducting state into the SISIS occurs. SISIS is characterized by the appearance of two gaps on the Fermi
surface, semi- and superconducting, which are modulated in space in antiphase, the electric transport between superconducting
regions being carried out due to Josephson tunneling. Thus the whole sample becomes a multiple Josephson system. Nonlinear
𝐼-𝑉 curves are observed on Ba

0.6
K
0.4
BiO
3
single crystal at temperatures below 𝑇

∗. Dependence of 𝐼-𝑉 curves on temperature and
magnetic field, typical to a Josephson system, was found out. Besides, a step-like peculiarity at the values of voltage of the order of
one and two superconducting gaps shows up.These peculiarities are suppressed bymagnetic fieldmuch earlier than critical current.
The new data firstly correlate with the model of SISIS and secondly permit for the first time to determining directly the energy gap
between homogeneous and stratified superconductor states.

1. Introduction

High-temperature superconductor (HTSC) Ba0.6K0.4BiO3
has a cubic lattice and has no copper atoms or any other
magnetic ions (has been found out in 1988 [1, 2]). These
features distinguish it from other HTSC compounds and
do not allow one to justify its HTSC properties on the
bases of layered structure or internal magnetic ions. Relative
towards high-𝑇𝐶 Ba1−𝑋K𝑋BiO3 is the system BaPb𝑌Bi1−𝑌O3
[3] famous even before the discovery of high-temperature
superconductivity [4] and in behaviour of which different
anomalies [5], answering to the spatially inhomogeneous
superconductivity, were observed already at the end of the
seventies. In subject plan the spectrum of implemented to
date researches of high-𝑇

𝐶
system Ba0.6K0.4BiO3 appears to

be rather wide. Not being exhaustive, the list displayed below
illustrates this thematic latitude:

(i) problems of synthesis, composition, and structure of
high-𝑇𝐶 Ba0.6K0.4BiO3 [6–11];

(ii) transport, phonon, and electron-phonon effects [12–
14];

(iii) heat capacity, thermal expansion, and so forth [15–
20];

(iv) investigation of magnetic response, accompanying
superconducting transition, anisotropy of magnetic
properties, and irreversibility effects in remagnetiza-
tion [21–24];

Hindawi Publishing Corporation
International Journal of Superconductivity
Volume 2014, Article ID 317974, 9 pages
http://dx.doi.org/10.1155/2014/317974



2 International Journal of Superconductivity

100

10

1

0

0

8

3.2

1.6 0.64

6.4

4.8

0
0.25

5 10 15 T# 20 25

T (K)

R
(Ω

)

R
(Ω

)

80

60

40

20

0

0 2 4 6 8

R = RN

B (T)

Figure 1: Temperature dependence of electric resistance in poly-
crystals of Ba

0.6
K
0.4
BiO
3
when 𝑇 < 𝑇C for different magnetic

fields at “big” operating current (1mA). Fields in 𝑇 are put at
corresponding curves. On inset: magnetoresistance of the sample at
fixed temperature (𝑇 = 10K, 𝐼 = 1mA).The unusual dependence of
resistance from magnetic field (the inset to Figure 1) is that 𝑅 varies
with field nonmonotonically, demonstrating negative magnetoresis-
tive effect: at first resistance increases and then decreases sharply
down to 𝑅

𝑁
—the value of resistance in the normal state just above

the superconducting transition. The maximum value of resistance
depends on temperature and at low temperatures can exceed 𝑅

𝑁
for

several orders of magnitude.

(v) electronic structure andmechanisms of superconduc-
tivity [25–36];

(vi) superconductivity stratification and phase transitions
metal-dielectric [37–40];

(vii) Josephson and microwave properties and nonlinear
effects under the microwaves action [41–46].

