рассеянию нейтронов наблюдается только одна из компонент. В докладе показано, что именно одна из компонент, $(0, \pi)$ или $(\pi, 0)$, стабилизируется, если считать, что только одна из дырочных зон перемешивается с электронными зонами при образовании состояния ВСП. При этом вторая дырочная зона остаётся бесщелевой, что и объясняет металлическое состояние пниктидов с ВСП. При идеальном нестинге параметр порядка ВСП в этой трёхзонной модели сильно вырожден. Вырождение снимается в пользу $(0, \pi)$ -упорядочения или $(\pi, 0)$ -упорядочения при учёте взаимодействий и эллиптической формы электронных пакетов. Рассчитанные спектральная интенсивность ARPES, ферми-контуры, а также дисперсия зон вблизи уровня Ферми соответствуют экспериментальным данным.

Я выражаю благодарность И.И. Мазину и А.В. Чубукову за полезные обсуждения. Работа поддержана субсидией, выделенной в рамках государственной поддержки Казанского (Приволжского) федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научно-образовательных центров.

Список литературы

- 1. Kamihara Y et al. J. Am. Chem. Soc. 130 3296 (2008)
- 2. Hirschfeld P J, Korshunov M M, Mazin I I Rep. Prog. Phys. 74 124508 (2011)
- 3. Liu C et al. Phys. Rev. Lett. 101 177005 (2008)
- 4. Terashima K et al. Proc. Natl. Acad. Sci. USA 106 7330 (2009)
- 5. Zabolotnyy V B et al. Nature 457 569 (2009)
- 6. Yang L X et al. *Phys. Rev. Lett.* **102** 107002 (2009)
- 7. Lu D H et al. Nature 455 81 (2008)
- 8. Ding H et al. J. Phys. Condens. Matter 23 135701 (2011)
- 9. Richard P et al. Rep. Prog. Phys. 74 124512 (2011)
- 10 Coldea A I et al. Phys. Rev. Lett. 101 216402 (2008)
- 11. Shishido H et al. Phys. Rev. Lett. 104 057008 (2010)
- 12. Carrington A Rep. Prog. Phys. 74 124507 (2011)
- 13. Singh D J, Du M-H Phys. Rev. Lett. 100 237003 (2008)
- 14. Boeri L, Dolgov O V, Golubov A A Phys. Rev. Lett. 101 026403 (2008)
- 15. Fernandes R M et al. Phys. Rev. B 85 024534 (2012)
- 16. Eremin I, Chubukov A V Phys. Rev. B 81 024511 (2010)
- 17. Chandra P, Coleman P, Larkin A I Phys. Rev. Lett. 64 88 (1990)
- 18. Si Q, Abrahams E Phys. Rev. Lett. 101 076401 (2008)
- 19. Xu C, Müller M, Sachdev S Phys. Rev. B 78 020501(R) (2008)
- 20. Yildirim T Phys. Rev. Lett. 101 057010 (2008)
- 21. Uhrig G S et al. Phys. Rev. B 79 092416 (2009)
- 22. Nakajima M et al. Phys. Rev. B 81 104528 (2010)
- 23. Rice T M Phys. Rev. B 2 3619 (1970)
- Келдыш Л В, Копаев Ю В ФТТ 6 2791 (1964); Keldysh L V, Kopaev Yu V Sov. Phys. Solid State 6 2219 (1965)
- 25. Andersen O K, Boeri L Ann. Physik 523 8 (2011)
- 26. Liu C et al. Nature Phys. 6 419 (2010)
- 27. Pratt D K et al. Phys. Rev. Lett. 106 257001 (2011)
- 28. Cvetkovic V, Tesanovic Z Europhys. Lett. 85 37002 (2009)
- 29. Chubukov A V, Efremov D V, Eremin I Phys. Rev. B 78 134512 (2008)
- 30. Brydon P M R, Timm C Phys. Rev. B 80 174401 (2009)
- 31. Brydon P M R, Timm C Phys. Rev. B 79 180504(R) (2009)
- 32. Wang F et al. Phys. Rev. Lett. 102 047005 (2009)
- 33. Platt C, Honerkamp C, Hanke W New J. Phys. 11 055058 (2009)
- 34. de la Cruz C et al. *Nature* **453** 899 (2008)
- 35. Klauss H-H et al. Phys. Rev. Lett. 101 077005 (2008)
- 36. Fisher I R, Degiorgi L, Shen Z X Rep. Prog. Phys. 74 124506 (2011)

PACS numbers: 74.20.Rp, **74.25.**–**q**, 74.62.Dh DOI: 10.3367/UFNr.0184.201408h.0882

Сверхпроводящее состояние в соединениях железа и спин-флуктуационная теория спаривания

М.М. Коршунов

Beyond the pairs of opposites of which the world consists, other, new insights begin¹. Herman Hesse, "Inside and Outside", in Stories of Five Decades (London: Jonathan Cape, 1974)

Совсем недавно научное сообщество было взбудоражено новым открытием. На поле высокотемпературной сверхпроводимости, где последние двадцать лет безраздельно доминировали купраты, появился новый игрок — соединения железа [1]. Хотя критическая температура перехода соединений железа в сверхпроводящее состояние T_c не превысила температуру жидкого азота, уже в конце 2008 г., менее чем через год после открытия этого нового класса, она достигла 56 К. На сегодняшний день рекорд среди монокристаллов принадлежит SmFeAsO_{1-x}F_x с $T_c = 57,5$ К [2], а большие надежды внушает открытие сверхпроводимости с $T_c \sim 60$ К в однослойных плёнках FeSe [3, 4].

Вообще, из соединений железа, обладающих сверхпроводимостью, можно выделить два класса: пниктиды и халькогениды. Базовым элементом в этих соединениях является квадратная решётка железа, в большинстве слабодопированных соединений подверженная орторомбическим искажениям при температурах, сравнимых с температурой перехода в антиферромагнитную (АФМ) фазу $T_{\rm SDW}$. В первом классе соединений железо находится в тетраэдрическом окружении атомов мышьяка или фосфора, во втором — атомов селена, теллура или серы. Пниктиды бывают однослойными: 1111 (LaFeAsO, LaFePO, Sr₂VO₃FeAs и т.д.) и 111 (LiFeAs, LiFeP и др.), а также двухслойными, типа 122, содержащими два слоя FeAs на элементарную ячейку (BaFe₂As₂, KFe₂As₂ и т.п.). К халькогенидам относятся соединения типа 11 (Fe_{1- δ}Se, $Fe_{1+\nu}Te_{1-x}Se_x$, плёнки FeSe) и типа 122 (KFe₂Se₂). Структура и физические свойства соединений железа подробно обсуждаются во многих обзорах (см., например, [5-16]).

