ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКОГО ПОЛЯ И ОБМЕННЫХ ВЗАИМОДЕЙСТВИЙ В МУЛЬТИФЕРРОИКЕ SmFe₃(BO₃)₄

М. Н. Попова^а*, Е. П. Чукалина^а, Б. З. Малкин^b,

Д. А. Ерофеев^{а,с}, Л. Н. Безматерных^d, И. А. Гудим^d

^а Институт спектроскопии Российской академии наук 142190, Москва, Троицк, Россия

^b Казанский (Приволжский) федеральный университет 420008, Казань, Россия

^сМосковский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

^d Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 5 июля 2013 г.

Представлены результаты исследования оптических спектров ориентированных монокристаллов $SmFe_3(BO_3)_4$ в области f-f-переходов в ионе Sm^{3+} методом фурье-спектроскопии. Энергии, свойства симметрии и обменные расщепления штарковских подуровней основного и семнадцати возбужденных мультиплетов иона Sm^{3+} в кристаллическом поле симметрии D_3 определены из измеренных температурных зависимостей спектров поглощения поляризованного излучения. Найдены величины параметров кристаллического поля, действующего на ионы самария, и параметров обменного взаимодействия между ионами Sm^{3+} и Fe³⁺. Показано, что вследствие сильного смешивания основного и возбужденных турьтиплетов кристаллическим полем анизотропия эффективного обменного взаимодействия существенно сильнее магнитной анизотропии.

DOI: 10.7868/S0044451014010131

1. ВВЕДЕНИЕ

Изучение спектральных, магнитных, магнитоэлектрических и магнитоупругих свойств мультиферроиков представляет интерес как для развития фундаментальной физики, так и с точки зрения возможных применений в спинтронике и оптоэлектронике соединений с сосуществующими внутренними электрическими и магнитными полями. Среди соединений из семейства новых мультиферроиков RFe₃(BO₃)₄ (R = Y, La–Lu) ферроборат самария выделяется тем, что только в нем наблюдалась спонтанная электрическая поляризация в магнитоупорядоченной фазе. Отметим, что, подобно ферроборату неодима, SmFe₃(BO₃)₄ имеет максимальную в ряду редкоземельных (P3) ферроборатов величину магнитоиндуцированной электрической поляризации (около 500 мкКл/м²) [1,2].

Ферроборат самария кристаллизуется в тригональной сингонии и имеет пространственную группу симметрии R32 [3-5]. Эта структура сохраняется вплоть до 2 К [6,7]. Ионы Sm³⁺ окружены шестью ионами $\mathrm{O}^{2-},$ образующими тригональную призму с осью симметрии вдоль кристаллографической оси с, и занимают единственную позицию с точечной группой симметрии D₃. Измерения температурной зависимости магнитной восприимчивости [1] и спектроскопическое исследование ориентированных монокристаллов SmFe₃(BO₃)₄ [6] показали, что ниже температуры $T_N = 33$ К моменты ионов Fe³⁺ упорядочиваются в плоскости ab, перпендикулярной оси с кристалла. Легкоплоскостной характер антиферромагнитной структуры, формирующейся при температурах $T < T_N$, был подтвержден в экспериментах по рассеянию нейтронов на

^{*}E-mail: popova@isan.troitsk.ru

порошках SmFe₃(BO₃)₄ [7]. Было установлено, что элементарная ячейка удваивается в направлении оси c (вектор распространения $\mathbf{k} = [0, 0, 3/2]$).

В каждой кристаллографической плоскости, параллельной базисной плоскости ab, магнитные моменты ионов железа (самария) параллельны, а в соседних ближайших плоскостях — антипараллельны. Величины магнитных моментов ионов железа и самария, полученные в [7] из анализа данных по дифракции нейтронов, в предположении коллинеарности всех магнитных моментов, соответственно равны $4.2\mu_B$ и $0.24\mu_B$ (μ_B — магнетон Бора) при температуре 1.7 К. Отметим, что вариант магнитной структуры с неколлинеарными магнитными моментами ионов железа и самария, также рассмотренный в работе [7], следует отвергнуть, поскольку найденная для такой структуры величина магнитного момента ионов самария, 0.8µ_B, превышает максимально возможную величину $\mu_B g_J J = (5/7) \mu_B$ в основном мультиплете ⁶H_{5/2} с фактором Ланде $g_J = 2/7$ и полным угловым моментом J = 5/2. Вопрос об ориентации магнитных моментов в плоскости ab остается в настоящее время открытым, однако можно предположить, что возникающие при T < T_N домены различаются ориентацией коллинеарных магнитных моментов ионов железа и самария вдоль одного из трех возможных направлений кристаллографической оси *a*, как и в кристалле $NdFe_3(BO_3)_4$ [8].

