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We present a two-dimensional photonic crystal design of four defect dielectric rods, which form a microcavity with
eigenfrequencies residing in the propagating band of a directional waveguide. In this system, a nonrobust bound
state in the continuum (BSC) occurs as a result of full destructive interference of the monopole and quadrupole
modes, with the same parity at certain values of the material parameters of the defect rods. Due to the Kerr effect,
a robust BSC arises in a self-adaptive way without necessity to tune the material parameters. The absence of the
superposition principle in that nonlinear system gives rise to coupling of the BSC with injected light, resulting in a
novel transmission resonance. © 2014 Optical Society of America
OCIS codes: (190.3270) Kerr effect; (190.5940) Self-action effects; (230.5298) Photonic crystals.
http://dx.doi.org/10.1364/OL.39.005212

In 1929, von Neumann and Wigner [1] predicted the
existence of discrete solutions of the single-particle
Schrödinger equation, which are embedded in the con-
tinuum of positive energy states; thus, bound states in
the continuum (BSC). For a long time, their analysis was
regarded as mathematical curiosity because of certain
spatially oscillating central symmetric potentials. That
situation cardinally changed when Friedrich andWintgen
[2] in the framework of a two-level Fano–Anderson
model formulated the BSC as a resonant state whose
width tends to zero, since at least one physical parameter
varies continuously (see [3–5]). Localization of the
resonant states in an open system, i.e., the BSC, can be
considered a result of destructive interference of two res-
onance states, which occur at their avoided crossing
[2,5]. This is accompanied by one of the resonant states
transforming into a trapped state with a vanishing width,
while the other acquires the maximal resonance width
(super-radiant state [3,5]).
Similar to the Anderson localization, the BSC phe-

nomenon is a manifestation of wave interference and
is generic to all wave phenomenon. In particular, Ship-
man and Venakides [6] predicted symmetry-protected
trapping of electromagnetic waves in the periodical array
of dielectric rods. Two theoretical groups independently
presented examples of the BSC in photonics [7–9],
exploiting the Fabry–Perot mechanism [10–13]. Sub-
sequently, such photonic BSCs were observed experi-
mentally [14–17]. Realization of the BSC in the 1D PhC
by the advanced digital grading method was described
in [18]. The trapping of waves due to destructive interfer-
ence also was considered in water waves and acous-
tics [19,20].
In this Letter, we present a PhC design of in-channel

optical microcavity embedded into the waveguide and
show that it is capable to realize the BSC, as the result
of destructive interference of two resonant modes with
the same parity. This generic mechanism of the trapping
of waves [2,5] is novel in photonics. However, in linear
open systems, the BSC occurs at the unique singular
point in the parameter space [3,5]. This constitutes a

difficulty for experimental observation of the BSC in pho-
tonics. First, it is necessary to vary the parameters of the
microcavity in order to approach the BSC point. Second,
the BSC is decoupled from the waveguide continuum
[5,21]; therefore, the BSC cannot be directly probed by
a wave incoming from the waveguide. We show that
the nonlinear Kerr effect removes this difficulty. The
BSC appears in a self-adaptive way due to the nonlinear
shift of the dielectric constant [22,23], which transforms
the BSC point into a line in the space of frequency and
dielectric constant. The nonlinearity breaks the superpo-
sition principle to give rise to interaction between the
injected wave and the BSC. Therefore, incoming light ex-
cites the BSC and forms a complicated response picture,
which is crucially different from the Breit–Wigner or
Fano resonances.

The PhC system layout is shown in Fig. 1, with all
parameters given in the caption. The single row of rods
is removed from the PhC to form a directional photonic
waveguide, which supports a single-band-guided TM
mode spanning from the bottom band edge 0.315 to the
upper one 0.41 in terms of 2πc∕a [24], where a is the lat-
tice unit. The TM mode has the electric field component
parallel to the infinitely long rods. Four linear defect rods
of the same radius with dielectric constant ϵ, shown by
green open circles, are placed at the vertexes of a square.
These four defect rods form an optical microcavity

