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Abstract – We consider the dynamics of a charged particle in a finite along the x-direction square
lattice in the presence of a normal to the lattice plane magnetic field and an in-plane electric field
aligned with the y-axis. For a vanishing magnetic field this dynamics would be common Bloch
oscillations where the particle oscillates in the y-direction with an amplitude inverse proportional
to the electric field. We show that a non-zero magnetic field crucially modifies this dynamics.
Namely, the new Bloch oscillations consist of time intervals where the particle moves with constant
velocity in the x-direction intermitted by intervals where it is accelerated or decelerated along the
lattice edges. The analysis is done in terms of the Landau-Stark states which are eigenstates of a
quantum particle in a two-dimensional lattice subject to (real or synthetic) electric and magnetic
fields.

Copyright c© EPLA, 2014

Introduction. – This work brings together two top-
ics that nowadays attract much attention in physics of
cold atoms and photonic crystals —non-dissipative Bloch
oscillations and edge states in the lattices with topologi-
cal properties. The phenomenon of Bloch oscillations has
been intensively studied with cold atoms in an optical lat-
tice since 1996 [1–5] and with light in photonic crystals
since 1999 [6–10]. Currently experimentalists use these
systems to study topological effects [11,12]. Perhaps the
most exciting property of topological systems is the exis-
tence of edge states that may carry non-vanishing current.
The problem of detecting these states is addressed, for ex-
ample, in refs. [13,14].

In this work we analyze the dynamical response of a
finite-size topological system to a static force. As model
we choose the solid-state paradigm of topological systems
—a charge particle in the square lattice subjected to a
magnetic field. We shall show that inclusion of an electric
field results in specific Bloch oscillations of the particle
which are exclusively due to the edge states. It should
be mentioned from the very beginning that, although we
formally consider a solid-state system, experimental real-
izations of the discussed Bloch oscillations are more fea-
sible in optical lattices or photonic crystals. Two main
advantages of these systems as compared to electrons in
a solid crystal are the absence of relaxation processes and

the possibility of measuring wave-packet dynamics in situ.
Clearly, for charge neutral particles the electric and mag-
netic fields are synthetic fields [13,15–17].

In the next section we introduce notations and recall
essentials of Bloch oscillations (more precisely, cyclotron-
Bloch oscillations) for the quantum particle in infinite two-
dimensional lattices. New effects due to the edge states
are discussed in the section entitled “Finite lattices”. We
use in parallel and link together two different approaches:
the traditional approach of magnetic bands and the new
approach of Landau-Stark states. The main results are
summarized in the concluding section of the paper.

Infinite lattices. – Using the Landau gauge A =
B(0, x) the tight-binding Hamiltonian of a charged par-
ticle in crossing magnetic and electric fields reads

(Ĥψ)l,m = −J

2
(ψl+1,m + ψl−1,m)

− J

2
(
ei2παlψl,m+1 + e−i2παlψl,m−1

)
+ edFmψl,m, (1)

where d is the lattice period, e the charge, l = x/d and
m = y/d label the lattice sites, α = eBd2/hc the Peierls
phase, J the hopping matrix element, and F the electric
field which is aligned with the y-axis of the lattice. (No-
tice that the tight-binding approximation is justified only
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if |α| � 1, which will be the case analyzed in the pa-
per.) We are interested in the dynamics of a localized
wave packet induced by the electric field. If there were no
magnetic field, this dynamics would be Bloch oscillations
of the packet with amplitude ∼ J/F and the frequency

ωB = F. (2)

(In eq. (2) and subsequent equations we set the charge,
the lattice period, and Planck’s constant to unity.) For
α �= 0, however, the packet does not oscillate but moves
in the x-direction with the drift velocity

v∗ = F/2πα. (3)

One can prove this result by using either of two alternative
approaches.

The first approach uses eigenstates of the Hamilto-
nian (1) which are termed the Landau-Stark states. For
the considered orientation of the electric field one finds the
Landau-Stark states by using the substitution

Ψl,m =
eiκl

√
Lx

eiκlbme−i2παlm, (4)

which results in the following equation for the amplitudes
bm:

−J

2
(bm+1+bm−1)−J cos(2παm−κ)bm+Fm = Ebm. (5)

In the limit of large F the spectrum of (5) is a ladder of
energy bands, En(κ) ≈ Fn−J cos(κ−2παn). In the oppo-
site limit of small F the bands overlap and arrange into the
pattern that consists of straight lines with the slope given
in eq. (3) [18]. Eigenstates associated with this linear dis-
persion relation are the so-called transporting states. A
localized wave packet constructed from the transporting
states propagates in the x-direction with constant veloc-
ity (3) without changing its shape. It should be mentioned
that the transporting states exist only if the electric field
is smaller than the critical

Fcr = 2παJ ≡ ωc, (6)

where ωc has the meaning of the cyclotron frequency. In
the opposite case F > Fcr the dynamics of any localized
packet is an asymmetric ballistic spreading with no di-
rected transport.

