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Propagation of a light through a one-dimensional photonic crystal containing a defect layer doped with a Raman
gain medium is discussed. We demonstrate all-optically controlled switching from normal to anomalous dispersion
in such a structure. A group delay for the transmitted probe (Raman) pulse is investigated. We show that the
group velocity of a Raman pulse can be tuned from subluminal to superluminal by varying the intensity of the
pump field. © 2014 Optical Society of America
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The search for efficient control of the group velocity of
light in dispersive media has been the subject of exten-
sive study both theoretical and experimental [1–5].
Controlling the group velocity of light has attracted much
interest owing to its potential applications, such as tun-
able optical buffers, optical memory, high-speed optical
switches, improving sensitivity of sensing systems, and
enhancing the nonlinear effect. There are two ap-
proaches to controlling the group velocity of light [1].
One makes use of the dispersive properties associated
with the resonance structure of a material medium—

the material dispersion [2,4]. The other one makes use
of structural resonances such as those that occur in pho-
tonic crystals (PhCs)—the structural dispersion [1,5].
Both procedures have proved to be useful in a variety
of situations. Group velocity vg � dω∕dk depends on a
dispersion relation [1,2]. One speaks of light being slow
(subluminal propagation) under circumstances when
vg ≪ c (c is the velocity light in vacuum) [5]. There are
circumstances when vg > c or even vg < 0. This occur-
rence is referred to as fast light (superluminal propaga-
tion) [2]. Slow and fast light are nowadays a growing field
of research (see, for example, [4,6–10]).
In most experiments, superluminal propagation was

observed in poorly transmitting media [11]. A few experi-
ments have been reported with a small enhancement,
when the medium can be considered as transparent
[6,7], as well as with a large enhancement (see for exam-
ple the recent review [10]). It has been shown that by
using Raman gain medium (room-temperature and ultra-
cold atoms, molecular gases and solid state), a slow
[12–14] and fast [6,7] light, gain-assisted giant Kerr effect
[15], and superluminal solitons [16] can be obtained.
Hollow-core PhC fibers filled with atoms and molecular
gas can be used for significant enhancements of Raman
amplification. Recently a fast Kerr phase gate using the
active Raman gain method has been experimentally
demonstrated where the probe wave travels superlumi-
nally [17].
It would be useful to have a system where a group

velocity can be controlled from subluminal to superlumi-
nal [18,19]. Of the greatest interest are the schemes
where superluminal propagation is achieved without

significantly reducing or even with amplification of the
pulse amplitude at the output. In this Letter we report
a method that allows the group velocity of a probe pulse
to be controlled by controlling the strength of a pump
field during Raman interaction in a medium placed in
the defect of a one-dimensional PhC. We show that
due to the combination of the structural resonance of
the multilayer geometry and the Raman resonance in
the defect layer, the group velocity can be switched from
subluminal to superluminal. At the same time, the trans-
mitted (or reflected) pulse can be amplified. Note that
transmission in PhC with Raman gain can be controlled
from enhanced to eliminated one by varying the pump
field intensity; that is, this structure can operate as an
optical switch [20].

Let two plane waves (the pump and the probe) with
frequencies ω1;2 be normally incident on PhC with a
�HP�p HDH �LH�p structure. Here,H and L refer to differ-
ent dielectric layers with high and low refractive indices,
nH and nL, and thicknesses tH and tL, respectively; D is
the defect layer with tD thickness and the refractive index
nD; and p is the number of periods. The defect layer con-
tains a Raman gain medium with an energy-level diagram
showing in the left inset in Fig. 1. States j0i and j2i are the
ground and metastable states, respectively. The pump
field E1 interacts with the j0i − j1i transition and the
probe field E2 interacts with the adjacent transition
j1i − j2i. The frequency difference ω1 − ω2 is close to
the transition frequency ω20.