Характерная особенность соединений железа, по сравнению, например, с купратами, состоит в качественном, а иногда даже и в количественном согласии ферми-поверхности, измеряемой посредством фотоэмиссионной спектроскопии с угловым разрешением (Angle-Resolved Photoemission Spectroscopy — ARPES) и с помощью квантовых осцилляций с ферми-поверхностью, вычисленной первопринципными методами. Это, а также малая вели-

М.М. Коршунов. Институт физики им. Л.В. Киренского СО РАН, Красноярск, РФ

E-mail: mkor@iph.krasn.ru

¹ "По ту сторону противопоставлений, противоположностей, из которых состоит наш мир, открываются новые, иные, возможности познания". Г. Гессе "Что внутри и вовне" (пер. С. Ромашко), *Книга россказней. Новеллы* (М.: Текст, 2002).

чина магнитного момента на железе ($\sim 0,3\mu_{\rm B}$) в пниктидах и отсутствие в недопированном случае диэлектрического состояния позволяют говорить о малой или средней величине электронных корреляций. Поэтому естественной начальной точкой описания скорее является модель делокализованных электронов, а не мотт-хаббардовский предел и модели типа $t-J_1-J_2$.

Вскоре после открытия сверхпроводимости пниктидов были проведены оценки возможности спаривания за счёт электрон-фононного взаимодействия. Константа связи оказалась даже меньше, чем у алюминия [17], хотя *T*_с в соединениях железа значительно выше. Это привело к выводу о том, что вряд ли спаривание, обусловленное электрон-фононным взаимодействием, является доминирующим, хотя, возможно, требуется более тщательный анализ, учитывающий специфичные особенности зонной структуры [18]. Такая ситуация в свою очередь сразу привела к поискам альтернативных теорий сверхпроводящего спаривания. Используемые в теориях взаимодействия варьируются от спиновых и орбитальных флуктуаций до сильнокоррелированных мотт-хаббардовских и хундовских обменных констант. Описать и даже упомянуть все теории в данной статье не представляется возможным, поэтому сосредоточимся на одной из наиболее перспективных теорий — спин-флуктуационной теории сверхпроводящего спаривания.

Перспективной спин-флуктуационная теория сверхпроводящего спаривания является по ряду причин: 1) эта теория основана на модели делокализованных электронов, что служит хорошей отправной точкой для описания соединений железа; 2) сверхпроводящая фаза возникает сразу после антиферромагнитной или сосуществует с ней, при этом спин-решёточная релаксация $1/T_1T$ постепенно меняет характер поведения от кюри-вейсовского до пауливского при увеличении допирования и снижении T_c [19], что говорит об уменьшении роли спиновых флуктуаций; 3) для описания разнообразных наблюдаемых свойств пниктидов и халькогенидов не требуется вводить в теорию дополнительные параметры, а нужно учитывать особенности зонной структуры и взаимодействий в различных классах соединений железа [16].

Сверхпроводники на основе железа представляют собой квазидвумерные вещества, в которых проводящей плоскостью является квадратная решётка атомов железа. Как показали результаты первых расчётов в рамках теории функционала плотности (Density Functional Theory — DFT) [20-22], весьма неплохо согласующиеся с результатами измерений ARPES и квантовых осцилляций, вблизи уровня Ферми доминируют 3d⁶-состояния Fe^{2+} . При этом все пять орбиталей, $d_{x^2-y^2}$, $d_{3z^2-r^2}$, d_{xy} , d_{xz} и d_{yz}, лежат на поверхности Ферми или вблизи. Такая ситуация приводит к существенной "многоорбитальности" и многозонности низкоэнергетической электронной структуры, которую уже невозможно описать в однозонной модели. Так, например, в пятиорбитальной модели из работы [23], довольно хорошо воспроизводящей результаты DFT-расчётов [24], ферми-поверхность состоит из четырёх карманов: двух дырочных в области точки (0,0) и двух электронных в области точек (π , 0) и $(0, \pi)$ (рис. 1). Такая геометрия в **k**-пространстве приводит к возможности возникновения волны спиновой плотности (Spin-Denisty Wave — SDW) из-за нестинга между дырочной и электронной ферми-поверхностями на волновом векторе $\mathbf{Q} = (\pi, 0)$ или $\mathbf{Q} = (0, \pi)$. При

Рис. 1. (а) (В цвете онлайн.) Ферми-поверхность в модели [23] при электронном допировании x = 0,05 в зоне Бриллюэна, соответствующей одному атому Fe на элементарную ячейку. Орбитали, дающие максимальные вклады в ферми-поверхность, показаны различными цветами: d_{xz} — красным, d_{yz} — зелёным, d_{xy} — синим. (б) Структура сверхпроводящей цели s_{\pm} и $d_{x^2-y^2}$ -типа на ферми-поверхности, вектор $\mathbf{Q} = (\pi, 0)$ соединяет электронные и дырочные карманы. (в) Вычисленная в модели [23] частотная зависимость Im $\chi(\mathbf{q} = \mathbf{Q}, \omega)$ в нормальном состоянии (non-SC) и в сверхпроводящем с симметриями s (s_{++}) , $d_{x^2-y^2}$ и s_{\pm} . Расчёт выполнен для хаббардовского взаимодействия U = 1,4 эВ и хундовского обмена J = 0 при наличии спин-вращательной инвариантности (Spin-Rotational Invariance — SRI). В последнем случае возникает резонансный пик при $\omega < 2\Delta_0$.

увеличении уровня допирования *х* дальний SDW-порядок исчезает. Если это электронное допирование, то при *х* выше определённого значения дырочные карманы исчезнут и останутся только электронные, что соответствует $K_xFe_{2-y}Se_2$ и монослоям FeSe [4]. При увеличении концентрации дырок сначала возникает новый дырочный карман вокруг точки (π , π), а затем исчезают электронные ферми-поверхности. Описанная ситуация возникает, в частности, в KFe₂As₂. То, что максимальные вклады в зоны на поверхности Ферми дают d_{xz,yz}- и d_{xy}-орбитали, подтверждается спектрами ARPES [25, 26]. При этом, как указано ниже, наличие нескольких карманов и многоорбитальный характер зон существенно влияют на картину сверхпроводящего спаривания.

Прежде чем перейти к изложению многоорбитального варианта теории, опишем, как строится спинфлуктуационная теория спаривания в однозонном случае с гамильтонианом хаббардовского взаимодействия $H = \sum_{f} U n_{f\uparrow} n_{f\downarrow}$, где U — одноузельное кулоновское

Рис. 2. Куперовская вершина $\Gamma_{\uparrow\downarrow}$ для синглетного сверхпроводящего состояния в RPA.