To deduce eq. (3) by using the magnetic-band picture we
present the electric field as the time-dependent component
of the vector potential. Then, using the substitution

Φl,m =
eiκ′m√

Ly

bl, (7)

we end up with the driven Harper equation [19],

iḃl = −J

2
(bl+1 + bl−1) − J cos(2παl + κ′)bl, (8)

where κ′ = κ − Ft (the so-called Bloch acceleration the-
orem). If F = 0 eq. (8) reduces to the celebrated Harper
equation [20]. As known, for a rational α = r/q the
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Fig. 1: (Colour on-line) Energy spectrum of the system (1) for
F = 0 and periodic (a) and Dirichlet (b) boundary conditions.
The system parameters are α = 1/10, J = 1, the lattice size is
Lx = 40 and Ly = ∞.

spectrum of the Harper Hamiltonian consists of q mag-
netic bands. For the purpose of future comparison fig. 1(a)
shows magnetic bands for α = 1/10. Notice that the low-
energy bands are practically flat and can be approximated
in the effective mass approximation by degenerate Landau
levels En = −2J + ωc(n + 1/2), where ωc is the cyclotron
frequency defined in eq. (6). If F �= 0 the quasimomen-
tum κ′ in eq. (8) changes in time which leads to inter-band
transitions. Then the condition F < Fcr (F > Fcr) corre-
sponds to adiabatic (non-adiabatic) regimes of the driven
Harper with respect to the inter-band Landau-Zener tun-
neling. It is easy to prove that in the adiabatic regime the
cosine potential in the right-hand side of eq. (8) can sup-
port localized states that are transported with the drift
velocity (3).

Finite lattices. – It was shown in the previous section
that for infinite lattices the magnetic field converts Bloch
oscillations of the quantum particle into uniform motion
in the x-direction. This result also holds for finite lattices
with periodic boundary conditions. However, this is not
the case for finite lattices with Dirichlet boundary con-
ditions. As known, for open boundaries and F = 0 the
Hamiltonian (1) supports edge states with energies inside
the gaps, see fig. 1(b). We shall show that the presence
of edge states recovers familiar Bloch oscillations in the
sense that the particle oscillates in the y-direction over
the distance ∼ J/F .

Semiclassical approach. It is instructive to begin with
the classical analysis where the Hamiltonian (1) is substi-
tuted by its classical counterpart

Hcl = −J cos(px) − J cos(py + 2παx) + V (x) + Fy (9)

(here V (x) is the box potential). The typical trajectory
of the system (9) is shown in fig. 2(a). For F = 0 the
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Fig. 2: (Colour on-line) Classical trajectory in the x-y plane
(a), and coordinate x and kinetic energy EK as functions of
time ((b), (c)). The Peierls phase is α = 1/10, the electric field
is F = 0.02, the initial kinetic energy is EK = −2J+ωc/2. The
time is measured in units of the cyclotron period Tc = 2π/ωc.
In (a) the trajectory is shown only for the time interval 400Tc.

low-energy dynamics of the system (9) is cyclotron oscil-
lations where the particle moves along circular orbit with
the cyclotron frequency. If F �= 0 the center of the orbits
shifts in the x-direction with the drift velocity (3) until
the particle hits the right wall of the box potential. From
this moment it moves along the wall where it is acceler-
ated by the electric field. After approximately one half of
the Bloch period the kinetic energy takes value EK ≈ 0
and the particle is scattered to the opposite wall where it
is decelerated by the electric field to lower energies. The
other possibility is that the kinetic energy continues to
grow, that for EK > 0 means deceleration of a particle
with negative mass. As the result of deceleration the tra-
jectory eventually detaches the left wall and the process is
repeated. Thus we meet a new type of Bloch oscillations
where the particle may be accelerated only at the edges.
It should be mentioned that the discussed classical Bloch
oscillations are actually chaotic and a small change in the
initial condition results in a different trajectory. However,
globally the dynamics remains the same —it consists of
time intervals Tv ≈ Lx/v∗, where the particle moves across
the sample, intermitted by time intervals where it is ac-
celerated (decelerated) along the edges, see fig. 2(b), (c).

