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Light transmission through a Fabry–Perot resonator (FPR) holding a dielectric cylinder rod is considered. For the
cylinder parallel to mirrors of the FPR and the mirrors mimicked by the δ functions we present an exact analytical
theory. It is shown that light transmits only for resonant incident angles, αm, similar to the empty FPR. However
after transmission the light scatters into different resonant angles, αm0 , performing resonant angular conversion.We
compare the theory with experiment in the FPR, exploring multilayer films as the mirrors and glass cylinder with
diameter coincided with the distance between the FPR mirrors. The measured values of angular light conversion
agree qualitatively with the theoretical results. © 2014 Optical Society of America
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1. INTRODUCTION
The Fabry–Perot resonator (FPR) is one of the most salient
and simple manifestations of wave interference. If plane wave
exp�ikxx� ikyy� ikzz� is incident over a range of angles, the
FPR transmits and reflects light into narrow bright fringes.
This resonant transmission occurs for arbitrary fixed fre-
quency ω � ck, but for the discrete set of incident angles,
αm, defined by an equality [1]

cos αm � mλ

2d
; (1)

where λ is the wavelength of the light, d is the length of the
FPR cell, and m are the integers. It is important to note that
the incident angle α is preserved for the light transmission
through the FPR so there are no transitions between resonant
incident angles, αm, and transmitted angles, αm0 , which is the
result of space homogeneity in the directions parallel to the
FPR mirrors.

However, if this homogeneity is violated, one can expect
transitions between the incident resonant angles, αm, into
the different reflected and scattered angles, αm0 , with
m ≠ m0. In the present paper we consider this phenomenon,
inserting a single dielectric cylinder between the mirrors of
the FPR. By mimicking the mirrors of the FPR by the δ func-
tions we present an exact analytical theory for light transmis-
sion through such a filled FPR. We verify the theory by
experimental measurements of the light intensity transmitted
through the FPR holding a glass cylinder whose diameter
equals the distance between the mirrors of FPR. The multi-
layer films are used as the mirrors of a good quality.

2. SCATTERING OF A CYLINDRICAL WAVE
OF A SINGLE CYLINDER NEAR A SINGLE
MIRROR
We start with the consideration of a single cylinder placed par-
allel to a single mirror, as shown in Fig. 1, where the z axis is

directed along the cylinder. For the plane wave vector, k⃗,
perpendicular to the z axis we can write the Maxwell equa-
tions in the form of a 2D Helmholtz equation [2],

∇2ψ�x; y� � k2ϵ�x; y�ψ�x; y� � 0: (2)

Here ψ � Ez is the electric field directed along the z axis, the
dielectric constant ϵ�x; y� � 1 everywhere except the interior
of the cylinder. The problem is close to plane-wave scattering
by a cylinder parallel to a reflecting flat surface [3–5]. We
mimic the mirror by the δ function, ϵ�x� � �μ∕k2�δ�x�. The fac-
tor μ defines the coupling between two half spaces, i.e., the
quality of the mirror. Then the boundary conditions take
the following form [6]:

ψ�−0; y� � ψ��0; y�; ∂ψ�−0; y�
∂x

−
∂ψ��0; y�

∂x
� μψ�0; y�: (3)

We show that these boundary conditions are satisfied by in-
troduction of a fictitious source (FS) symmetrically placed rel-
ative to the mirror as shown in Fig. 1 by the yellow circle (on
the right), although the FS is a point.

The cylinder scatters the plane wave into the superposition
of the outgoing cylindrical waves given by the Hankel func-
tions of the first order [2,4],

ψ �cyl��r;ϕ� �
X
m

b�s�m H�1�
m �kr� exp�imϕ�; (4)

where

b�s�m � imSm � qJ 0
m�kR�Jm�qR� − Jm�kR�J 0

m�qR�
Hm�kR�J 0

m�qR� − qH 0
m�kR�Jm�qR�

; (5)

and q � ���
ϵ

p
k. In turn, each mth cylindrical wave undergoes

reflection and transmission through the mirror. We try the
transmitted wave at x ≥ 0, in the form
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ψ �t��r;ϕ� �
X
n

b�t�n H�1�
n �kr� exp�inϕ�; (6)

and the reflected wave at x ≤ 0 as

ψ �r��r0;ϕ� �
X
n

b�r�n Hn�kr0� exp�in�π − ϕ��; (7)

