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INTRODUCTION

As is well known, the pixels of a liquid�crystal dis�
play allow us to control the transmission of light via the
helical twisting of the optical axis of a liquid crystal
(LC). The polarization of the transmitted light rotates
around the optical axis due to the Maugin waveguide
mode [1]. The phase shift of a wave with rotating
polarization contains dynamic and geometric phases
[2, 3]. In order to measure the phase shift experimen�
tally, the system is placed into an optical resonator of
Fabry–Perot type [4].

Spectral transmission peaks are formed at whole
number N of wave periods per resonator cycle 2L:

(1)

where λ0 is the wavelength in a vacuum and neff is the
effective refraction index (RI). However, measure�
ments are complicated by the anisotropic medium of
the resonator generating two sets of peaks with polar�
izations along the main axes of the dielectric permit�
tivity tensor and different effective RIs (neff, ).
Rotation of the main axes makes resonant polariza�
tions elliptical, results in mode coupling upon reflec�
tion from mirrors, and is manifested as quasi�inter�
action between normal frequencies (avoided cross�
ing) [5].

In this work, we propose using the anisotropic mir�
rors of a resonator to suppress mode coupling. It is first
noted that twisting amplifies anisotropy. In other
words, effective RIs differ from one another more
strongly than do ordinary (no) and extraordinary (nе)
RIs. This is in contrast to the formula RI navg for an

2neffL Nλ0,=

neff'

extraordinary wave in a uniaxial crystal with a constant
direction of the optical axis [6]:

(2)

where the direction of wave propagation is angle θ to
the optical axis. RI (2) turns out to be intermediate
between ordinary and extraordinary. For a positive
uniaxial crystal, this RI is greater than the ordinary RI
and less than the extraordinary RI (no < navg < nе). In
contrast, twisting makes the effective RI less than the
ordinary RI or greater than the extraordinary RI (neff <

no < ne < ).

MODEL AND TRANSMISSION SPECTRUM

Our structure is a layer of LCs oriented along the
surfaces of anisotropic resonator mirrors (Fig. 1). In
the simplest case, light is incident normal to the mirror
surfaces. The dielectric anisotropic mirrors are uniax�
ial crystals with the same RI no and ne as the LCs, but
the extraordinary axis is twisted through a right angle
in the plane of mirrors.

The idea was to preserve both the light’s polariza�
tion and the Maugin waveguide mode upon reflection
[7, 8]. As is well known, reflection reverses the right
and left vector triplets, so the isotropic mirror (i.e., the
boundary separating the isotropic media) preserves
only the linear polarization. All other polarization
changes sign, with the right triplet becoming the left
triplet and vice versa. This incongruence with its mir�
ror reflection is referred to as chirality. The set of all
possible polarizations is usually pictured as Poincare

navg none/ no
2 θ2
cos ne

2 θ2
sin+ ,=

neff'
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sphere points [2]. A Poincare sphere is a chiral object;
its reflection in an isotropic mirror presents it relative
to the plane of linear polarizations. However, an
achiral mirror that preserves an arbitrary polarization
can be created. This requires that we reverse the phase
of electric intensity along one and only one of the
orthogonal axes upon reflection and the twisting of the
wave vector. Polarization is preserved when an RI at
the boundary between the media grows along one of
main axes and shrinks to the same degree along the
orthogonal axis. Our proposed anisotropic mirrors sat�
isfy these conditions. At the same time, the sphere
remains chiral with respect to the image transmitted
by light waves. A chiral reflection of the image pro�
duces a beam of waveguides twisted through 180°.

The helicoid in Fig. 1 shows the period (half�step)
of a helical line (a spatial spiral). It is transformed into
an infinite helical line by the mirrors and can be con�
sidered a chiral photonic crystal with a photonic band
gap. Another example of such a structure is cholesteric
liquid crystal [1, 9]. Light with, e.g., right circular
polarization retains its polarization when reflected
from a right�handed cholesteric liquid crystal.

COMPUTING THE BERREMAN SPECTRUM 
AND SPATIAL FIELD DISTRIBUTION

Our optical response was calculated using a transfer
matrix generalized to an anisotropic medium [10].
The ordinary transfer matrix for a one�dimensional
isotropic layered medium measured 2 × 2. The matrix
was the same for both the vertical and horizontal
polarization of light. The waves of vertical and hori�
zontal polarizations interact in an anisotropic
medium, leading to the inclusion of two 2 × 2 matrices
in a transfer matrix measuring 4 × 4.

Maxwell’s equations for an anisotropic medium
can be written in matrix form for matrices measuring
6 × 6:

Allowing for changes in medium characteristics in
only one direction along the z axis in the steady state
lets us simplify the rotor:

where k is the waveguide field vector perpendicular to
the z axis. Differentiation disappears in the lower row
and we have a linear algebraic equation. This allows us
to express unknown components of the electric and
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Fig. 1. Scheme of a resonator with anisotropic mirrors for registering the effect twisting the optical axis has on the effective refraction
index. Rods representing a positive uniaxial crystal are directed along the primary direction of molecular dipoles (the director).
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magnetic intensities along the z axis, and to eliminate
two equations. The final differential equation describ�
ing the propagation of light with frequency ω along the
z axis is written as

(3)

where Ψ(z) = (Ex, Hy, Ey, –Hx)
T, Δ(z) is a Berreman

matrix that depends on the dielectric function and
wave vector of an incident wave. Computing the field
evolution (vector Ψ(z)) is reduced to defining the
matrix exponent. This nontrivial procedure is exe�
cuted in such mathematical packages as MatLab:

(4)

(5)

where  =  is the anisotropic

transfer matrix. The first stage of computation is to
calculate this matrix.