Магнитные свойства $SmFe_3(BO_3)_4$ были исследованы в работе [9]. Измеренные зависимости намагниченности от величины и направления внешнего магнитного поля при температурах выше и ниже T_N были использованы для определения параметров обменных взаимодействий между ионами железа и между ионами железа и самария в рамках приближения молекулярного поля.

SmFe₃(BO₃)₄ и NdFe₃(BO₃)₄ — единственные ферробораты с чисто легкоплоскостной магнитной структурой, в которой полностью отсутствует компонента магнитного момента вдоль оси *c* [7]. Для объяснения этого обстоятельства, как указывалось, в частности, в работе [7], существенно знание параметров кристаллического поля, структуры волновых функций различных состояний РЗ-иона в кристаллическом поле, а также параметров обменного взаимодействия между РЗ-ионами и ионами железа. Указанные параметры могут быть получены на основе анализа спектроскопических данных.

Данная работа посвящена экспериментальному и теоретическому исследованию штарковской структуры мультиплетов иона Sm³⁺ в кристаллах

2. ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ

Монокристаллы SmFe₃(BO₃)₄ были выращены раствор-расплавным методом на основе тримолибдата висмута: 80 масс. % (Bi₂Mo₃O₁₂ + 2B₂O₃ + +0.6Sm₂O₃)+20 масс. % SmFe₃(BO₃)₄. Температура насыщения такого раствора-расплава, определенная с помощью пробных кристаллов, оказалась равной 960 °C.

После гомогенизации при $T = 1050 \,^{\circ}\text{C}$ над раствором-расплавом подвешивался кольцевой кристаллодержатель с десятью затравочными кристаллами (размерами 1.0–1.5 мм). Затем температура понижалась до температуры насыщения $T = T_{sat} +$ + 10 °C = 970 °C (чтобы расплавить приповерхностный слой кристалла, возможно, испорченный во время крепления). При этой температуре держатель с затравками погружался в раствор-расплав, включалось вращение держателя с постоянной скоростью 30 об./мин. Через 15 мин температура понижалась до $T = T_{sat} - 7 \,^{\circ}\text{C} = 953 \,^{\circ}\text{C}$. Далее рост шел при программном понижении температуры с нарастающей скоростью 1-3°С/сут, обеспечивающей прирост кристаллов не более 1 мм/сут (иначе возможно формирование дефектов типа «захват раствора-расплава»). После завершения роста кристаллодержатель поднимался над раствором-расплавом, и печь охлаждалась до комнатной температуры со скоростью 50-70 °С/ч.

Выращенные монокристаллы размерами порядка $5 \times 4 \times 3$ мм³ имели хорошее оптическое качество, характерную для ферроборатов зеленую окраску и естественную огранку. Из кристаллов были вырезаны ориентированные пластинки, которые шлифовались до толщины 0.15 мм и полировались. Ориентация образцов проводилась по габитусу и по коноскопической картине. Спектры пропускания ориентированных монокристаллов SmFe₃(BO₃)₄ были зарегистрированы на фурье-спектрометре Bruker IFS 125 HR в спектральной области 1000-23000 см⁻¹. Образец находился в криостате замкнутого цикла Cryomech ST403 при температурах от 5 до 300 К, стабилизированных с точностью ±0.05 К. Измерения проводились в неполяризованном свете на пластинках с нормалью, параллельной оси c (**k** || **c**, **E**, $\mathbf{H} \perp \mathbf{c} - \alpha$ -поляризация) и в линейно поляризован-

Рис.1. Спектр пропускания кристалла $SmFe_3(BO_3)_4$ при комнатной температуре. Отмечены конечные состояния для оптических переходов с уровней основного мультиплета ${}^6H_{5/2}$ в ионах Sm^{3+} и из основного состояния 6S в ионах Fe^{3+}

ном свете на образцах, плоскость которых содержит ось c ($\mathbf{k} \perp \mathbf{c}$) в двух возможных конфигурациях: $\mathbf{E} \parallel \mathbf{c} - \pi$ -поляризация, $\mathbf{E} \perp \mathbf{c} - \sigma$ -поляризация. Для повышения отношения сигнал/шум при регистрации спектров в области 16000–23000 см⁻¹ использовался сине-зеленый светофильтр C3C-21.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