A complex refractive index of the defect layer nD � n2
for a probe field in the presence of a pump wave is given
by n2 � 1� 2πNχR�ω2�jE1j2, where E1 is the complex
amplitude of the pump wave, N is the concentration of
atoms, and χR�ω2� is the Raman susceptibility

χR�Δ2� �
1

4ℏ3

d221d
2
10

Δ2
1�Δ20 � iγ20�

: (1)

Here, Δ20 � Δ1 − Δ2 � ω20 − �ω1 − ω2� is the Raman de-
tuning, Δ1 � ω10 − ω1, Δ2 � ω21 − ω2 are the one-photon
detuning, ω10 and ω21 are the frequencies of atomic tran-
sitions, γ20 is the Raman transition half-width, dij is the
matrix dipole moment of the transition, and ℏ is the
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Planck constant. The formula (1) is valid under the fol-
lowing conditions: jΔ1j ≫ G1, γ10 and G1 ≫ G2, where
2G1;2 � d10;12E1;2∕ℏ are the Rabi frequencies of the pump
and probe wave and γ10 is the half-widths of the j0i − j1i
transition. Since the probe field is assumed to be very
weak, the population of the lower state j0i can be con-
sidered unaffected under these conditions. Note that
ImχR is negative in the vicinity of the Raman resonance,
which implies the probe wave enhancement due to en-
ergy transfer from the pump to the probe field, and
Re χR has normal dispersion dχR∕dΔ2 > 0 in this region.
In a steady-state approximation, a field in an arbitrary

jth layer (j � H, L, D) can be treated as a superposition
of counter-propagating waves Ej�z��Aj exp�ikj�z−zj���
Bj exp�−ikj�z−zj��, where Aj and Bj are amplitudes of the
forward (incident) and backward (reflected) waves, and
kj � njωi∕c�i � 1; 2�, where nj is the refractive index of a
jth layer. Amplitudes Aj and Bj for each layer were found
from wave equations by means of recurrent relations [21]
using the continuity of tangential components of the
electric and magnetic fields at the interface of adjacent
layers. The transmission and reflection spectra were
determined as

T�ω� � jA2�L�∕A02j2; R�ω� � jB2�0�∕A02j2; (2)

where A02 and A2�L� are the input (z � 0) and the output
(z � L is the PhC length) amplitudes of the probe wave,
respectively, and B2�0� is the amplitude of the probe
wave reflected from the input face of the PhC.
For numerical simulation, we used atomic parameters

of sodium as the Raman medium. Wavelengths of the
probe and pump fields were chosen close to the D1 line
and ω20∕2π was taken to be 1.8 GHz. The PhC had the
following parameters: p � 5, nHdH � nLdL � λ∕4, where

λ corresponds to the center of the first photonic bandgap,
dD � λ∕2, nH � 2.35, and nL � 1.45. The rest of
the parameters were as follows: γ10∕2π � 5.7 MHz,
Δ1 � 30γ10, γ20∕2π � 100 kHz, d10 ≈ d12 ≃ 6 × 10−18 esu
(electrostatic units) [22] and N � 1012 cm−3.

The parameters of the PhC have been chosen such that
in the absence of the Raman gain medium the defect
mode is located in the center of a gap and its spectral
width is broad enough for both waves to fall within this
transmission band. The resonance frequency of the de-
fect mode coincides with that of the probe wave under
Raman resonance Δ20 � 0. For the specified parameters,
the calculation of field distribution in an empty defect
layer yields a virtually complete spatial overlapping of
the pump and the probe fields. The Rabi frequency in
the defect G1�z� is related to the Rabi frequency g1 at
the entrance into the PhC as follows: G1�z� � g1F�z�,
where F�z� � jE1�z�∕Einj is the amplification factor of
the field amplitude in the defect, E1�z� is the spatially
dependent field strength in the defect, and Ein is the
strength of the incident pump field. The fields are distrib-
uted inhomogeneously across the defect, and therefore
the gain factor and the refractive index in the defect
are functions of the z coordinate.

