Spin-Wave Resonance in Multilayer FeNiP/Pd Films

R. S. Iskhakov^a, L. A. Chekanova^a, S. V. Stolyar^{a, b}, and I. G. Vazhenina^c

^aL.V. Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660033 Russia ^bSiberian Federal University, Krasnoyarsk, 660041 Russia

^cKrasnoyarsk Institute of Railway Transport, Krasnoyarsk, 660028 Russia

e-mail: rauf@iph.krasn.ru

Abstract—Ferromagnetic and spin wave resonances are studied in FeNiP/Pd multilayer films obtained via chemical vapor deposition. The partial exchange interaction constant of polarized Pd films is found to be $A_{Pd} \approx 1 \times 10^{-7} \text{ erg/cm}$.

DOI: 10.3103/S1062873814040145

Spin wave resonance is the excitation of standing dipole-exchange spin waves by a homogeneous alternating field in magnetic thin films. The expression for the resonance fields has the form

$$H_{\rm r} = \omega/\gamma + 4\pi M_{\rm eff} - \eta k^2, \qquad (1)$$

where $\eta = 2A/M_0$ is the spin wave rigidity (or dispersion coefficient) of the material in which the spin waves are excited; wave vector $k = n(\pi/d)$ is determined by number *n* of half-waves that fit into thickness *d* of the film; M_{eff} is the effective magnetization, which differs from saturation magnetization M_0 by the contribution from elastic stresses; and *A* is the constant of exchange interaction.

Multilayer ferromagnetic films are now being studied extensively due to the numerous physical phenomena found to occur in these structures. Van Stapele et al. [1] demonstrated, both theoretically and experimentally, that when making spin-wave resonance

Table 1. Effective magnetization $M_{\rm eff}$ and saturation magnetization M_0 of the [(Fe₃₂Ni₆₈)₉₈P₂/Pd] × N and [(Fe₂₀Ni₈₀)₉₈P₂/Pd] × N

spectral measurements in multilayer Fe/Ni films, rela-
tion (1) proved valid with $\eta = \frac{2A_{\text{eff}}}{\langle M \rangle}$. A_{eff} being a modi-
fied exchange interaction constant of the composite
structure, $d = N(d_1 + d_2)$ standing for the thickness of
the multilayer film, and N denoting the number of
double layers. The relationship between $A_{\rm eff}$ and the
partial exchange interaction constants of individual
layers is given by the expression

$$\frac{d}{A_{\rm eff}} = N \left(\frac{d_1}{A_1} + \frac{d_2}{A_2} \right). \tag{2}$$

The spin-wave resonance spectra for multilayer ferromagnetic/nonferromagnetic material films have been recorded in a number of works: for $Ni_{81}Fe_{19}/Zr$ films in [2], for $Ni_{81}Fe_{19}/W_{90}Ti_{10}$ films in [3], for Co/Pt films in [4], for Co/Pd films in [5], and for NiFe/DyCo/NiFe films in [6]. The spectra recorded

Table 2. Values of effective and partial exchange interaction constants A_{eff} and A_{Pd} , respectively, for the [(Fe₃₂Ni₆₈)₉₈P₂/Pd] × N films containing 2 at % P in our FeNi alloy

	$M_{\rm eff}$, Gs	<i>M</i> ₀ , Gs	
$[Fe_{32}Ni_{68}(150)/Pd(10 \text{ Å})] \times 15$	518	709	
$[Fe_{32}Ni_{68}(30)/Pd(10 \text{ Å})] \times 25$	696	780	
$[Fe_{20}Ni_{80}(120)/Pd(10 \text{ Å})] \times 20$	874	690	
$[Fe_{20}Ni_{80}(70)/Pd(10 \text{ Å})] \times 20$	616	440	
$[Fe_{20}Ni_{80}(50)/Pd(10 \text{ Å})] \times 25$	576	424	

	$A_{\rm eff} imes 10^{-6},$ erg/cm	$A_{\rm Pd} \times 10^{-6},$ erg/cm	
[FeNi(150 Å)/Pd(10 Å)] × 15	0.475	0.11	
[FeNi(120 Å)/Pd(10 Å)] × 10	0.424	0.09	
[FeNi(90 Å)/Pd(10 Å)] × 20	0.57	0.04	
[FeNi(60 Å)/Pd(10 Å)] × 20	0.4	0.14	
[FeNi(30 Å)/Pd(10 Å)] × 25	0.16	0.05	