We chose the Ba0.6K0.4BiO3 system for investigation,
since, being a HTSC, this compound has relatively low
critical temperature 𝑇𝐶 and low critical field 𝐻𝐶2. As a
result, 𝐻𝐶2(𝑇) curves can be measured and hence phase
transition can be observed over a wide temperature range. In
experiment we managed to investigate different parameters,
characterizing superconducting transition, in the tempera-
ture interval 0, 08𝑇

𝐶
< 𝑇 < 𝑇

𝐶
. Measurements of critical

field in Ba
0.6
K
0.4
BiO
3
performed by us [47] revealed negative

curvature of temperature dependence 𝐻 = 𝐻
𝐶2
(𝑇), which

is rather typical feature for majority of high-𝑇
𝐶
systems, but

only in Ba
0.6
K
0.4
BiO
3
this negative curvature happened to be

followed down to 0, 08𝑇
𝐶
. At the same time we have found a

number of unusual anomalies in behaviour of Ba
0.6
K
0.4
BiO
3

investigated initially in polycrystalline form.
Figures 1–4 demonstrate the observed anomalies which

are
(i) the recovery of the resistive state from the supercon-

ducting state (reentrant behavior) as the temperature
decreases at 𝑇 < 𝑇

𝐶
(Figure 1, curve 𝐵 = 0 T),

which is caused by the nonmonotonic temperature
dependence of the critical current [47];

Rst = U/I (a.u.)

I←C− I−C→
100 200

I (mA)

Rst = RN

𝜒 (a.u.)

Figure 2: Dependence of static resistance from current, introduced
in a sample, 𝑅st = 𝑅st(𝐼) shows that when 𝐼 > 𝐼

−𝐶→
the system

transfers into resistive (𝑅st > 0) state, while its magnetic suscep-
tibility 𝜒 remains virtually permanent relative to the homogenous
superconductivity state. On return course when current decreases
the nonzero resistance is retained until current value 𝐼

←C−, which
answers hysteresis character of the volt-ampere characteristic, on the
basis of which the dependence 𝑅st = 𝑅st(𝐼) was obtained.

(ii) presence of superconducting phase in the volume
of the sample, being in the high electric resistance
state, that was caused by magnetic field or electric
current 𝐼 > 𝐼𝐶 action; it is apparent from low-
frequency contactless induction measurements that
presence of superconducting phase keeps safe until
full destruction of this high-resistance state by a
strong current 𝐼 ≫ 𝐼𝐶 (Figure 2, [48]);

(iii) hysteretic 𝐼-𝑉 curves (Figure 3) with nonmonotonic
temperature dependence of the critical current having
maximum at 𝑇#

≈ 17K (Figure 3(b), upper inset
[47]);

(iv) the suppression of a critical current by microwave
radiation (Figure 3(b), bottom inset [49]);

(v) nonstationary Josephson effect in polycrystalline
samples at 𝑇 < 𝑇

#
< 𝑇𝐶 (Figure 4 [50]).

Temperature dependence of resistance obtained at dif-
ferent magnetic fields 𝑅 = 𝑅(𝑇, 𝐵), as it can be seen from
Figure 1, agrees with field dependence of voltage-current
characteristics (VCC), presented in Figure 3(a). In this case,
the nonmonotone dependence of the critical current in zero
field 𝐼𝐶 = 𝐼

𝐶
(𝑇, 𝐵 = 0) (inset to Figure 3(b)) has a maximum

at 𝑇#
≈ 17K.

In our further investigations, performed on single crystal
samples Ba0.6K0.4BiO3, a number of anomalies have been
found in the vicinity of 𝑇#

≈ 17K (it should be mentioned
that critical currents of single crystals turned out to be so
large that observation of VCC, at least in first experiences,
appeared impossible). The anomalies, observed on single
crystals, are presented in Figures 5 and 6:
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Figure 3: Current-voltage characteristics of ceramic sample Ba
0.6
K
0.4
BiO
3
at different temperatures and magnetic fields: (a) 𝑇 = 4.8 K:

1; 𝐻 = 0T, 2; 0.64 T, 3; 1.6 T, 4; 3.2 T, 5; 4.8 T, and 6; 6.4 T; (b) 𝐻 = 0T: 1; 𝑇 = 4.8K, 2; 10 K, 3; 15 K, 4; 18 K, and 5; 22 K. On inset to (a)
the dependence of the critical current versus magnetic field, built from hysteretic curves on (a), is given. Top inset to (b): the nonmonotone
dependence of the critical current versus temperature, with maximum at 𝑇#

≈ 17K. Bottom inset to (b): the effect of suppression of critical
current under the action of microwave radiation, which demonstrates possible presence of Josephson properties of system below 𝑇

#.