отталкивание (хаббардовское), $n_{f\sigma}$ — оператор числа частиц на узле f со спином σ . Сверхпроводящее взаимодействие в синглетном канале определяется куперовской вершиной $\Gamma_{\uparrow\downarrow}$, которая в духе теории Берка–Шриффера [27–29] даётся диаграммным рядом в приближении случайных фаз (Random Phase Approximation — RPA) (рис. 2). Базовым элементом является электрон-дырочная петля — "голая" восприимчивость

$$\chi_0(\mathbf{q}, \mathrm{i}\omega_n) = \sum_{\mathbf{p}} \frac{f(\varepsilon_{\mathbf{p}+\mathbf{q}}) - f(\varepsilon_{\mathbf{p}})}{\mathrm{i}\omega_n - \varepsilon_{\mathbf{p}+\mathbf{q}} + \varepsilon_{\mathbf{p}}},$$

где $f(\varepsilon_{\mathbf{p}})$ — фермиевская функция распределения для дисперсии электронов $\varepsilon_{\mathbf{p}}$, ω_n — мацубаровская частота. Сумма петель и лестниц даёт

$$\Gamma_{\uparrow\downarrow} = U(1 + U^2 \chi_0^2 + \ldots) + U^2 \chi_0 (1 + U \chi_0 + \ldots) =$$

= $\frac{U}{1 - U^2 \chi_0^2} + \frac{U^2 \chi_0}{1 - U \chi_0} =$ (1)

$$=\frac{3}{2}U^{2}\chi_{s}-\frac{1}{2}U^{2}\chi_{c}+U,$$
(2)

где $\chi_{\rm s}$ и $\chi_{\rm c}$ — спиновая и зарядовая восприимчивости соответственно,

$$\chi_{\rm s} = \chi_{\rm c} = \frac{\chi_0}{1 \mp U \chi_0} \,. \tag{3}$$

В системе возникает магнитная нестабильность, если выполняется критерий Стонера $1 = U\chi_0(\mathbf{q}, \omega = 0)$. Ферромагнитная нестабильность соответствует $\mathbf{q} = 0$, а интересующая нас АФМ-нестабильность возникает на антиферромагнитном волновом векторе $\mathbf{q} = \mathbf{Q}$. Если нам удастся избежать нестабильности, например, с помощью допирования, то дальний порядок не возникнет, но произведение $U\chi_0(\mathbf{q},\omega=0)$ будет близко к единице, что приведёт к большой величине спиновой восприимчивости χ_s и, соответственно, к её очень большому вкладу в куперовскую вершину $\Gamma_{\uparrow\downarrow}$. Однако, в отличие от электрон-фононного взаимодействия в теории Бардина-Купера-Шриффера (БКШ), Г↑↓ приводит не к притяжению, а к эффективному отталкивательному взаимодействию $V(\mathbf{k}, \mathbf{k}')$. Если записать гамильтониан системы в среднем поле, выделив в явном виде сверхпроводящее взаимодействие,

$$H = \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} a_{\mathbf{k}\sigma}^{\dagger} a_{\mathbf{k}\sigma} + \frac{1}{2} \sum_{\mathbf{k},\mathbf{k}',\sigma} V(\mathbf{k} - \mathbf{k}') a_{-\mathbf{k}\sigma}^{\dagger} a_{\mathbf{k}\sigma}^{\dagger} a_{\mathbf{k}'\sigma} a_{\mathbf{k}'\bar{\sigma}},$$

где $\bar{\sigma} = -\sigma$, $a_{\mathbf{k}\sigma}^{\dagger}$ — оператор рождения электрона с импульсом **k** и спином σ , то уравнение для щели будет

иметь вид

$$\Delta_{\mathbf{k}}(T) = -\sum_{\mathbf{k}'} \frac{V(\mathbf{k} - \mathbf{k}')}{2E_{\mathbf{k}'}} \,\Delta_{\mathbf{k}'}(T) \,\tanh\frac{E_{\mathbf{k}'}}{2T} \,, \tag{4}$$

где $E_{\mathbf{k}} = \sqrt{\varepsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}$. В случае электрон-фононного взаимодействия с константой связи g_{e-ph} в теории БКШ имеем $V(\mathbf{k} - \mathbf{k}') = -g_{e-ph}^2$ и уравнение (4) имеет решение $\Delta_{\mathbf{k}} = \Delta_0(T)$, что и соответствует s-типу сверхпроводящего параметра порядка. В соединениях железа орбитальные флуктуации, усиленные электрон-фононным взаимодействием, могут приводить к знакопостоянному решению, которое в многозонном случае называют s₊₊-состоянием [30, 31]. С другой стороны, для спин-флуктуационного взаимодействия $V(\mathbf{k} - \mathbf{k}') > 0$ и s-тип решения не удовлетворяет уравнению (4). Для спиновых флуктуаций $V(\mathbf{k} - \mathbf{k}')$ имеет максимум на волновом векторе **Q**, и если мы воспользуемся очень грубым приближением: $V(\mathbf{k} - \mathbf{k}') = |\lambda|\delta(\mathbf{k} - \mathbf{k}' + \mathbf{Q})$, то (4) примет вид

$$\Delta_{\mathbf{k}}(T) = -|\lambda| \frac{\Delta_{\mathbf{k}+\mathbf{Q}}(T)}{2E_{\mathbf{k}+\mathbf{Q}}} \tanh \frac{E_{\mathbf{k}+\mathbf{Q}}}{2T} \,. \tag{5}$$

Очевидно, что у уравнения (5) есть решение, когда $\Delta_{\mathbf{k}}$ и $\Delta_{\mathbf{k}+\mathbf{Q}}$ имеют разные знаки. В простейшем случае $\Delta_{\mathbf{k}} = -\Delta_{\mathbf{k}+\mathbf{Q}}$ и уравнение переходит в

$$1 = |\lambda| \, \frac{1}{2 \, E_{\mathbf{k} + \mathbf{Q}}} \tanh \frac{E_{\mathbf{k} + \mathbf{Q}}}{2T} \, .$$

Решением будет щель, меняющая знак на векторе **Q**. Если этот вектор соединяет различные зоны квазичастиц (ферми-поверхности, принадлежащие различным зонам), что и реализуется в соединениях железа, то решение такого типа с симметрией A_{1g} называется s_{\pm} -состоянием [22]. Конкурирующими будут состояния с симметрией B_{1g} , а именно имеющие d_{xy} - и $d_{x^2-y^2}$ -типы параметра порядка.