where r0 � jr⃗ − 2he⃗xj is the radius referred to the FS, as shown
in Fig. 1. Obviously, both trial functions obey Eq. (2) and the
boundary conditions at the surface of the dielectric cylinder.
In order to satisfy the boundary conditions at the mirror’s sur-
face we substitute the trial functions (6) and (7) into Eq. (3)
and determine that the reflected amplitudes are linked with
the transmitted amplitudes as follows:

b�t�n �
X
m

Fn−mb
�s�
m ; b�r�n � −b�s�n � b�t�n (8)

with Fm � F �1�
m � F �2�

m , where

F �1�
m �

(
−

γ
1�γ�q2−q1� q

m�1
1 ; m ≥ −1;

−
γ

1�γ�q2−q1� q
−m−1
2 ; m ≤ −1;

�9�

F �2�
m �

(
γ

1�γ�q2−q1� q
m�1
1 ; m ≥ 1;

γ
1�γ�q2−q1� q

−m−1
2 ; m ≤ 1;

�10�

q1 �
1 −

����������������
1� 4γ2

p
2γ

; q2 �
2γ

1�
����������������
1� 4γ2

p ; (11)

γ � k∕μ. Equation (8) shows that the cylindrical wave with the
amplitude b�s�m for transmission through the δ function plane
mirror undergoes a simple linear transformation, with the
transfer matrix, F̂ . That result is exact and presents substan-
tial simplification compared to Refs. [3–5] for a cylinder
buried in a dielectric slab.

3. FPR WITH SINGLE DIELECTRIC
CYLINDER
In this section we develop the approach of expansion over
cylindrical waves for the case of two parallel δ function mir-
rors and a single infinite dielectric cylinder placed symmetri-
cally between and parallel to mirrors, as shown in Fig. 2. This

assumption reduces the 3D problem of light transmission to
the 2D one similar to the previous section.

We start with the solution inside of the empty FPR,

�A exp�ikxx� � B exp�−ikxx�� exp�ikyy�;
< −d∕2 < x < d∕2: (12)

The problem is equivalent to the one-dimensional problem of
transmission of quantum particle through two δ function
potentials [7]. As a result, we obtain

A � 1� iμ
2kx

� μ2

2k2x

cos kxd� μ
2kx

sin kxd�
1� iμ

kx

�
e−ikxd � μ2

k2x
�eikxd − e−ikxd�

;

B � −
iμ
2kx

−

�
1 −

iμ
2kx

�
iμ
2kx

cos kxd� μ
2kx

sin kxd�
1� iμ

kx

�
e−ikxd � μ2

k2x
�eikxd − e−ikxd�

:

(13)

To consider the scattering of the solution [Eq. (12)] by the cyl-
inder we expand it over the cylindrical waves

ψempty�r;ϕ� �
X
m

imJm�kr��Aeim�ϕ−α� � �−1�mBeim�ϕ�α��

�
X
m

a�0�m Jm�kr�eimϕ; (14)

where α is the incident angle. Each cylindrical wave in
Eq. (14) undergoes the same processes of scattering by each
mirror as were considered explicitly in the previous section by
introducing the FS. However, in the case of two mirrors, the
actual cylinder gives rise to multiple FSs, shown by the yellow
and green, which results in the multiple scattering of cylindri-
cal waves by two parallel mirrors. Following Ref. [2], we con-
sider the fields scattered by all FSs (yellow in Fig. 2) toward
the actual cylinder (red), which act on this cylinder as incident
fields. These fields complemented to the incident plane waves
[Eq. (14)] constitute the total incident field relative to the
actual cylinder,

ψ inc�r;ϕ� � ψempty�r;ϕ� � ψ fict�r;ϕ�
�

X
m

�a�0�m � a�fict�m �Jm�kr�eimϕ

�
X
m

a�tot�m Jm�kr�eimϕ; (15)
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Fig. 1. Single dielectric cylinder shown by red (left circle) and its
fictitious image (yellow, right circle) spaced symmetrically relative
to the single mirror.
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Fig. 2. Single dielectric cylinder shown by the red circle (above the
d) is spaced between two parallel mirrors (a view from above). The
cylinder is parallel to the mirrors. The first sequence of FSs, shown by
yellow and labeled by the index jR, begins after the reflection of the
actual cylinder at the right mirror to produce the jR � 1 FS, then it
reflects at the left mirror to produce the jR � 2 FS, etc. The second
set of FSs, shown by green and labeled by the index jL, begins after the
reflection at the left mirror.
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which gives rise to scattering by the actual cylinder, similar to
Eq. (4),