(i) kink of temperature dependence of residual magne-
tizations of single crystal near 𝑇#

≈ 17K (Figure 5)
[38];

(ii) reentrance of resistive state of single crystal sample on
“low-current” when 𝑇 < 17K (Figure 6) [38];

(iii) magnetooptic visualization of stratification
effect—appearance of spatially inhomogeneous
state superconductor-insulator in single crystals
Ba0.6K0.4BiO3 at temperatures below 17-18 K [40].

It is necessary to note one more anomaly observed in
Ba
0.6
K
0.4
BiO
3
single [44, 45]: the temperature dependence

of the second and the third harmonics microwave emission
exhibited two peaks, one just below𝑇

𝐶
and the second around

𝑇 = 17K. Since a peak of the harmonic signals generally
occurs just below the transition temperature, the lower peak
might be a sign of the transition from homogeneous to
stratified state.

2. The Model of Stratified State in High-𝑇
𝐶

Superconductor Ba0.6K0.4BiO3

The data given above can be explained in terms of the
model proposed in [51–53], which implies the self-consistent
coexistence of superconducting and dielectric phases in

the system under study. The dielectric phase accounts for
the field-induced increase of the resistance at temperatures
below𝑇𝐶, and the complete suppression of superconductivity
in a magnetic field is accompanied by the breaking of the
coexistent dielectric phase, which results in the decrease
of the resistance 𝑅 (Figure 1) to its value in the normal
state 𝑅

𝑁
. According to the model of [51–53], HTSC systems

are considered as strongly doped semiconductors with a
Fermi level that satisfies the nesting condition, which causes
instabilitywith respect to the transition into the ordered space
inhomogeneous state. Such a long-range order causes a gap in
an excitation spectrum at the Fermi level (correspondingly, a
pseudogap in the case of a short-range order).The appearance
of additional carriers above the gap upon doping decreases
this gap and, hence, the chemical potential 𝜇.This decrease in
𝜇 cannot be compensated by the increase in the kinetic energy
that, in turn, is hindered because of the high density of states
at the gap edge. As a result, the derivative of the chemical
potential with respect to the number of particles turns out
to be negative: 𝜕𝜇/𝜕𝑛 < 0. This nonmonotonic behavior
of 𝜇(𝑛) results in the instability of the state with a constant
concentration (𝑛 = const.): this state decomposes to form
many coexistent regions with high (metal or superconductor)
and low (dielectric) values of 𝑛. At 𝑇 < 𝑇

#
≈ 17K,

superconducting regions are coupled through Josephson
tunneling, which is indicated by the hysteretic 𝐼-𝑉 curves
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Figure 4: The top graph: volt-ampere characteristic—the depen-
dence of sample voltage on operating current (on inset conventional
VCC of Ba

0.6
K
0.4
BiO
3
sample with regular arrangement of reference

axes 𝐼 = 𝐼(𝑉)) is shown. The middle graph: averaged component
of sample response ⟨𝛿𝑉

𝐹

(FM)
⟩ to periodical variation of microwave

irradiation frequency of backward-wave tube, registered onmodula-
tion frequency 𝐹.The bottom graph: averaged component of sample
response ⟨𝛿𝑉

𝐹

(AM)
⟩ on amplitude modulation with a depth reduced

to deviation factor of frequency modulation (6%). The appreciable
exceeding of response on FM relative to response on AM is the
evidence for synchronicity of low frequency oscillations of Shapiro
voltage steps, corresponding to different Josephson junctions.These
junctions are formed below 𝑇