В многоорбитальном случае центральный объект спин-флуктуационной теории — динамическая спиновая восприимчивость — является тензором по орбитальным индексам *l*, *l'*, *m* и *m'*:

$$\chi_{ss'}^{ll',mm'}(\mathbf{q},\mathrm{i}\Omega) = -\int_{0}^{\beta} \mathrm{d}\tau \exp\left(\mathrm{i}\Omega\tau\right) \left\langle T\tau S_{ll'}^{s}(\mathbf{q},\tau) S_{m'm}^{s'}(-\mathbf{q},0) \right\rangle.$$
(6)

Здесь Ω — мацубаровская частота, $S_{ll'}^{s}(\mathbf{q}, \tau)$ — *s*-я компонента вектора спинового оператора с мацубаровским временем τ ,

$$\mathbf{S}_{ll'}(\mathbf{q},\tau) = \frac{1}{2} \sum_{\mathbf{p},\alpha,\alpha'} a^{\dagger}_{\mathbf{p}\prime\alpha}(\tau) \,\hat{\mathbf{\sigma}}_{\alpha\alpha'} a_{\mathbf{p}+\mathbf{q}\prime'\alpha'}(\tau) \,,$$

где $\hat{\sigma}$ — вектор, составленный из матриц Паули $\hat{\sigma}$, $a_{\mathbf{p}/\alpha}^{\dagger}$ — оператор рождения электрона на орбитали *l* с импульсом **р** и спином α . Для получения нулевого по взаимодействию приближения расцепляем (6) по теореме Вика, вводим нормальные и аномальные функции Грина

$$\begin{split} G_{ml\sigma\sigma'}(\mathbf{k},\tau) &= - \left\langle T_{\tau} a_{\mathbf{k}m\sigma}(\tau) \, a_{\mathbf{k}l\sigma'}^{\dagger}(0) \right\rangle, \\ F_{ml\sigma\sigma'}^{\dagger}(\mathbf{k},\tau) &= \left\langle T_{\tau} a_{\mathbf{k}m\sigma}^{\dagger}(\tau) \, a_{-\mathbf{k}l\bar{\sigma}'}^{\dagger}(0) \right\rangle, \\ F_{ml\sigma\sigma'}(\mathbf{k},\tau) &= \left\langle T_{\tau} a_{\mathbf{k}m\sigma}(\tau) \, a_{-\mathbf{k}l\bar{\sigma}'}(0) \right\rangle, \end{split}$$

переходим к мацубаровским частотам ω_n и получаем для (+-)-компоненты восприимчивости в отсутствие спинорбитального взаимодействия

$$\chi_{0,+-}^{ll',mm'}(\mathbf{q},\mathrm{i}\Omega) = -T \sum_{\omega_n,\mathbf{p}} \left[G_{ml\uparrow\uparrow}(\mathbf{p},\mathrm{i}\omega_n) G_{l'm'\downarrow\downarrow}(\mathbf{p}+\mathbf{q},\mathrm{i}\Omega+\mathrm{i}\omega_n) - F_{lm'\uparrow\downarrow}^{\dagger}(\mathbf{p},-\mathrm{i}\omega_n) F_{l'm\downarrow\uparrow}(\mathbf{p}+\mathbf{q},\mathrm{i}\Omega+\mathrm{i}\omega_n) \right].$$
(7)

Физическая (наблюдаемая) восприимчивость получается при совпадающих орбитальных индексах двух функций Грина, входящих в вершину, т.е. при l' = l и m' = m: $\chi_{+-}(\mathbf{q}, \mathrm{i}\Omega) = (1/2) \sum_{l,m} \chi_{+-}^{ll,mm}(\mathbf{q}, \mathrm{i}\Omega)$.

Куперовская вершина $\Gamma_{\uparrow\downarrow}$ ищется в нормальной фазе, где нет аномальных функций Грина. Функции Грина в орбитальном базисе являются недиагональными и зависят от двух орбитальных индексов. Имеет смысл перейти в зонный базис, построенный на операторах рождения и уничтожения $b_{\mathbf{k}\mu\sigma}^{\dagger}$ и $b_{\mathbf{k}\mu\sigma}$ электронов с зонным индексом μ , где функции Грина диагональны, $G_{\mu\sigma}(\mathbf{k}, i\Omega) =$ $= 1/(i\Omega - \varepsilon_{\mathbf{k}\mu\sigma})$. Переход от орбитального базиса к зонному осуществляется с помощью матричных элементов $\varphi_{\mathbf{k}m}^{\mu}$: $|\sigma m \mathbf{k}\rangle = \sum_{\mu} \varphi_{\mathbf{k}m}^{\mu} |\sigma \mu \mathbf{k}\rangle$. Тогда $a_{\mathbf{k}m\sigma} = \sum_{\mu} \varphi_{\mathbf{k}m}^{\mu} b_{\mathbf{k}\mu\sigma}$ и

$$\chi_{0,+-}^{ll',mm'}(\mathbf{q},\mathrm{i}\Omega) = -T \sum_{\omega_n,\mathbf{p},\mu,\nu} \varphi_{\mathbf{p}m}^{\mu} \varphi_{\mathbf{p}'}^{*\mu} G_{\mu\uparrow}(\mathbf{p},\mathrm{i}\omega_n) \times G_{\nu\downarrow}(\mathbf{p}+\mathbf{q},\mathrm{i}\Omega+\mathrm{i}\omega_n) \varphi_{\mathbf{p}+\mathbf{q}l'}^{\nu} \varphi_{\mathbf{p}+\mathbf{q}m'}^{*\nu}.$$
 (8)

В дальнейшем мы будем использовать модель зонной структуры H_0 из работы [23], основанную на DFTрасчётах [24] для однослойного пниктида LaFeAsO. В качестве взаимодействия возьмём двухчастичный гамильтониан с одноузельным взаимодействием общего вида [23, 32-34]:

$$H = H_0 + U \sum_{f,m} n_{fm\uparrow} n_{fm\downarrow} + U' \sum_{f,m < l} n_{fl} n_{fm} + J \sum_{f,m < l} \sum_{\sigma,\sigma'} a^{\dagger}_{fl\sigma} a^{\dagger}_{fm\sigma'} a_{fl\sigma'} a_{fm\sigma} + J' \sum_{f,m \neq l} a^{\dagger}_{fl\uparrow} a^{\dagger}_{fl\downarrow} a_{fm\downarrow} a_{fm\uparrow} , \quad (9)$$

где $n_{fm} = n_{fm\uparrow} + n_{fm\downarrow}$, f — индекс узла, U и U' — внутри- и межорбитальное хаббардовское отталкивание, J — хундовский обмен, J' — парный перескок. Обычно параметры подчиняются спин-вращательной инвариантности, что приводит к уменьшению свободных параметров теории вследствие соотношений U' = U - 2J и J' = J.

На основании взаимодействия в гамильтониане (9) можно построить RPA для спиновой восприимчивости $\chi_{+-}(\mathbf{q}, i\Omega)$ [23]. Для того чтобы получить решение, нужно перейти от тензоров к матрицам с индексами $i = l + l' n_{orb}$ и $j = m + m' n_{orb}$, где n_{orb} — число орбиталей. Тогда в матричном виде спиновая восприимчивость в RPA выражается как

$$\hat{\chi}_{+-} = (\hat{1} - \hat{\chi}_{0,+-} \hat{U}^{+-})^{-1} \chi_{0,+-} , \qquad (10)$$

где \hat{U}^{+-} — матрица взаимодействий в (+-)-канале.