Fig. 1. PhC consists of a square lattice of GaAs rods with a
linear refractive index n0 � 3.4 and nonlinear refractive index
n2 � 1.5 × 10−13 cm2∕W at λ � 1.55mμ and radius 0.18a in air,
as shown by blue open circles, where a is the lattice unit. Four
linear defect rods of the same radius with dielectric constant ϵ
are shown by green circles.
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embedded into the PhC waveguide. On both sides of the
microcavity, additional rods are inserted in the wave-
guide in order to increase the Q factor of the microcavity.
The eigenfrequencies of the cavity versus the dielectric

constant ϵ are plotted in Fig. 2 together with the eigenm-
odes [24]. The eigenfrequencies of the monopole and
quadrupole-diag modes cross, while two degenerate
dipole modes have a negligible effect on the BSC. The
quadrupole x–y mode has an eigenfrequency beyond
the propagation band of the PhC waveguide within the
chosen range of ϵ.
We study the light trapping in the microcavity by nu-

merically solving the Maxwell equations and by means
of the coupled mode theory. The former approach is
based on the Lippmann–Schwinger equation [25]:

�Ĥeff − ω2�ψS � Γ̂ψ in; (1)

where Ĥeff is the non-Hermitian effective Hamiltonian
obtained by projection of the total space of the PhC
system onto the inner space of the microcavity. In this
approach, the scattering function ψS is the electric field,
while the right-hand term in Eq. (1) accounts for the cou-
pling of injected light ψ in with the microcavity through
the coupling matrix Γ̂. The BSC occurs when the inverse
of the matrix Heff − ω2 does not exist. Calculations
show that the BSC point is achieved at ϵBSC � 3.00456,
ωBSC � 0.36183. In the linear system, the BSC is the
eigenfunction of the effective Hamiltonian with a real
eigenvalue and, thus, is decoupled from the continuum
[5,21]. Nevertheless, the BSC could be found in the para-
metric space as a special point, where the line of zero
transmittance t � 0 touches the unit transmittance jtj �
1 [5]. At this point, the collapse of the Fano resonance
takes place [10], as shown in Fig. 3(b). One can see
from Fig. 4 that, approaching the BSC point along the
line jtj � 1, the scattering wave function converges to
the BSC, provided that the parameter ϵ is close to the
BSC point ϵBSC. Note, although the scattering state in
Fig. 4(b) is very close to the BSC in Fig. 4(c), the localized
BSC does not support power flows.
Numerically, the dimension of the inner space of the

microcavity is around thousands of sites per elementary
cell in the finite difference scheme. The numerical analy-
sis can be enormously simplified if only two relevant
eigenmodes, monopole, and quadrupole-diag are taken

into consideration. That decimation procedure corre-
sponds to the coupled mode theory (CMT) if the radia-
tion shifts in the effective Hamiltonian are neglected
[7,25,26]. The CMT equations take the following form:

�H�2�
eff − ω�

�
A1

A2

�
� −i

� �����
γ1

p
�����
γ2

p
�
ψ in; (2)

where

Fig. 2. Eigenfrequencies in units of 2πc∕a versus dielectric
constant of the microcavity. Insets show profiles of the
eigenmodes.

Fig. 3. (a) Transmittance versus frequency of injected light
and dielectric constant of the defect rods in the two-level
approximation. The BSC point is marked by the white open
circle. It is seen that the Kerr effect transforms the BSC point
into a line (red). (b) Transmittance versus frequency in the
vicinity of the BSC point. The three slices correspond to
ϵ � 3.03, 3.015, 3.01. Red closed circles mark the BSC fre-
quency. Results of computation based on the Maxwell equa-
tions are shown by green open circles, while the CMT
results are shown by solid blue lines.

Fig. 4. Solutions of Eq. (1) (real parts) for (a) ϵ � 3.01, ω �
0.3619 and (b) ϵ � 3.01, ω � 0.361755. Thin solid lines show
the Poynting vector flow lines. (c) BSC.
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H�2�
eff �

�
ω1 − iγ1 −u − i

���������
γ1γ2

p
−u − i

���������
γ1γ2

p
ω2 − iγ2

�
; (3)

the subscripts 1 and 2 refer to the monopole and
quadrupole-diag eigenmodes. We approximate their ei-
genfrequencies as ω1;2 � ω0 � Δ, where the parameters
were found numerically from the Maxwell equations
Δ � 0.0025367�ϵ − 2.9518�, ω0 � 0.362443 − 0.01567683
�ϵ − 2.9518�, γ1 � 3 · 10−5, γ2 � 1.3 · 10−4, and u �
1.768583 · 10−4. The amplitude of transmittance is given
by [7,26]

t � ψ in �
�����
γ1

p
A1 �

�����
γ2

p
A1 (4)

and is shown in Fig. 3.
The transmittance presented in Fig. 3(b) demonstrates

good agreement between the CMT approximation and
the numerical solution of the Maxwell equations. In
the framework of the CMT approach, the BSC point
can be found analytically [3,5]:

ω2 − ω1 �
u�γ2 − γ1����������

γ1γ2
p ; ωBSC � ω2 � u

�����
γ2
γ1

r
: (5)