Figure 1 shows typical PhC transmission spectra for a
probe field at different pump intensities. Narrow struc-
tures (a peak or a dip) due to the Raman resonance
can be observed in the center on the background of a
broad transmission band. The transmittance can be
larger or less than unity, and therefore, it can be inter-
preted as the transmission gain. In the right inset in Fig. 1
transmittance maxima are plotted as a function of the
Rabi frequency of the incident pump field. The transmis-
sion coefficient grows when the pump intensity in-
creases, yet remaining below a certain threshold value.
Beyond this critical value, the transmission decreases
with growing intensity (the peak in transmission turns
into a dip).

Consider now propagation of a probe pulse assuming
that the pump field is continuous monochromatic wave.
The spectrum of the transmitted pulse can be written as
E2t�ω� � T�ω�E2i�ω�, where T�ω� is the transmission co-
efficient and E2i�ω� is the spectrum of the incident probe
pulse. Applying a reverse Fourier transform, the intensity
of the transmitted probe pulse can be written as [23,24]

I2t ∝
���� 1������

2π
p

Z
∞

∞
T�ω�E2i�ω� exp�−iωt�dω

����
2
: (3)

In terms of this approach, the duration of the probe pulse
τ2 must satisfy the requirement that τ2 ≫ jΔ20j−1 [7].

Figure 2(a) illustrates a transmitted Gaussian probe
pulse. From Fig. 2(a) it follows that depending on a pump
field intensity, the transmitted probe pulse may either lag
behind (dashed line) or lead (dash-dotted line) the refer-
ence pulse. In the first case, the group velocity of the
pulse is less than the velocity of light in a vacuum,
whereas in the latter case we deal with superluminal
propagation. The shape of transmitted pulses remains
almost unchanged. The same applies to the case of a
reflection.
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Fig. 1. Transmission spectra T of PhC with Raman gain defect
as a function of detuning from the Raman resonance (ω2
changes at Δ1 � 30γ10) for various Rabi frequencies g1 at the
input of PhC. Left inset: energy-level diagram of a three-level
atom in a Raman gain scheme. Right inset: transmission coef-
ficient for a probe field versus Rabi frequency of a pump g1. The
vertical line refers to the threshold value of g1.
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The results obtained can be qualitatively explained in
terms of the effective refractive index for PhC
n�ω� � cΦ�ω�∕ωL, where Φ�ω� is the phase of a probe
wave passed through the PC [25]. Obviously, n�ω� or
Φ�ω� describe dispersion properties of the PhC structure.
In Fig. 2(b) spectral dependencies of the phase Φ�ω� of
the transmitted probe wave are shown for two Rabi
frequencies of the pump field g1: below (dashed curve)
and above (dash-dotted curve) the threshold. In the first
case, dispersion is normal and results in subluminal
propagation of the probe pulse, whereas in the second
case dispersion is anomalous and therefore we deal with
superluminal propagation as illustrated in Fig. 2(a). It
should be noted that in both cases, the dispersion of
medium in the defect is normal. Thus a mechanism of
attaining anomalous dispersion in the given case is essen-
tially different from the one reported in [6–9] and is
associated with dispersion of the PhC (structural
dispersion) rather than with dispersion of the Raman
medium (material dispersion).
Group delay (a phase time) for the transmitted pulse

can be calculated as [26]

τg � ∂Φ∕∂ωjω�ω0
; (4)

where ω0 is the carrier frequency of probe pulse. The
group delay measures the time difference between

appearance of a wave packet at z � 0 and at z � L. These
peaks are not necessarily related by a simple causal trans-
lation since incident and transmitted pulses are not an en-
tity and the group delay is therefore not a transit time
[4,11]. Figure 2(c) shows the group delay τg as a function
of the detuning from the Raman resonance for different
Rabi frequencies g1. The calculated group delays are in
agreement to those shown in Fig. 2(a). Negative group de-
lay corresponds to the superluminal propagation. In such
a situation, the peak of the transmitted pulse will exit the
material before the peak of the incident pulse enters the
material [27]. Superluminal propagation is not at odds
with causality [2,4,11]. While this aspect of the pulse
propagation appears to be superluminal, it does not imply
superluminal signal propagation.