Landau-Stark states. We proceed with the quan-
tum analysis. Similarly to the case of periodic bound-
ary conditions one can use either Landau-Stark states or
magnetic-band pictures to understand the quantum dy-
namics. Examples of the Landau-Stark states, which were
obtained by direct diagonaliztion of the Hamiltonian (1)
with index l restricted to the interval −Lx/2 < l ≤ Lx/2,
are given in fig. 3(a), (b). A characteristic spatial struc-
ture, which carries features of classical trajectories, is
noticed. We mention that it suffices to find only Lx

Landau-Stark states in the fundamental energy interval

x/d

y/
d

−20 0 20
−100

−50

0

50

100(a) (b) (c)

Fig. 3: Examples of the Landau-Stark states ((a), (b)) and
spatial density (12) (c) for F = 0.02, α = 1/10, J = 1, and
Lx = 40.

|E| ≤ F/2. Then the other Landau-Stark states can be
obtained by translating these states in the y-direction and
imprinting a certain phase. This result follows from the
following simple theorem. Let Ψl,m be an eigenstate of
the Hamiltonian (1) with the energy E. Then the state

Ψ̃l,m = Ψl,m−nei2παnl (10)

is also an eigenstate of (1) with the energy Ẽ = E +
Fn. Thus every Landau-Stark state can be labeled by
the ladder index n, −∞ < n < ∞, and the transverse
index ν, 1 ≤ ν ≤ Lx. (If Lx → ∞ the discrete index ν
transforms into the quasimomentum κ in the dispersion
relation for energy bands of the extended Landau-Stark
states in infinite lattices.)

As mentioned above, the classical counterpart of the
Hamiltonian (1) is a chaotic system. On the quantum
level this is manifested in the high sensitivity of eigen-
values and eigenstates to variation of the system parame-
ters. This sensitivity is exemplified in fig. 4 which shows
the spectrum of evolution operator over the Bloch period
TB = 2π/F as a function of F . Obviously, Landau-Stark
states are eigenstates of this operator,

ÛΨ(ν,n) = exp (−iEνTB) Ψ(ν,n), Û = exp
(
−iĤTB

)
,

(11)
where we drop the ladder index n for the energy because
FTB = 2π. It is seen in fig. 4 that eigenphases of the evo-
lution operator form “level spaghetti” which is typical for
quantum chaotic systems. Moreover, the distribution of
the spacings between nearest-neighbor levels, that is the
simplest test for quantum non-integrability [21], is found
to coincide with the Wigner-Dyson distribution for ran-
dom matrices, see the inset in fig. 4.

Although fine features of individual Landau-Stark states
are sensitive to the variation of the system parameters,
their global structure is stable. As one of possible global
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Fig. 4: (Colour on-line) Energy levels of the Landau-Stark
states as functions of F in the fundamental energy interval
|E| ≤ F/2. The inset shows the distribution of the level spac-
ing s ∼ Eν+1 −Eν as compared with the Wigner-Dyson distri-
bution. Parameters are α = 1/10, J = 1, and Lx = 10.

characteristics we consider the spatial density

ρ
(n)
l,m =

1
Lx

Lx∑
ν=1

|Ψ(ν,n)
l,m |2. (12)

The density (12) is shown in fig. 3(c). Remarkably, this
figure reproduces the magnetic-bands structure of fig. 1(a).

Knowing the Landau-Stark states we can predict dy-
namics of a localized packet. As follows from the global
structure of these states, a narrow wave packet can move
in the y-direction only along edges while inside the sample
the y-coordinate is restricted to certain values which are
approximately given by yi = Ei/F (here Ei are energies of
the magnetic bands). Numerical simulations of the wave-
packet dynamics confirm this conclusion. Figure 5(a)
shows the initial wave packet which is constructed from
transporting states of the infinite lattice. Figures 5(b), (c)
show the snapshots of the time evolution for t = 200TB

and t = 400TB , respectively1. An interesting feature
of the wave-packet dynamics is the proliferation of a num-
ber of copies of the initial wave packet, so that in the
course of time each magnetic band supports in average
Lx/q packets.