The above consideration of the linear PhC system
shows that occurrence of the BSC demands fine tuning
of the material parameter (dielectric constant or diam-
eter) of the defect rods in order to satisfy the equation
for the BSC point in Eq. (5). Therefore, probing the BSC
in light transmission by injecting light of a monochro-
matic laser is an experimental challenge. We show that
the Kerr effect can remove this problem, making the BSC
point self-adaptive [22,23].
In the vicinity of the BSC point, the light intensity is

sufficiently large only in the microcavity. Therefore,
we can neglect the Kerr effect outside the microcavity
and modify the effective non-Hermittian Hamiltonian
as follows [27]: H�2�

eff → H�2�
eff � Vmn, where

Vmn � −

n0c2n2
2�ωm � ωn�
16πa2Z

d2r⃗jA1E1�r⃗� � A2E2�r⃗�j2Em�r⃗�En�r⃗� (6)

and Em�x; y� are the monopole and quadrupole-diag ei-
genmodes of the linear cavity, as shown in Fig. 2. Two
factors substantially weaken the nonlinear contribution
of the quadrupole-diag mode. First, as seen from Fig. 2,
two nodal lines of the quadrupole mode go through the
central defect rod. Second, γ1 ≪ γ2, which suppresses
excitation of the quadrupole-diag mode. Thus, one can
conclude that only the nonlinear term associated
with the monopole mode is important ω1 → ω1 � V11 �
ω1 − λ11jA1j2. Then Eq. (5) shows that the BSC point is
achieved if the intensity of the monopole mode equals

λ11I1c � λ11jA1j2 � ω2 − ω1 −
u�γ2 − γ1����������

γ1γ2
p ; (7)

with the BSC frequency defined in Eq. (5), as in the linear
case. The BSC is given by equation Det�H�2�

eff − ωBSC� � 0.

Moreover, the second equation in Eq. (2) gives an equal-
ity �ωBSC − ω2 � iγ2�A2 � �u� i

���������
γ1γ2

p �A1 � 0, which
defines the intensity of the quadrupole-diag mode at the
BSC point:

I2c � jA2cj2 �
γ1
γ2

I1c: (8)

Intensities at the BSC are marked in Fig. 5(a) by open
circles.

After substitution of the nonlinear term ω1 →
ω1 − λ11jA1j2 into Eq. (3) and solving the nonlinear equa-
tions, we obtain two different families of solutions [23].
The first family inherits the linear case and, at low
injected power, has typical resonance behavior of the
mode intensities jA1j2, jA2j2, as shown in Fig. 5(a) in
the basic window. The mode (monopole) with the
smaller resonant width is excited with a larger amplitude,
and the associated resonant peak is shifted more to the
left because of the negative contribution of the nonlinear
term. The second family of solutions are loops centered
at the BSC point in Eq. (7), as shown in the inset of
Fig. 5(a). The stability of the solutions are notified by
thicker lines. When the amplitude of the injected light
ψ in tends to zero, the size of the loops shrinks to the
BSC points marked by open circles. The transmittance
calculated by Eq. (4) is plotted in Fig. 5(b) for both fam-
ilies and clearly follows the frequency behavior of the
intensities shown in Fig. 5(a). The transmittance com-
puted on the basis of the full-fledged nonlinear Maxwell
equations is plotted in Fig. 5(b) by a solid red line to
demonstrate good agreement with the CMT.

Thus, the PhC design presented in Fig. 1 is capable of
realizing the BSC due to destructive interference of the
monopole and quadrupole-diag modes decaying into the
waveguide. However, in the linear case, this effect
demands fine tuning of the material parameters of the
defect rods in the microcavity, thereby making the
BSC nonrobust. The Kerr effect in the microcavity trans-
forms the BSC point into the line, as shown in Fig. 3(a).
According to the terminology proposed in [6], we term
such BSC the robust BSC. Second, the nonlinearity gives
rise to interaction of the incident wave with the BSC,
which results in a new type of loop-shaped resonance,
as shown in Fig. 5, which was first shown in [23].
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Fig. 5. (a) Intensities of the monopole mode jA1j2 (blue lines)
and quadrupole-diag mode jA2j2 (red lines) for λ11 � 10−4 and
ϵ � 3.1. Thin lines correspond to unstable solutions, while
thicker lines show stable solutions. (b) Transmittance versus
frequency of injected light with the amplitude ψ in � 0.0025.
Blue dash lines show transmittance found from the nonlinear
CMT equations, and red solid lines show transmittance found
from nonlinear Maxwell equations.
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