#
≈ 17K due to appearance of spatial

inhomogeneity of superconducting phase distribution in the sample.

and the nonstationary Josephson effect; dielectric layers here
should be rather thin. In this temperature range 𝑇 < 𝑇

#
≈

17K the critical current (the Josephson current 𝐼
𝐶
) decreases

with decreasing 𝑇 due to an increase of the dielectric-layer
thickness or insulator gap width. The strong exponential
dependence of the Josephson critical current on the layer
thickness or barrier height explains the noticeable decrease
in 𝐼𝐶 with decreasing temperature. The breaking of the weak
Josephson coupling in a magnetic field causes electrical resis-
tance in the stratified phase, and this resistance turns out to
be higher than that in the normal phase, since it is specified by
the tunneling resistance of dielectric regions in the stratified
phase. Thus, the anomalous temperature dependence 𝑅 =

𝑅(𝑇) and 𝐼
𝐶

= 𝐼
𝐶
(𝑇), the hysteresis of the 𝐼-𝑉 curves

(Figures 1 and 3 inset), and presence of superconducting
phase in resistive state (Figure 2) can be explained in terms
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Figure 5: Temperature dependence of residual magnetization
of Ba

0.6
K
0.4
BiO
3
crystal. Values of residual magnetization were

obtained from hysteresis loops of sample magnetization at different
temperatures, presented in the insets: low temperatures (𝑇 < 18K):
left inset; high temperatures (𝑇 > 19K): right inset. Sample
magnetizationwasmeasured by theHall-effect sensor. Rapid growth
of irreversibility below 𝑇

#
≈ 17K confirms the fact of appearance of

spatial inhomogeneity of superconducting phase distribution in a
sample, which can cause additional pinning.
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International Journal of Superconductivity 5

E

ΔS/C

ΔE

T# TC

Free energy of  SISIS

Free energy of  homogeneous
superconductor state

Free energy
of  normal state

T

Figure 7: Temperature dependencies of free energies of different
states in Ba

0.6
K
0.4
BiO
3
: Δ𝐸: energy gap between homogeneous

superconductor and stratified (i.e., SISIS) states; Δ
𝑆/𝐶

: supercon-
ducting gap.

of the model of a spatially inhomogeneous state insulator-
superconductor (SISIS) with Josephson tunneling between
superconducting regions.

The set of collected experimental data allows in the
context of (SISIS) model speaking about three possible states
existing in Ba

0.6
K
0.4
BiO
3
: normal, homogenous supercon-

ducting, and stratified (Figure 7 [54, 55]). Below 𝑇
# super-

conducting and dielectric regions coexist in the sample;
therefore, the stratified state has the lowest energy; the
homogeneous superconducting phase is located above this
state on the energy scale, and the normal state is located
higher (energy diagram in Figure 7).

3. Samples

The single crystals of Ba
0.6
K
0.4
BiO
3
, grown up by the method

of chemical transport reactions, had dimensions of the order
of 2 × 2 × 2mm3 [56].

4. Direct Measurement of
Energy Gap between Homogeneous and
Inhomogeneous States

In the course of experiments, set recently with Ba0.6K0.4BiO3
single crystals, we happened to estimate energy parameters
of diagram of equilibrium phases. In one of series of these
experiments a new phenomenon was observed: a distinct
temperature andmagnetic field dependent step-like peculiar-
ity on voltage-current characteristics. VCC of Ba0.6K0.4BiO3
single crystal obtained at different temperatures in zero
magnetic field are presented in Figure 8. On low temperature
curves one can see distinct step-like peculiarities.The second
step on each curve happened at the voltage twice more than
the voltage 𝑉

𝑆
, corresponding to the position of the first step

on the curve (Figure 8). The peculiarities on the 2 and 4,2 K
curves had a complex S-like form.
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Figure 8: Voltage-current characteristics of Ba
0.6
K
0.4
BiO
3
single

crystal at different temperatures. The regions analogous to the 1st
and 2nd Shapiro steps are outlined on the curve for 𝑇 = 7K.
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Figure 9: Voltage-current characteristics of Ba
0.6
K
0.4
BiO
3
single

crystal at 𝑇 = 2K in various magnetic fields.