ψscat�r;ϕ� �
X
m

b�tot�m H�1�
m �kr�eimϕ; (16)

where scattered, b�tot�m , and the incident, a�tot�m , amplitudes are
linked via the diagonal scattering matrix [Eq. (5)]: b�tot�m �
Sma

�tot�
m [2].

Therefore, the current problem is to calculate the effect of
all FSs given by a�fict�m that can be solved by the consequent
application of the transformation [Eq. (8)]. In what follows,
the letters a, b will refer to the ingoing and outgoing cylindri-
cal waves [2]. In particular, the wave outgoing from the jR � 1
FS will be written as follows:

ψ �1��r1R;ϕ1R� �
X
n

b�1�n H�1�
n �kr1R� exp�inϕ1R�; (17)

with the amplitudes

b�1�n �
X
m

Dn−mb
�tot�
m ; (18)

where Dn � Fn − δn;0. The upper index (1) specifies not only
the first act of reflection at the right mirror but also the first
right FS jR � 1, shown by yellow in Fig. 2.

Second, each cylindrical wave with the amplitude b�1�n in
Eq. (17) undergoes reflection at the left δ function mirror
by the same transformation rules [Eq. (18)] established above.
The difference is that the FS is positioned at the left, labeled in
Fig. 2 by the index jR � 2. Therefore, the second reflected
wave can be written as

ψ �2��r2R;ϕ2R� �
X
n

b�2�n H�1�
n �kr2R� exp�inϕ2R�; (19)

where arguments r2, ϕ2 refer to the centrum of the second FS
jR � 2, and

b�2�n �
X
m

Dn−mb
�1�
m �

X
m

�D̂2�n−mb�tot�m : (20)

Therefore, we obtain a geometric series of cylindrical waves
with FSs positioned at the sites jR,

ψ �
X
n

X∞
jR�1

X
m

�D̂k�n−mb�tot�m H�1�
n �krjR �

× exp�in�πjR � �−1�jRϕjR��: (21)

However, in accordance with Eq. (15). references of each FS
are to be transferred to the centrum of the actual cylinder in
order to obtain a closed system for amplitudes b�tot�m . That is
performed by the use of the Graf formula [2]:

H�1�
n �krjR �einϕjR �

X
m

eiπ�n−m��jR�1�H�1�
m−n�jRkd�Jm�kr�eimϕ;

(22)

where jRd are the distances between center of the actual
cylinder and centers of the FSs.

We can write the following algebraic system of equations in
accordance to Eq. (15),

am � a�0�m �
X
n

Ĝm−nb
�tot�
n ; (23)

where the amplitudes, a�0�m , were defined in Eq. (14). Then,
according to Eqs. (21) and (22), we obtain

G�R�
m �

X
jR

X
n

�−1�jRH�1�
m−n�jRkd��D̂k�n: (24)

A similar expression, G�L�
m , can be obtained for the second

series of FSs labeled by jL (green in Fig. 2), where the radii,
rjL , in Eq. (21) refer to the FS.

Finally, expressing each amplitude, bm � Smmam, we ob-
tain the self-consistent system of linear algebraic equations
for the amplitudes bmm�tot�,

b�tot�m � Sma
�0�
m �

X
n

�G�R�
m−n � G�L�

m−n�b�tot�n ; (25)

where the amplitudes, a�0�m , are given by Eq. (14). Formally,
this set of equations is infinite. However, the matrix, GL;R

m−n,
is decayed with growth of jn −mj. The field transmitted
through the FPR holding single dielectric cylinder is given
by the contribution of all FSs at the left of the FPR plus
the actual cylinder and can be written as follows

ψVP �
X
j

X
mn

�F̂D̂j�m−nb
�tot�
n H�1�

m �qRj�eimϕj ; (26)

where j runs over all FSs at the left including the actual cyl-
inder. The matrix, D̂, is defined by Eq. (20), Rj is the distance
between the jth FS and the view point. In order to calculate
b�tot�n using Eq. (25) numerically, one hundred left FSs and one
hundred right FSs were considered. That allowed the
calculation of the intensity, jψVPj2, at the plane screen
directed parallel to the FPR that is shown in Fig. 4.