Magnetic-band picture. Using the magnetic-band pic-
ture the above wave-packet dynamics can be viewed as
inter-magnetic-band Landau-Zener tunneling in the pres-
ence of edge states. To discuss this phenomenon let us con-
sider a system of non-interecting fermions with the Fermi
energy just above the ground magnetic band. If there were
no edge states (the case of periodic boundary conditions)
depletion of the ground band would be exponential in
time with the increment β decreasing exponentially when
F decreases. The presence of edge states which connect
magnetic bands fundamentally modifies this result. Now

1See the supplementary real-time movie fig6.avi.
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Fig. 5: Time evolution of a localized wave packet. Initial wave
packet (a) and populations of the lattice sites at t = 200TB

(b) and t = 400TB (c) are shown as a gray-scaled map.

depletion of the ground band is linear in time with the rate

β = v∗/Lx ∼ F. (13)

This result can be easily understood by using the classi-
cal approach. In fact, classically the considered quantum
state corresponds to an ensemble of particles with the en-
ergy E = −2J +ωc/2 uniformly distributed over the sam-
ple. When the electric field is switched on all particles
start to move to the right edge of the sample with the drift
velocity, where they get accelerated and, hence, gain the
energy. As soon as the last particle reaches the right edge,
the ground magnetic band becomes completely depleted.

Next we show that eq. (8), which we simulate to obtain
the rate of inter-magnetic-band transitions quantum me-
chanically, can be actually used to construct the Landau-
Stark states. To do this we first calculate the evolution
operator over the Bloch period for the amplitude bl,

Û1D = êxp

(
− i

h̄

∫ TB

0

Ĥ1D(t)dt

)
. (14)

In this equation Ĥ1D(t) is the Hamiltonian for the
one-dimensional Schrödinger equation (8), which is
parametrized by the quasimomentum κ. Let us denote by
bν(κ) the eigenstates of the operator (14). Notice that the
energy bands of this operator are flat, i.e., Eν(κ) = Eν .
Using the solution bν(κ) we construct the two-dimensional
states

Φ(ν,κ)
l,m =

1√
Ly

eiκmb
(ν)
l (κ), (15)

which are eigenstates of the two-dimensional evolution op-
erator (11). Finally, the Landau-Stark states are obtained
by using the Fourier transformation

Ψ(ν,n) =
1
2π

∫
Φ(ν,κ)e−inκdκ. (16)

We used this approach to find the level statistics of the
Landau-Stark states.
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Conclusions. – We analyzed Landau-Stark states of a
charged particle in a strip-like lattice of the width Lx in the
case where the electric field F is aligned with the y-axis.
These states are shown to be a hybrid of the bulk states
of the system associated with q magnetic bands (α = r/q)
and the edge states. In the quasimomentum representa-
tion the edge states connect magnetic bands directly and
this path fundamentally modifies the Landau-Zener result:
depletion of the ground band is now linear in time with
the rate proportional to F . As a consequence, the Landau-
Stark states extend in the y-direction over the distance ap-
proximately 4J/F , thus recovering the scaling law for the
localization length of the Wannier-Stark states (α = 0).

The structure of Landau-Stark states determines the
characteristic features of Bloch oscillations of a localized
wave packet. These oscillations consist of time intervals
where the particle moves across the sample intermitted by
intervals where it is accelerated or decelerated along the
edges. We also found that in the course of time the initial
packet splits into several packets which cross the sample
independently but interfere during the acceleration phase.

In the work we also analyzed the classical dynamics of
the system which was found to be chaotic. This explains
the high sensitivity of the Landau-Stark states to the vari-
ation of the system parameters, in particular, to the elec-
tric field.

To conclude the paper we briefly comment on other
topological systems like the Haldane [22] and Haldane-
like [23] models, which do not include a uniform mag-
netic field. As follows from the above analysis, the only
condition for the discussed type of Bloch oscillations is
the existence of edge states which fill the gaps between
the energy bands of the bulk states. Haldane-like mod-
els satisfy this condition. Thus the enhanced inter-band
Landau-Zener tunneling takes place in these systems as
well. As a consequence of the enhanced tunneling, the
bulk states associated with different energy bands become
strongly coupled, which is reflected in the characteristic
structure of the Landau-Stark states similar to that shown
in fig. 3. However, since the Haldane Hamiltonian has
no well-defined classical counterpart, we cannot conjec-
ture about the chaotic or regular nature of the Landau-
Stark states in the Haldane model. It is an open question
whether the Wigner-Dyson statistics for the energy spec-
trum of Landau-Stark states is a general result or a par-
ticular property of our model with uniform magnetic field.
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