The dependence of VCC on magnetic field is demon-
strated in Figure 9.

The step was displaced and spread both with temperature
rise and magnetic field enhancing, but influence of magnetic
field was nonlinear. Absence of noticeable action of magnetic
field on 𝐼 = 𝐼(𝑉) dependence in the magnetic field range 0–
0.1 T is explained apparently by the quadratic dependence of
effect, and as a result influence of field 𝐵 = 0.1T will make
just 1% from the effect of 𝐵 = 1T.

Figure 10 demonstrates temperature dependence of the
first step position𝑉

𝑆
, determined from 𝐼-𝑉 curves, registered
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The black curve is built from Figure 8 data and responds to zero
magnetic field. The gray curve is based on Figure 9 and responds
to the field 𝐵 = 1T.

at zero magnetic field (black points) and at 𝐵 = 1T (grey
points). Black curve is a guide line through experimental data.
Wedrew the gray curve through gray point congruently to the
black one supposing that effect of temperature in both cases
in zero and nonzero magnetic fields is similar.

𝑉𝑆 decreases with temperature rise. The extrapolation of
the 𝑉𝑆(𝑇) dependence to zero voltage value crosses 𝑇 axes at
temperature near𝑇#

≈ 17K (Figure 10 black curve). Compar-
ison of Figure 7 and the black curve in Figure 10 convinced
us that the step is related to the existence of stratified state in
Ba
0.6
K
0.4
BiO
3
single crystals, since temperature dependence

of step position 𝑉
𝑆
(𝑇) and of the difference between free

energies of homogeneous and stratified superconducting
states Δ𝐸(𝑇) is quite similar. It permits us to propose the
following explanation of the step appearance. Suppose that
occasionally it turns out that between potential contacts is a
single Josephson junction. It may be an occasional mechan-
ical microdefect. The voltage drop on potential contacts of
the sample (displayed as 𝑉 on VCC) due to comparatively
high resistance of separately occurred Josephson junction in
practice appears to be applied just entirely to this transition.
When voltage 𝑉 drops on Josephson junction, as is known
[57, 58], the last one generates microwave radiation with fre-
quency𝑓 = 𝑒𝑉/𝜋ℏ ( “active” nonstationary Josephson effect).
If radiation quantum coincides with energy gap between
homogeneous and stratified states of superconductor Δ𝐸

(Figure 7) the system falls within resonance conditions that
should affect its VCC due to nonstationary Josephson effect
under self-radiation of the junction (“passive” nonstation-
ary Josephson effect [56, 59]). The manifestation of such
[60] “active/passive” nonstationary Josephson effect explains
temperature dependence of𝑉𝑆 (Figure 10) and disappearance
of the step at temperatures near 𝑇

#. Multiple peculiarities
on VCC observed in these experiments are quiet analogous
to Shapiro steps with different 𝑛 (Figure 8, 𝑇 = 7K)
and it provides evidence in favor of registration the phe-
nomena, related to self-action of Josephson generation (the

“active/passive” effect [59]). Noticeable S-like form of step
(Figures 8 and 9, 𝑇 = 2K, 4.2 K ) seems to be caused by the
low𝑄 of resonator, fromwhich Josephson radiation, affecting
thereafter back on the transition, is reflected. Base frequency
of this low-𝑄 resonator 𝑓

0
= Δ𝐸/(2𝜋ℏ) corresponds to

energetic gap between homogenous and inhomogeneous
superconductor states in Ba0.6K0.4BiO3 (Figure 7).