Куперовская вершина в многоорбитальном случае подобна таковой в однозонном случае (1),

$$\Gamma_{\uparrow\downarrow}^{l_{1}l_{2}l_{3}l_{4}}(\mathbf{k},\mathbf{k}',\omega) = \left[\frac{3}{2}\,\hat{U}_{s}\hat{\chi}_{s}(\mathbf{k}-\mathbf{k}',\omega)\,\hat{U}_{s} - \frac{1}{2}\,\hat{U}_{c}\hat{\chi}_{c}(\mathbf{k}-\mathbf{k}',\omega)\,\hat{U}_{c} + \frac{1}{2}\,\hat{U}_{s} + \frac{1}{2}\,\hat{U}_{c}\right]_{l_{1}l_{2}l_{3}l_{4}},\quad(11)$$

где $\hat{\chi}_{s,c} = (\hat{1} \mp \hat{\chi}_0 \hat{U}_{s,c})^{-1} \hat{\chi}_0$ — спиновая (s) и зарядовая (c) восприимчивости, $\hat{U}_{s,c}$ — матрицы взаимодействия в спиновом и зарядовом каналах, $l_1 - l_4$ — орбитальные индексы.

Необходимость построения теории в орбитальном представлении вызвана тем, что именно в нём взаимодействие хаббардовского типа, содержащееся в (9), остаётся локальным. Сверхпроводящие пары, однако, формируются на уровне зон, а не орбиталей, поэтому мы должны преобразовать куперовскую вершину в зонное представление с помощью матричных элементов ϕ_{km}^{μ} :

$$\Gamma^{\mu\nu}(\mathbf{k},\mathbf{k}',\omega) = \sum_{l_1,l_2,l_3,l_4} \varphi_{\mathbf{k}l_2}^{*\mu} \varphi_{-\mathbf{k}l_3}^{*\mu} \Gamma_{\uparrow\downarrow}^{l_1 l_2 l_3 l_4}(\mathbf{k},\mathbf{k}',\omega) \varphi_{\mathbf{k}' l_1}^{\nu} \varphi_{-\mathbf{k}' l_4}^{\nu}.$$
(12)

Как показывают расчёты, $\Gamma^{\mu\nu}$ быстро убывает с увеличением частоты в области частот, много меньших ширины зоны. Хотя уравнение для сверхпроводящей щели зависит, вообще говоря, от Іт $\Gamma^{\mu\nu}$, импульсы k и k', дающие главный вклад в спаривание, должны соответствовать малым частотам, при которых эти импульсы лежат вблизи ферми-поверхности. По аналогии с тем, как константа связи для электрон-фононного взаимодействия определяется интегралом по частотам от функции Элиашберга $\alpha^2 F(\omega)$, здесь, используя соотношения Крамерса – Кронига, получаем

$$\int_{0}^{\infty} d\omega \, \frac{\mathrm{Im} \, \Gamma^{\mu\nu}(\mathbf{k}, \mathbf{k}', \omega)}{\omega} = \mathrm{Re} \, \Gamma^{\mu\nu}(\mathbf{k}, \mathbf{k}', \omega = 0) \equiv \tilde{\Gamma}^{\mu\nu}(\mathbf{k}, \mathbf{k}') \,.$$
(13)

Таким образом, задача вычисления эффективного спаривающего взаимодействия сводится к нахождению действительной части $\Gamma^{\mu\nu}$ на нулевой частоте, что существенно облегчает расчёты.

Если параметр порядка $\Delta_{\mathbf{k}}$ представить в виде произведения амплитуды Δ_0 на угловую часть $g_{\mathbf{k}}$, то можно определить безразмерный параметр связи λ как результат решения задачи для собственных значений (λ) и собственных векторов ($g_{\mathbf{k}}$) [23]:

$$\lambda g_{\mathbf{k}} = -\sum_{\nu} \oint_{\nu} \frac{\mathbf{d}\mathbf{k}_{\parallel}'}{2\pi} \frac{1}{2\pi v_{\mathbf{F}\mathbf{k}'}} \tilde{\Gamma}^{\mu\nu}(\mathbf{k}, \mathbf{k}') g_{\mathbf{k}'}, \qquad (14)$$

где v_{Fk} — скорость Ферми, контурный интеграл берётся по \mathbf{k}'_{\parallel} , принадлежащему *v*-й поверхности Ферми, а зонный индекс μ однозначно определяется тем, на какой поверхности Ферми лежит импульс **k**. Положительные λ соответствуют притяжению, наибольшему из них будет отвечать максимальное значение T_c , т.е. наиболее выгодная симметрия спаривания и щели, определяемая g_k . Выстроив λ по убыванию, можно увидеть, какие симметрии и структуры щелей являются наиболее выгодными и какие будут конкурировать между собой.

С точки зрения механизма сверхпроводящего спаривания как спин-флуктуационные теории [23, 34, 35] и их самосогласованные обобщения в приближении FLEX (Fluctuation-exchange approximation) [36–38], так и ренормгрупповой анализ [39, 40] являются довольно сложными численными методами. Но поскольку для спаривания важна амплитуда рассеяния в канале частица – частица на ферми-поверхности, угловую зависимость этой амплитуды можно разложить по тем же гармоникам, что и $\Delta_{\mathbf{k}}$. Такой метод, называемый LAHA (Lowest Angular Harmonics Approximation — приближение низших угловых гармоник), позволяет с помощью ограниченного набора параметров, не прибегая к сложным расчётам, описать спаривание в соединениях железа как при малом допировании, так и в случаях экстремального допирования электронами или дырками [41–43]. Основное предположение LAHA состоит в том, что куперовская вершина $\tilde{\Gamma}^{\mu\nu}(\mathbf{k},\mathbf{k}')$ факторизуется по импульсам **k** и **k**':

$$\tilde{\Gamma}^{\eta}(\mathbf{k},\mathbf{k}') = \sum_{m,n} C^{\eta}_{mn} \Psi^{\eta}_{m}(\mathbf{k}) \Psi^{\eta}_{n}(\mathbf{k}') , \qquad (15)$$

где индекс η соответствует группе симметрии параметра порядка, C_{mm}^{η} — коэффициенты, а функции Ψ представляют собой разложение по угловым гармоникам. Разложения, в зависимости от η , имеют различную функциональную форму. Так, например для A_{1g} -представления $\Psi_{m}^{A_{1g}}(\mathbf{k}) = a_m + b_m \cos(4\phi_{\mathbf{k}}) + c_m \cos(8\phi_{\mathbf{k}}) + \dots, a$ для B_{1g} -представления $\Psi_{m}^{B_{1g}}(\mathbf{k}) = a_m^* \cos(2\phi_{\mathbf{k}}) + b_m^* \cos(6\phi_{\mathbf{k}}) + +c_m^* \cos(10\phi_{\mathbf{k}}) + \dots$