Fig. 1. Spin-wave resonance spectrum of a $[FeNi(40 \text{ Å})/Pd(10 \text{ Å})] \cdot 25$ film containing 2 at % P in FeNi alloy with the external field normal to the film plane.

in these films indicated the excitation of standing dipole-exchange spin waves caused by exchange spin waves passing through the layers of the nonferromagnetic material. This testified to the existence of a magnetic moment in the intermediate layers; i.e., to the polarization of these layers in the multilayer structure, their thickness being limited. When recording spinwave resonance spectra, expression (2) allows us to determine the partial exchange interaction constant for a spin wave propagating through the polarized metal layers.

In this work, multilayer FeNiP/Pd films were studied via ferromagnetic and spin-wave resonance. Our aim was to find the partial exchange interaction constant of our polarized Pd films.

Multilayer FeNiP/Pd films and standard reference single-layer FeNiP films different in composition were obtained via chemical vapor deposition on a glass sheet. The phosphorus concentration in the prepared alloys was 2 and 10 at %. The total thickness of the Fe_{1-x}Ni_x/Pd(10 Å) was 2000 Å. Our investigations were conducted by means of ferromagnetic and spinwave resonance spectroscopy at a frequency of f =9.2 Hz at room temperature in magnetic fields of up to 20 kOe. The saturation magnetization was measured with a vibration magnetometer at room temperature and magnetic field strengths of up to 12 kOe.

Table 1 lists the values of $M_{\rm eff}$ for the resulting films. Values of M_0 measured with the magnetometer are also listed here. The differences between $M_{\rm eff}$ and M_0 were due to elastic stresses in the investigated structures and the concentration dependence of the magnetostriction constant ($M_{\rm eff} = M_0 + 3\lambda\sigma/M_0$, where λ is the magnetostriction constant of the material being studied and σ is the magnitude of local stresses). The results given in the table point to compressive elastic stresses in our multilayer structures: $\sigma < 0$.

Fig. 2. Resonance field strength H_r as a function of the squared serial number n^2 of the mode of the spin-wave resonance spectra observed in the orthogonal experimental geometry for [(Fe₃₂Ni₆₈)₉₈P₂/Pd] · *N* multilayer films containing 2 at % P.

The spin-wave resonance spectrum of Fig. 1 was recorded with the film normal to the direction of the external magnetic field. Figure 2 illustrates strength H_r of the resonance field as a function of the squared serial number of the mode (n_2) in the spin-wave resonance spectra. The above dependences allowed us to determine the values of A_{eff} for multilayer structures, and to calculate the partial exchange interaction constants of the polarized Pd layers using values of the partial exchange interaction constands ingle-layer reference films. The results are listed in Table 2.

The presented A_{Pd} values agree with those determined from the spin-wave resonance spectra of multi-layer Co/Pd structures in [5].

ACKNOWLEDGMENTS

This work was performed by order of the RF Ministry of Education and Science.

REFERENCES

- 1. Van Stapele, R.P., Greidanus, F.J.A.M., and Smits, J.W., *J. Appl. Phys.*, 1985, vol. 57, no. 4, pp. 1282–1290.
- Biondo, A., Nascimento, V.P., Lassri, H., et al., J. Magn. Magn. Mater., 2004, vol. 277, p. 144.
- 3. Morales, M.A., Lassri, H., Biondo, A., et al., *J. Magn. Magn. Mater.*, 2003, vol. 256, pp. 93–99.
- Salhi, H., Chafai, K., Msieh, O., Lassri, H., et al., J. Superconduct. Novel Magn., 2011, vol. 24, no. 5, pp. 1375–1379.
- 5. Iskhakov, R.S., Shepeta, N.A., Stolyar, S.V., et al., *JETP Lett.*, 2006, vol. 83, no. 1, p. 28.
- Iskhakov, R.S., Stolyar, S.V., Chizhik, M.V., et al., J. Siberian Federal Univ. Math. Phys., 2012, vol. 5, no. 3, pp. 370–381.

Translated by S. Kittell