A qualitative interpretation of group delay features be-
comes possible if we look at the problem in terms of a
Fabry–Perot cavity with the length L equal to the thick-
ness of the defect layer tD, which is filled with a Raman
gain medium. The field transmitted through the cavity is
given by

Et �
TmE0e

ikL

�1 − Rme
i2kL�

� TmE0e
k00LeiΦ

��1 − Rme
2k00L�2 � 4Rme

2k00Lsin2�k0L��1∕2 ; (5)

where Tm and Rm are the energy transmission and
reflection coefficients of mirrors, k � k0 − ik00, k00 �
−�2π∕λ�n00

eff > 0 is the amplitude Raman gain factor of
the probe wave, k0 � �2π∕λ�n0

eff , n00
eff � 2πNχ 00RF jE1j2,

n0
eff � 1� 2πNχ 0RF jE1j2 are the effective imaginary

and real parts of the refractive index n2, F ≃ 1 is the
spatial overlapping integral of the pump and the
probe fields [28], and Φ is the phase of the transmitted
field:

Φ�k� � k0L� tan−1
�

Rme
2k0L sin�2k0L�

1 − Rme
2k0L cos�2k0L�

�
: (6)

Using Eqs. (4) and (6) one can find the group delay

τg �
�1 − R2

me
4k00L�

�1 − R2
me

2k00L�2 � 4Rme
2k00L sin2�k0L�

L

vg
; (7)

where vg is the group velocity in a Raman medium. Quan-
tity L∕vg � τ0 describes group delay in the absence of a
cavity. At a resonance frequency, when k0L � mπ, Eq. (7)
can be expressed as

τg �
1� R2

me
2k00L

1 − R2
me

2k00L

L

vg
; (8)

with the transmission coefficient being

T � jEtj2
jE0j2

� T2
me

2k00L

�1 − R2
me

2k00L�2 : (9)

We see that at R2
m exp�2k00L� < 1 group delay τg > L∕vg,

which corresponds to subluminal propagation. When
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Fig. 2. (a) Time dependence of the probe pulse transmitted
through a PhC with a Raman gain medium for different Rabi
frequency g1 of the pump at the input of PhC. The solid curve
illustrates the transmitted probe pulse without Raman gain
medium in a defect—the reference pulse. The length of the in-
cident Gaussian probe pulse is 20 μs. (b) Spectral dependencies
of the phase of the transmitted probe wave. (c) Group delay τg
as function of detuning from the Raman resonance for different
Rabi frequencies g1.
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R2
m exp�2k00L� > 1 or k00L > Tm (when �1 − Rm�≃

Tm ≪ 1) the group delay is negative τg < 0. Using
Eq. (9), it can be readily shown that the maximum trans-
mission coefficient can be T ≫ 1 [20].
In summary, we investigate the subluminal and super-

luminal pulse propagation in a one-dimensional PhC with
a Raman gain defect. Dispersion of the system can be
controlled by a pump field. Occurrence of large positive
and negative time delays is the result of the Bragg reso-
nance coupled with Raman resonance. Unlike earlier
studies, in this Letter the transmitted probe pulse can
be enhanced; its shape, though, hardly changes at all.
Similar effects take place in a reflection. The intensity
required for these effects to be observed depends on a
number of factors (one-photon pump frequency detun-
ing, Raman resonance width, and quality factor of defect
modes) and can be anything from 10 to 100 μW∕cm2. For
experimental realization both room-temperature and ul-
tracold atoms and also molecular gases can be used.
These experiments are similar to [29] (and references
therein), in which atoms have been loaded into hollow-
core PhC fibers. Also the proposed scheme can be real-
ized in a macroscopic optical ring cavity for the probe
radiation similar to cavity electromagnetically induced
transparency [30]. The use of heterostructure semicon-
ductors as nonlinear media with controlled Raman gain
is of great interest.
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