Теперь задачу можно свести к нахождению функции $\tilde{\Gamma}_{ab}^{\eta}$, где *a* и *b* соответствуют номерам ферми-поверхностей. Так, на рис. 1 это дырочные, $\alpha_{1,2}$, и электронные, $\beta_{1,2}$, карманы. Например, для расширенных s- и $d_{x^2-y^2}$ -компонент можно записать

$$\begin{split} \tilde{\Gamma}_{\alpha_i \alpha_j} &= U_{\alpha_i \alpha_j} + \tilde{U}_{\alpha_i \alpha_j} \cos(2\phi_i) \cos(2\phi_j) ,\\ \tilde{\Gamma}_{\alpha_i \beta_1} &= U_{\alpha_i \beta} \left[1 + 2\gamma_{\alpha_i \beta} \cos(2\theta_1) \right] + \tilde{U}_{\alpha_i \beta} \times \\ &\times \left[1 + 2\tilde{\gamma}_{\alpha_i \beta} \cos(2\theta_1) \right] \cos(2\phi_i) ,\\ \tilde{\Gamma}_{\beta_1 \beta_1} &= U_{\beta\beta} \left\{ 1 + 2\gamma_{\beta\beta} \left[\cos\left(2\theta_1\right) + \cos\left(2\theta_2\right) \right] + \\ &+ 4\gamma'_{\beta\beta} \cos\left(2\theta_1\right) \cos\left(2\theta_2\right) \right\} + \\ &+ \tilde{U}_{\beta\beta} \left\{ 1 + 2\tilde{\gamma}_{\beta\beta} \left[\cos\left(2\theta_1\right) + \cos\left(2\theta_2\right) \right] + \\ &+ 4\tilde{\gamma}'_{\beta\beta} \cos\left(2\theta_1\right) \cos\left(2\theta_2\right) \right\} , \end{split}$$

где U_{ij} и \tilde{U}_{ij} — взаимодействия в s- и d-каналах соответственно, $\gamma_{\alpha_i\beta}$, $\gamma_{\beta\beta}$, $\gamma'_{\beta\beta}$, $\tilde{\gamma}_{\alpha_i\beta}$, $\tilde{\gamma}'_{\beta\beta}$ — меры анизотропии взаимодействия, ϕ_i и θ_i — углы на дырочных и электронных ферми-поверхностях, отмеренные от оси k_x . Уравнение для параметра порядка тогда сводится к матричному уравнению 4 × 4, которое легко решить. Коэффициенты C^{η}_{nm} и все a, b и т.д., входящие в разложение Ψ , можно получить из сравнения с расчётом полной $\tilde{\Gamma}^{\mu\nu}(\mathbf{k},\mathbf{k}')$ с помощью уравнений (11) и (12). Сравнение результатов для параметра порядка показало, что подход LAHA очень хорошо воспроизводит результаты RPA [42].

Одним из преимуществ LAHA является возможность варьировать эффективные параметры взаимодействия U_{ij} и \tilde{U}_{ij} , определяя таким образом, насколько стабильно какое-либо конкретное решение для щели. В такой фермиологической картине можно понять, какое именно взаимодействие приводит к спариванию.

На рисунке 3 схематически показаны фазовая диаграмма и ферми-поверхности для различных уровней допирования. В зависимости от топологии и взаимного объёма дырочных и электронных карманов может возникнуть конкуренция между щелями s₊- и d-типа. Однако при наличии и электронных, и дырочных карманов всегда выигрывает s_±-состояние. Доминирующее взаимодействие U_{ij} и \tilde{U}_{ij} , которое было получено из анализа результатов LAHA, показано стрелками, связывающими частицы на поверхностях Ферми. Так, при слабом допировании главным является взаимодействие между электронными и дырочными карманами $U_{\alpha,\beta}$ и доминирует s_±-состояние. При электронном допировании большой величиной обладает отталкивание внутри электронного кармана U_{ββ} и системе выгодно сформировать знакопеременную щель на электронных карманах, чтобы уменьшить этот вклад. Тогда возникает s_±-coстояние с линиями нулей на электронной ферми-поверхности. При экстремальном электронном допировании, соответствующем $K_x Fe_{2-\nu} Se_2$, когда дырочные карманы

Рис. 3. (В цвете онлайн.) Схематическая фазовая диаграмма соединений железа для допирования дырками и электронами. Сосуществование АФМ (SDW) и сверхпроводящей (SC) фаз является микроскопическим для электронного допирования и макроскопическим (разбиение на SDW- и SC-области) для дырочного допирования. Качественная картина симметрий сверхпроводящего параметра, следующая из спинфлуктуационной теории [16, 23, 35] и LAHA [42, 43] для двумерной системы, показана на схематических ферми-поверхностях на вставках над фазовой диаграммой; s_± и d обозначают доминирующую и субдоминирующую симметрию спаривания. Сплошными двойными стрелками (↔) показано доминирующее взаимодействие.

исчезают, система формирует сверхпроводимость d-типа вследствие сильного взаимодействия между электронными ферми-карманами. Остаётся открытым вопрос: будет ли выгодным такое состояние по сравнению со связующе-антисвязующим s_±-состоянием [16, 44] при переходе в зону Бриллюэна, соответствующую двум атомам Fe на элементарную ячейку? Казалось бы, из-за спин-орбитального взаимодействия, которое там, что очевидно, присутствует [45], и следующей из него гибридизации вдоль симметрийных направлений связующеантисвязующее s_±-состояние должно быть наиболее выгодным [46]. Но, как показывают расчёты в 10-орбитальной модели для K_{0,8}Fe_{1,7}Se₂ и K_{0,85}Fe_{1,8}Se₂, доминирующим всегда является спаривание d_{x²-v²}-типа [47].

При дырочном допировании, наоборот, из-за возникновения нового дырочного кармана у вблизи точки (π,π) стабилизируется s_±-состояние без нулей на фермиповерхности. В эту картину вносит вклад орбитальный характер зон. Так как карман у сформирован в большей степени d_{xy}-орбиталью, как и малые области на электронных карманах (см. рис. 1), новый канал рассеяния на него с электронных карманов приводит к изотропизации щели на электронных карманах. При дальнейшем допировании дырками, когда электронные карманы исчезают, как в KFe₂As₂, сильное взаимодействие внутри дырочного кармана α₂ заставляет систему сформировать знакопеременную щель с линиями нулей на этом кармане. Симметрия щели по-прежнему относится к А_{1g}-представлению и соответствует s_±-состоянию с добавленными высшими угловыми гармониками [43].