3.1. Спектры пропускания и поглощения монокристаллов SmFe₃(BO₃)₄ в парамагнитной фазе

Рисунок 1 демонстрирует спектр пропускания монокристалла SmFe₃(BO₃)₄ при комнатной температуре во всей исследуемой спектральной области (здесь и далее ν — волновое число). Спектр содержит узкие линии, соответствующие оптическим f-f-переходам между уровнями энергии электронной оболочки $4f^5$ иона Sm³⁺, и широкие полосы, обусловленные d-d-переходами в ионах Fe³⁺ с электронной оболочкой $3d^5$. Полосы поглощения, соответствующие переходам ионов Fe³⁺ из основного состояния 6S на подуровни терма 4G , расщепленного в кристаллическом поле, определяют зеленую окраску монокристаллов РЗ-ферроборатов. Интенсивное поглощение в области волновых чисел выше 24000 см $^{-1}$ обусловлено переходами ионов ${\rm Fe}^{3+}$ в состояния с переносом заряда [10].

В тригональном кристаллическом поле мультиплеты ${}^{2S+1}L_J$ иона ${
m Sm}^{3+}$ расщепляются на (2J+1)/2дублетов, преобразующихся по двузначным неприводимым представлениям Г₄ и Г₅₆ точечной группы симметрии D₃. На рис. 2 приведен спектр поглощения парамагнитного $SmFe_3(BO_3)_4$ $(T > T_N)$ при достаточно низкой температуре (когда не проявляются переходы с возбужденных штарковских уровней основного мультиплета ${}^{6}H_{5/2})$ в области переходов ${}^{6}H_{5/2} \rightarrow {}^{6}H_{13/2}$ в ионе ${
m Sm}^{'3+}$ в трех разных поляризациях. Семь наблюдаемых линий отражают штарковскую структуру мультиплета ⁶H_{13/2}. Для интерпретации спектров поглощения ориентированных образцов SmFe₃(BO₃)₄ в поляризованном свете необходимо учитывать правила отбора для электрических дипольных (ЭД) и магнитных дипольных (МД) переходов в случае точечной группы симметрии D₃ (табл. 1). Совпадение спектров в α - и σ -поляризациях на рис. 2 свидетельствует об ЭД-характере наблюдаемых переходов из основного состояния на уровни мультиплета ⁶H_{13/2}. Мульти-

Коэффициент поглощения, см⁻¹

Рис. 2. Спектр поглощения ${
m SmFe_3(BO_3)_4}$ в области перехода ${}^6H_{5/2} \rightarrow {}^6H_{13/2}$ в ионе ${
m Sm}^{3+}$ при температуре 40 К в σ -, α - и π -поляризациях. Звездочкой отмечена линия поглощения примеси

Таблица 1. Правила отбора для электрических дипольных (ЭД) и магнитных дипольных (МД) переходов в ионе с нечетным числом электронов в позиции с точечной группой симметрии D_3

σ	ЭД		МД			
D_3	Γ_4	Γ_{56}	Γ_4	Γ_{56}		
Γ_4	d_x, d_y, d_z α, σ, π	d_x, d_y α, σ	μ_x, μ_y, μ_z $lpha, \sigma, \pi$	$\begin{array}{c} \mu_x, \ \mu_y \\ \alpha, \ \pi \end{array}$		
Γ_{56}	d_x, d_y α, σ	d_z π	$\mu_x, \ \mu_y, \ lpha, \ \pi$	μ_z σ		

плет ${}^{6}H_{13/2}$ расщепляется в кристаллическом поле симметрии D_3 на пять уровней Γ_4 и два уровня Γ_{56} (табл. 2).

В соответствии с правилами отбора для ЭД-переходов находим, что в случае Γ_4 -симметрии основного состояния в оптическом мультиплете ${}^6H_{13/2}$ запрещены два перехода в π -поляризации, в то время как остальные пять линий могут наблюдаться во всех поляризациях. В случае Γ_{56} -симметрии основного состояния в π -поляризации должны отсутство-