4. EXPERIMENTAL REALIZATION
The layout of the FPR is shown in Fig. 3(a). The mirrors of the
FPR are fabricated from multilayer films [8] comprised of 6
layers of zirconium dioxide (ZrO2) with the refractive index
2.04 and thickness 52 nm, and 5 layers of silicon dioxide
(SiO2) with the refractive index 1.45 and thickness 102 nm,
in alternating sequence. The layers are deposited on a fused
quartz substrate. Normally-incident transmission spectra of
the single dielectric mirror shows photonic band gap in the
wavelength scale from 425 to 620 nm, as shown in Fig. 3(b)
by a dashed line. The FPR holds a glass cylinder with the re-
fractive index 1.55. The transmission spectra of the empty
FPR, measured with a Shimadzu UV-3600 spectrophotometer,
is presented in Fig. 3(b) by a solid line, for the light incident
normally to the FPR.

A laser beam with the wavelength 532 nm, polarized paral-
lel to the glass cylinder z axis, incidents on the FPR cell at the
angle αm to the x axis in the x0y plane, as shown in Fig. 3(a).
Respectively, the y0z plane is parallel to the substrates. The
glass cylinder is oriented along z axis and arranged in the
center of the laser beam. We have chosen the minimal
resonant incident angle, α26. The angular distribution of
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transmitted light scattering through the FPR cell is observed
at a screen that is parallel to the cell. A photo of fringes of
transmitted light behind the FPR cell is shown in Fig. 3, which
reveals a distinct discrete structure. There is a set of discrete
angles, αm0 defined by Eq. (1) at which the transmitted light
goes out from the FPR. However, for the present experimental
realization of the FPR with rather thick mirrors comparable
with the light wavelength, it is unambiguous to define the
distance d between the mirrors. Experimental values of the
resonant peaks for the resonant angles are marked in Fig. 4
by diamonds, for d � 7.09 μm. The positions of the light spots
are symmetric with respect to the normal to the FPR cell. A
pinhole of a photodiode, which detects transmitted light, was
chosen to be equal to the cross section of the laser beam. The
measured transmittances in a log scale are compared in Fig. 4
to the theoretical results (solid curves) based on Eq. (26).

5. SUMMARY AND DISCUSSION
The dielectric cylinder gives rise to the scattering of a laser
beam with angular distribution of the light intensity
jψ �cyl��r;ϕ�j2 given by Eqs. (4) and (5), which has no sharp
angular behavior. We have shown, however, that if a cylinder
is placed inside the FPR cell the angular distribution acquires
exclusively sharp behavior. Our interpretation is based on an
optical analogy with a diffraction lattice. As one can see from
Fig. 2, the dielectric cylinder forms a regular lattice of FSs that
can be presented as the 1D lattice of sources with the lattice
unit equal to the distance between mirrors, similar to grating

surfaces. Scattering of electromagnetic waves from such a
grating leads to sharp angular behavior of scattered waves.
Fig. 4 shows good quantitative agreement for the resonant an-
gles, αm, given by Eq. (1) and the qualitative agreement for
resonant peaks in the transmittance. The reason for discrep-
ancy in the transmittance, we speculate, is that the theory ex-
plores the delta function approximation for the FPR mirrors.
In the experimental setup shown in Fig. 3 one can see that the
mirrors are fabricated of the multilayered heterostructure;
thereby the simple picture of FSs presented in Fig. 2 vanishes.
Nevertheless, the presented theory qualitatively explains the
resonant angular scattering for the light transmission through
the FPR holding dielectric cylinder.
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Fig. 3. (a) Optical setup of a laser beam transmission through the FPR holding the dielectric cylinder and (b) transmission spectra of single mirror
(dash line) and double mirrors (solid line) for green light, λ � 532 nm.
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Fig. 4. Transmittance versus scattering angles of the light beams, for
d � 7.09 μm. The solid line shows the intensity, jψVP j2, normalized by
the input intensity in a log scale, calculated by use of Eq. (26), while
diamonds show the experimental light transmittance in a log scale,
measured for the resonant angles [Eq. (1)].
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