The amplitude and phase of reflected emission depend
on tuning out of generated frequency 𝑓 = 𝑒𝑉/𝜋ℏ from
resonant𝑓0 = Δ𝐸/(2𝜋ℏ) one. According to elementary theory
of “passive” nonstationary Josephson effect the value of
superconducting components of tunnel current, determining
the Shapiro step height, in its turn depends on the amplitude
and phase of radiation, affecting transition. As voltage drop
on Josephson junction overloads “resonant value” 𝑉

𝑅
=

Δ𝐸/2𝑒 module of superconducting components of tunnel
current at first grows out of zero point due to well-known
dependence on phase ∼ sin 𝜃. Then owing to dependence on
amplitude∼𝐽

𝑛
(𝑈
0
/Φ
0
𝑓) tunnel current starts to fall gradually

in concert with 𝑈
0
(here 𝜃 is phase difference between

reflected and incident radiation, determined by conventional
phase/frequency dependence of resonance system, −𝜋/2 <

𝜃 < 𝜋/2, 𝐽
𝑛
Bessel function, Φ

0
= 𝜋ℏ/𝑒 magnetic flux

quantum, and𝑈
0
amplitude of variable voltage component on

contact). About so with𝑉 growth from point𝑉
𝑅
= Δ𝐸/2𝑒 the

“top” bell-shaped peculiarity, forming the local peak, is to be
plotted on the background of undisturbedVCC.Analogously,
on the back course starting from value 𝑉

𝑅
= Δ𝐸/2𝑒 should

be plotted the “bottom” bell-shaped peculiarity, forming the
local minimum. It will be noticed that “bottom” peculiarity
corresponds to the interval of phase values −𝜋/2 < 𝜃 < 0

on phase-frequency resonance characteristic and “top” to 0 <

𝜃 < 𝜋/2, correspondingly. To explain the observed S-like step
it is necessary to show why the “top” bell-shaped peculiarity
begins actually before the “bottom” terminates. Josephson
oscillator binds together with irradiated resonator either
increasing its efficient inertia or raising efficient rigidity,
depending on phase sine. In the first case efficient resonance
frequency 𝑓

0
= Δ𝐸/(2𝜋ℏ) is reduced and in the second

increase. As a result the top peculiarity on VCC crosses
with the bottom one. Eventually, the observed S-shaped step
is formed (Figures 8 and 9). With temperature increasing
the gap Δ𝐸 is reduced (Figure 7), which leads to additional
lowering of effective 𝑞-factor 𝑄eff ≅ Δ𝐸/𝑘𝑇 and “smoothing”
of S-like step. If one regards Shapiro step appearance as the
synchronization effect of internal oscillations of current and
voltage in Josephson junction (arising when 𝐼 > 𝐼

𝐶
and 𝑉 >

0) by outer oscillations source [61], then “transformation” of
step into the S-shaped region in VCC is possible to interpret,
to an extent, as the effect of oscillator frequency pulling by the
external cavity.

Values of energy gap Δ𝐸 between homogenous and
inhomogeneous states in Ba

0.6
K
0.4
BiO
3
, taken from Figure 10

as Δ𝐸 = 𝑒𝑉
𝑆
, it is possible to compare quantitatively with the

result of extrapolation of temperature dependence of sample
resistance in weak field (Figure 1, 𝐵 = 0.25T). Let us present
the dependence 𝑅 = 𝑅(𝑇, 𝐵 = const.) at low fixed magnetic
field in the form 𝑅 = 𝑅Δ𝐸(𝑇) + 𝑟(𝑇). The presence of linear
region on dependence 𝑅 = 𝑅(𝑇, 𝐵 = 0, 25T) in logarithmic
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scale (Figure 1) allows, in case 𝑅
Δ𝐸

≫ 𝑟, representing the
contribution 𝑅

Δ𝑇
in the form of

𝑅
Δ𝐸

= 𝑅
0
𝑒
Δ𝐸(𝑇)/𝑘𝑇

, (1)

where energy gap Δ𝐸 plays the role of barrier height, over-
come by the charge carriers, involved in transport current
in stratified sample. Since the gap Δ𝐸 is simultaneously the
parameter of stratified phase, its temperature dependence
according toGinzburg-Landau theory can bewritten as linear
in (𝑇#