The second stage is stating boundary problem (5).
This differs from the isotropic case, since field vector
Ψ(z) is completely unknown at both boundaries. In
computations for an isotropic medium in the linear
case, the amplitude of transmitted field is assumed to
be 1. This condition is not enough in an anisotropic
medium, since the field polarization upon exiting can�
not be known in advance. We must therefore solve
Eq. (5) for four variables, the xy�components of trans�
mitted and reflected waves. From this we derive the
transmittance and reflection coefficients.

dΨ
dz
������ iω

c
�����Δ z( )Ψ z( ),=

Ψ z dz+( ) iω
c

�����Δ z( )dz⎝ ⎠
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0
z

∏

The third stage of computing is to determine the
distribution of the field in the depth of the medium.
This can be done using the result from the second
stage: the value of field vector Ψ(z) at one of the
boundaries; for the sake of precision, Ψ(z = 0) upon
entry. This value must once again be inserted into
Eq. (5) using the partial product of matrix exponents
as an anisotropic transfer matrix along the layers, from
where they begin to the layer for which the field distri�
bution is computed. In practice, it is impractical to
store the partial products determined in the first stage
in the PC’s memory, so they are calculated again in the
third stage.

RESULTS AND DISCUSSION

Figure 2 shows the transmittance spectra of the
transverse mode in an anisotropic resonator. We con�
sidered the cases where there was no twisting and when
there was twisting through 180 degrees. The spectra
were computed using the Berreman method, which
generalizes the transfer matrix approach to anisotropic
media [10]. Normalized RI no = 0.9, ne = 1.1 were
used in our computations; the resonator length was
10 μm. The twisted structure displays low transmit�
tance at frequencies of ~0.1 μm–1 corresponding to a
wavelength of 10 μm, due to the reflection of light
from the structure in photonic band gap.

It can be seen that twisting shifts the peaks toward
the shortwave region. At the same time, displacement
is greater at the lower frequency. The shortwave shift
reflects the decrement in effective RI (1), which
becomes lower than the ordinary RI.

The first stage of our theoretical description is
determining the parameters of a wave propagating
along the helical axis of a twisted LC. When there is no
stress, the LC is twisted uniformly and translation�
rotational symmetry can be applied. Using the transfer
matrix for an anisotropic medium [10], the expression
for a wave in the LC is rewritten as

where Е, Н are the complex intensities of the electric

and magnetic fields;  = ω/c is the wave vector in
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Fig. 2. Transmittance spectra of the transverse mode with
no twisting and with twisting through 180 degrees (dashed
line). Twisting shifts the peaks toward short�wave region;
as a result, the effective RI is less than the ordinary RI.



BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES. PHYSICS  Vol. 78  No. 12  2014

SPECTRAL MANIFESTATION OF AN EFFECTIVE REFRACTION INDEX 1311

vacuum;  = 2π/p is the twisting vector of the LC
director; р is the step of the LC helix, twisting angle
ϕ(z) = βz. The wave vector in the medium is

(6)

where ε ± δ denotes main values of the LC’s dielectric
permeability tensor. The ratio between the amplitudes
of the waves polarized circlewise along the helix is

Let us consider case  �  The high value of wave
number |q+| (6) corresponds to an elliptical wave whose
primary polarization is codirectional with the LC
director. We shall consider this wave to be nearly lon�
gitudinal (an L�wave). The low value of wave number
|q–| corresponds to an elliptical wave with primary
polarization perpendicular to LC director. We shall
consider this wave to be almost transverse (a Т�wave).
Figure 3a shows a Т�wave computed using the Berre�
man method for light with a wavelength in vacuum of
λ0 = 200 nm and with right elliptical polarization
[Ex; Ey] = [0.25i; 1], propagating in a uniform medium
with RI no = 1.5 and incident along the normal on an
LC cell 1/6 μm thick. The LC on the nearest boundary
has planar orientation along the х axis and is twisted
clockwise through 45°. The LC’s ordinary RI no = 1.2;
its extraordinary RI ne = 1.8. In each layer of the
medium, the end of intensity vector of electric field
describes a counterclockwise elipse. The major axis of
this ellipse is perpendicular to the LC’s director. The
ellipses of different layers of the LC are shown with
thin lines. Looking toward the wave, the intensity
rotates clockwise, so it is referred to as right. At a fixed
moment in time, the ends of the intensities at different
points along the axis form an oblate right helix. In
Fig. 3a, there is a corresponding bold line whose ends
are distorted as a result of reflection from the bound�
aries of the LC cell. In image plane (xy), the helix
assumes the trajectory of a Foucault pendulum. This is
an elliptical motion considered in a rotating reference
system. The Maugin rotation of the polarization
ellipse takes the form of optical activity. However,
there is no real optical activity in the LC, and the rota�
tion is due to the turning of the LC director.

Figure 3b compares the dispersion curves of L� and
T�waves obtained using Eq. (6) to the linearly polar�
ized O� and E�waves (O, ordinary; E, extraordinary).

CONCLUSIONS

The shortwave displacement of the considered
transverse mode spectrum can only be substantiated
theoretically, since it was screened by the quasi�inter�
section of modes. Observation of the effect twisting
has on an effective RI is restricted by the low anisot�

β

q± β2 εk0
2 2βk0 ε δ2k0

2
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/k0
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ropy of LCs. High anisotropy can be ensured by an
anisotropic nanocomposite consisting of nanosized
metal orientationally ordered spherical impurities dis�
persed in a transparent matrix [11].
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