Что касается экспериментального наблюдения s₊-coстояния, то одними из первых были получены результаты по неупругому рассеянию нейтронов. Так как $\chi_0(\mathbf{q},\omega)$ описывает возбуждения частица-дырка, а в сверхпроводящем состоянии все возбуждения на частотах, меньших $\approx 2\Delta_0$ (при T=0), отсутствуют, то только на частотах выше этого значения Im $\chi_0(\mathbf{q},\omega)$ становится ненулевой. Из аномальных функций Грина в выражении (7) возникают члены, пропорциональные $1 - \Delta_k \Delta_{k+q} / E_k E_{k+q}$. Эти множители называются аномальными факторами когерентности. На уровне Ферми $E_{\mathbf{k}} \equiv (\varepsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2)^{1/2} = |\Delta_{\mathbf{k}}|.$ Если \varDelta_k и \varDelta_{k+q} имеют одинаковый знак, то факторы когерентности будут равны нулю, что приведёт к плавному возрастанию спиновой восприимчивости с увеличением частоты при $\omega > \Omega_{\rm c}$, где $\Omega_{\rm c} = \min(|\varDelta_{\bf k}| + |\varDelta_{{\bf k}+{\bf q}}|),$ тогда как при меньших, чем $\Omega_{\rm c}$, частотах ${\rm Im}\,\chi_0({f q},\omega)=0.$ Это видно из зависимости, приведённой на рис. 1, для сверхпроводимости классического s-типа (s++-состояние). Если же, как в случае s_{\pm} - и d-состояний в соединениях железа, вектор $\mathbf{q} = \mathbf{Q} = (\pi, 0)$ соединяет фермиповерхности с разными знаками щели, sgn $\Delta_{\mathbf{k}} \neq \text{sgn } \Delta_{\mathbf{k}+\mathbf{q}}$, то факторы когерентности отличны от нуля и в мнимой части χ_0 возникает скачок при $\omega = \Omega_c$. В соответствии с соотношениями Крамерса-Кронига в действительной части появляется логарифмическая сингулярность. Для определённого набора параметров U, U', J, J', входящих в матрицу U^{\pm} , ненулевое значение $\operatorname{Re} \chi_0$ и $\operatorname{Im} \chi_0 = 0$ приводят к расходимости мнимой части восприимчивости в RPA (10). Соответствующий пик в Im $\chi(\mathbf{Q}, \omega)$, который называется "спиновым резонансом", появляется при частоте $\Omega_{\rm res} \leqslant \Omega_{\rm c}$. На рисунке 1 этот пик хорошо виден для s_{\pm}-состояния. В случае симметрии d_{x^2-v^2}, хотя резонанс и мог бы в принципе возникнуть из-за знакопеременности щели, вектор Q соединяет состояния на

дырочной ферми-поверхности вблизи нулей щели $\Delta_{\mathbf{k}}$ и полная щель в Im χ_0 , определяемая Ω_c , очень мала. Поскольку $\Omega_c \ll \Delta_0$, скачок в Im χ_0 исчезающе мал и восприимчивость в RPA показывает небольшое увеличение по сравнению с таковой для нормального состояния (см. рис. 1). То же справедливо для d_{xy} - и $d_{x^2-y^2} + id_{xy}$ симметрий [48] и для триплетного р-типа спаривания [49].

Таким образом, наличие спинового резонанса является эксклюзивным свойством s_{\pm} -состояния. Для соединений железа спиновый резонанс был предсказан теоретически [48, 49], а затем обнаружен экспериментально в семействах пниктидов и халькогенидов 1111, 122 и 11 [50–58].

Вводя дополнительное затухание квазичастиц и подбирая параметры, можно добиться появления пика в магнитной восприимчивости в s++-состоянии на частотах выше Ω_c [59, 60]. С экспериментальной точки зрения важно отличить ситуацию с резонансным пиком при $\Omega_{\rm res} \leqslant \Omega_{\rm c}$ от ситуации увеличения восприимчивости при $\omega > \Omega_{\rm c}$. Первый случай относится к s $_\pm$ -состоянию и косвенно подтверждает спин-флуктуационный механизм сверхпроводимости, а второй — к s++-состоянию и теории сверхпроводимости за счёт орбитальных флуктуаций или электрон-фононного взаимодействия. Пока точного ответа нет, но совокупность экспериментальных данных как по спиновому резонансу, так и по интерференции квазичастиц (quasiparticle interference scattering), глубине проникновения, теплоёмкости и многим другим наблюдаемым характеристикам свидетельствует в пользу s₊-состояния [16].

Суммируя вышеизложенное, можно сказать, что, несмотря на многообразие материалов, многоорбитальная спин-флуктуационная теория спаривания объясняет многие наблюдаемые особенности сверхпроводников на основе железа, в частности различные варианты экспериментально наблюдаемого поведения щели. Анизотропное s_{\pm} -состояние и его структура нулей на фермиповерхностях очень чувствительны к таким деталям электронной структуры, как орбитальный характер зон, спин-орбитальное взаимодействие и изменение зонной структуры в зависимости от уровня допирования.

Я выражаю благодарность О.В. Долгову, И.М. Ерёмину, А. Кордюку, И.И. Мазину, В.М. Пудалову, М.В. Садовскому, Ю.Н. Тогушовой, Р.J. Hirschfeld и А.В. Чубукову за полезные обсуждения. Работа поддержана грантом РФФИ 13-02-01395, программой Президиума РАН 20.7, программой государственной поддержки ведущих научных школ (НШ-2886.2014.2), фондом "Династия" и МЦФФМ.

Список литературы

- 1. Kamihara Y et al. J. Am. Chem. Soc. 130 3296 (2008)
- 2. Fujioka M et al., arXiv:1401.5611
- 3. Wang Q-Y et al. Chinese Phys. Lett. 29 037402 (2012)
- 4. Liu D et al. *Nature Commun.* **3** 931 (2012)
- Садовский M В УΦΗ 178 1243 (2008); Sadovskii M V Phys. Usp. 51 1201 (2008)
- Ивановский А Л УФН 178 1273 (2008); Ivanovskii A L Phys. Usp. 51 1229 (2008)
- Изюмов Ю А, Курмаев Э З УФН 178 1307 (2008); Izyumov Yu A, Kurmaev E Z Phys. Usp. 51 1261 (2008)
- 8. Ishida K, Nakai Y, Hosono H J. Phys. Soc. Jpn. 78 062001 (2009)
- 9. Johnston D C Adv. Phys. 59 803 (2010)
- 10. Paglione J, Greene R L Nature Phys. 6 645 (2010)