−𝑇) expansion Δ𝐸 = 𝐴(𝑇)(𝑇
#
−𝑇). Then linear region

of the curve 𝑅(𝑇, 𝐵 = 0, 25T), presented in half log scale
(Figure 1) may be approximately described as

𝑅Δ𝐸 ≈ 𝑅
0
𝑒
⟨𝐴⟩(𝑇

#
−𝑇)/𝑘⟨𝑇⟩

. (2)

Brackets ⟨⟩ mean the averaging over temperature interval,
corresponding to linear region of the curve, which for curve
under consideration corresponds to ⟨𝑇⟩ = (1/2)(11K +

14K) = 12.5K. The slope of linear region, according to
Figure 1, is

𝜕 ln𝑅
Δ𝐸

𝜕𝑇
=

⟨𝐴⟩

𝑘 ⟨𝑇⟩
≈ 0.42K−1. (3)

Using the data obtained, one can estimate the value of energy
gap at 𝑇 = 4.2K from the formula

Δ𝐸 (𝑇 = 4.2K) = 𝑘

𝑒
⟨𝑇⟩ (𝑇

#
− 4.2K) 𝜕 ln𝑅Δ𝐸

𝜕𝑇
≈ 5.8mV.

(4)

One should note that presented estimation Δ𝐸(𝑇 =

4.2K) ≈ 5.8mV coincides with value, taken from Figure 10,
with uncertainty less than one percent.

Returning to dependence of step-wise peculiarity on
VCC (Figure 9) from magnetic field, applied to single crystal
sample Ba

0.6
K
0.4
BiO
3
, one can note the likeness of curves

corresponding to cases of 𝐵 = 1T, 𝑇 = 2K in Figure 9
and 𝐵 = 0T, 𝑇 = 7K in Figure 8. This similarity gives
an indication of certain equivalence of influence on VCC
of magnetic field and temperature: either ways with the
increase of 𝐵 and with the increase of 𝑇 the peculiarity is
smoothed, and 𝑉

𝑆
stoops down to zero point when 𝑇 =

𝑇
#
(𝐵). The dependence of 𝑇# from applied magnetic field

may be approximately derived from analogy with 𝑇
𝐶
: 𝑇
𝐶
∼

Δ
𝑆/𝐶

(0). Hence for stratified state 𝑇#
∼ Δ𝐸(0). Then using

𝑇
#
(𝐵)/𝑇

#
≈ Δ𝐸(0, 𝐵)/Δ𝐸(0) it is possible to supplement

the dependence 𝑉𝑆 = 𝑉𝑆(𝑇) on Figure 10 by analogous
approximate dependence for nonzero field (𝐵 = 1T, the grey
curve on Figure 10). Since there is strong relation between𝑉𝑆

and gapwidthΔ𝐸 = 𝑒⋅𝑉𝑆 it is possible to transfer approximate
dependence 𝑉𝑆 ≈ 𝑉𝑆(𝑇) at 𝐵 = 1T onto the energetic state
diagram and in consequence obtain free energy of SISIS at
𝐵 = 1T (Figure 11 “grey” curve) on the base of Figure 7.
“Dislodged” (grey) curves, built on Figure 11 with mainte-
nance of mutual proportions, show magnetic field induced
shifts of phase transitions parameter in Ba

0.6
K
0.4
BiO
3
system

(shift of critical temperature, corresponding to 𝐵 = 1T,

E

ΔE ΔE

Free energy of  SISIS

T# T# TC TC

Free energy of  homogeneous
superconductor state

T

B = 0
B = 1T

Free energy
of  normal state

Figure 11: Change of temperature dependence of free energies of
different phase states in Ba

0.6
K
0.4
BiO
3
under the action of external

magnetic field.

was measured directly in the course of experiments with
Ba0.6K0.4BiO3 single crystals).

Thus the new data firstly correlate with the model of
SISIS and secondly permit for the first time to determine
directly the energy gap between homogeneous and stratified
superconductor states.
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