- 11. Mazin I I Nature 464 183 (2010)
- Lumsden M D, Christianson A D J. Phys. Condens. Matter 22 203203 (2010)
- 13. Wen H-H, Li S Annu. Rev. Condens. Matter Phys. 2 121 (2011)
- 14. Basov D N, Chubukov A V Nature Phys. 7 272 (2011)
- 15. Stewart G R Rev. Mod. Phys. 83 1589 (2011)
- Hirschfeld P J, Korshunov M M, Mazin I I Rep. Prog. Phys. 74 124508 (2011)
- 17. Boeri L, Dolgov O V, Golubov A A Phys. Rev. Lett. 101 026403 (2008)
- 18. Eschrig H, arXiv:0804.0186
- 19. Ning F et al. J. Phys. Soc. Jpn. 78 013711 (2009)
- 20. Lebègue S Phys. Rev. B 75 035110 (2007)
- 21. Singh D J, Du M-H Phys. Rev. Lett. 100 237003 (2008)
- 22. Mazin I I et al. Phys. Rev. Lett. 101 057003 (2008)
- 23. Graser S et al. New J. Phys. 11 025016 (2009)
- 24. Cao C, Hirschfeld P J, Cheng H-P Phys. Rev. B 77 220506(R) (2008)
- 25. Kordyuk A A *ΦHT* 38 1119 (2012); Low Temp. Phys. 38 888 (2012)
- 26. Brouet V et al. Phys. Rev. B 86 075123 (2012)
- 27. Berk N F, Schrieffer J R Phys. Rev. Lett. 17 433 (1966)
- 28. Scalapino D J J. Low Temp. Phys. 117 179 (1999)
- Scalapino D J, Loh E (Jr.), Hirsch J E Phys. Rev. B 34 8190(R) (1986)
- 30. Kontani H, Onari S Phys. Rev. Lett. 104 157001 (2010)
- 31. Onari S, Kontani H Phys. Rev. B 85 134507 (2012)
- 32. Castellani C, Natoli C R, Ranninger J Phys. Rev. B 18 4945 (1978)
- 33. Oleś A M Phys. Rev. B 28 327 (1983)
- 34. Kuroki K et al. Phys. Rev. Lett. 101 087004 (2008)
- 35. Kemper A F et al. New J. Phys. **12** 073030 (2010)
- 36. Ikeda H J. Phys. Soc. Jpn. 77 123707 (2008)
- 37. Ikeda H, Arita R, Kuneš J Phys. Rev. B 81 054502 (2010)
- 38. Zhang J et al. *Phys. Rev. B* **79** 220502(R) (2009)
- 39. Chubukov A V, Efremov D V, Eremin I *Phys. Rev. B* **78** 134512 (2008)
- 40. Thomale R et al. Phys. Rev. Lett. 106 187003 (2011)
- 41. Maiti S et al. Phys. Rev. Lett. 107 147002 (2011)
- 42. Maiti S et al. Phys. Rev. B 84 224505 (2011)
- 43. Maiti S, Korshunov M M, Chubukov A V *Phys. Rev. B* 85 014511 (2012)
- 44. Mazin I I Phys. Rev. B 84 024529 (2011)
- 45. Korshunov M M et al. J. Supercond. Novel Magn. 26 2873 (2013)
- 46. Khodas M, Chubukov A V Phys. Rev. Lett. 108 247003 (2012)
- 47. Kreisel A et al. Phys. Rev. B 88 094522 (2013)
- 48. Korshunov M M, Eremin I Phys. Rev. B 78 140509(R) (2008)
- 49. Maier T A, Scalapino D J Phys. Rev. B 78 020514(R) (2008)
- 50. Inosov D S et al. *Nature Phys.* **6** 178 (2010)
- 51. Christianson A D et al. *Nature* **456** 930 (2008)
- 52. Lumsden M D et al. Phys. Rev. Lett. 102 107005 (2009)
- 53. Christianson A D et al. Phys. Rev. Lett. 103 087002 (2009)
- 54. Park J T et al. Phys. Rev. B 82 134503 (2010)
- 55. Argyriou D N et al. Phys. Rev. B 81 220503(R) (2010)
- 56. Castellan J-P et al. Phys. Rev. Lett. 107 177003 (2011)
- 57. Qiu Y et al. Phys. Rev. Lett. 103 067008 (2009)
- 58. Babkevich P et al. J. Phys. Condens. Matter 22 142202 (2010)
- 59. Onari S, Kontani H, Sato M Phys. Rev. B 81 060504(R) (2010)
- 60. Onari S, Kontani H Phys. Rev. B 84 144518 (2011)

PACS numbers: **74.25. – q**, **74.45. + c**, 74.62.Dh, 74.70.Xa DOI: 10.3367/UFNr.0184.201408i.0888

Андреевская спектроскопия железосодержащих сверхпроводников: температурная зависимость параметров порядка и их скейлинг с *T*_c

Т.Е. Кузьмичёва, С.А. Кузьмичёв, М.Г. Михеев, Я.Г. Пономарёв, С.Н. Чесноков, В.М. Пудалов, Е.П. Хлыбов, Н.Д. Жигадло

1. Введение

Одним из ключевых, но весьма неожиданных открытий в истории физики твёрдого тела стало создание [1] в 2006 г. первого представителя класса слоистых высокотемпературных сверхпроводников (ВТСП) на основе железа оксипниктида LnOFePn (где Ln — лантаноид, Pn пниктид); впоследствии эту систему стали обозначать как 1111. С 2008 г. класс железосодержащих сверхпроводников заметно расширился: было синтезировано несколько семейств пниктидов и халькогенидов железа [2-4]. По структуре оксипниктиды схожи с ВТСПкупратами: они представляют собой стопку сверхпроводящих слоёв (Fe-As), чередующихся вдоль *с*-направления со спейсерами — несверхпроводящими блоками оксидов (Ln-O). Несмотря на достаточно ярко выраженную слоистость и анизотропию физических свойств, электронная подсистема железосодержащих сверхпроводников по сравнению с таковой в купратах менее квазидвумерна, так как высота блоков Fe-As превосходит толщину CuO₂-слоя, а расстояния между сверхпроводящими блоками в железосодержащих сверхпроводниках значительно меньше, чем подобный промежуток в купратах. Этот факт можно назвать одной из причин [5] того, что полученная максимальная критическая температура железосодержащих сверхпроводников $T_c \approx 57,5 \text{ K}$ [44], хотя и является достаточно высокой, не достигает уровня $T_{\rm c}$ купратов.

Сверхпроводимость в железосодержащих материалах возникает при подавлении состояния с волной спиновой плотности с помощью допирования сверхпроводящих блоков Fe – As или приложения внешнего давления [7]. Однако существенное отличие этих материалов от купратов заключается в многозонном характере их недавно открытой сверхпроводимости. Зонные расчёты показали (в качестве обзора см. [8]), что в этих материалах

В.М. Пудалов. Физический институт им. П.Н. Лебедева РАН, Москва, РФ; Московский физико-технический институт, Долгопрудный, Московская обл., РФ

Е.П. Хлыбов. Институт физики высоких давлений РАН, Троицк, Mockba, РФ; International Laboratory for High Magnetic Fields and Low Temperatures, Wroclaw, Poland H.Д. Жигадло. Laboratory for Solid State Physics, ETH Zurich,

Zurich, Switzerland

Т.Е. Кузьмичёва. Физический институт им. П.Н. Лебедева РАН, Москва, РФ; Московский государственный университет им. М.В. Ломоносова, физический факультет, Москва, РФ E-mail: kute@sci.lebedev.ru

С.А. Кузьмичёв, М.Г. Михеев, Я.Г. Пономарёв, С.Н. Чесноков. Московский государственный университет им. М.В. Ломоносова, Москва, РФ

[©] Т.Е. Кузьмичёва, С.А. Кузьмичёв, М.Г. Михеев, Я.Г. Пономарёв, С.Н. Чесноков, В.М. Пудалов, Е.П. Хлыбов, Н.Д. Жигадло 2014