вать пять линий, а в *а*- и *о*-поляризациях — две. Экспериментально наблюдаемый спектр (рис. 2) соответствует Г₄-симметрии основного состояния. Руководствуясь правилами отбора, находим неприводимые представления, определяющие свойства симметрии волновых функций штарковских уровней мультиплета ${}^{6}H_{13/2}$. Они указаны на рис. 2 и в табл. 2 (рядом с найденными значениями энергий штарковских подуровней). Выполнив аналогичный анализ других оптических мультиплетов, мы получили данные, представленные во второй колонке табл. 2. Следует отметить, что линия поглощения ${}^{6}H_{5/2}(\Gamma_{4}(\mathbf{I})) \rightarrow {}^{6}H_{7/2}(\Gamma_{56}(C))$ имеет дублетную структуру с расщеплением около 11 см $^{-1}$, которое может быть обусловлено квазирезонансным взаимодействием электронного возбуждения $(E_{th}(\Gamma_{56}(C) = 1183 \text{ см}^{-1})$ с колебаниями кристаллической решетки (частоты колебаний комплексов ВО₃ находятся в области 1195–1260 см⁻¹ [11]).

Для нахождения штарковской структуры основного мультиплета, знание которой необходимо для интерпретации магнитных и термодинамических свойств SmFe₃(BO₃)₄, были исследованы спектры при различных температурах. На рис. 3 приведены спектры поглощения в области переходов ${}^{6}H_{5/2}$ \rightarrow ${}^{6}F_{7/2}$ в $\sigma\text{-}$ и $\pi\text{-поляризациях}$ при T > T_{N} (40 К), а также спектры поглощения в а-поляризации при температурах значительно выше T_N . Схема уровней, поясняющая используемые обозначения спектральных линий, дана на рис. 4. При понижении температуры интенсивность спектральных линий, соответствующих переходам с возбужденных штарковских уровней основного мультиплета ⁶H_{5/2}, уменьшается вследствие уменьшения с температурой населенностей этих уровней. Анализируя температурные зависимости интенсивностей «вымерзающих» линий поглощения с учетом расстояний до основных спектральных линий, мы определили энергии штарковских уровней основного мультиплета ${}^{6}H_{5/2}$: 0, 135, 220 см $^{-1}$, что совпадает с предварительными данными работы [6]. Положение насыщенных спектральных линий IA, IB и IC определялось из сравнения спектров пропускания в σ - и *п*-поляризациях (см. рис. 3). Следует отметить, что определенные в настоящей работе энергии и симметрия штарковских уровней нижних ${}^{6}H_{J}$ (J = 5/2, 7/2, 9/2, 11/2) мультиплетов согласуются с приведенными в работе [12] соответствующими спектральными характеристиками ионов Sm³⁺, замещающих ионы Y^{3+} в изоструктурном кристалле $YAl_3(BO_3)_4$ (см. табл. 2).

$2S+1L_J$		E_{exp}		E_{th}	Δ_{exp}	Δ_{th}	g_{\perp}	g_{\parallel}	δE_{exp}	δE_{th}
${}^{6}H_{5/2}$	0		$\Gamma_4 I$	0	13.2	13.16	0.679	0.491	0	0
$(2\Gamma_4 + \Gamma_{56})$	135	(136)	Γ_{56} II	135.5	_	0.03	0	1.63	_	0.36
	220	(194)	$\Gamma_4 \operatorname{III}$	219.3	_	0.74	0.03	1.47	_	0.53
$^{6}H_{7/2}$	1091	(1081)	$\Gamma_4 A$	1084.9	6.8	3.49	2.30	0.51	1.0	0.23
$(3\Gamma_4 + \Gamma_{56})$	1115	(1132)	$\Gamma_4 B$	1122.3	< 1	0.50	0.23	2.47	2.9	0.33
	1173	(1183)	$\Gamma_{56} C$	1182.9	0	0	0	2.34	_	0.42
	1184									
	_	(1282)		1286.8	—	2.09	0.85	5.15	-	0.35
${}^{6}H_{9/2}$	2296	(2293)	$\Gamma_4 A$	2298.5	2	1.00	3.97	2.47	0.4	0.32
$(3\Gamma_4 + 2\Gamma_{56})$	2321	(2323)	$\Gamma_4 B$	2326.6	2.4	2.04	3.03	1.72	2.0	0.33
	_	(2354)	$\Gamma_{56} C$	2353.2	0	0	0	2.95	_	0.36
	2404	(2408)	$\Gamma_4 D$	2399.4	_	1.81	4.13	0.92	-	0.36
	2509	(2496)	$\Gamma_{56} E$	2500	_	0	0	9.31	-	0.35
${}^{6}H_{11/2}$	_	(3616)		3605.5	_	6.37	7.0	1.09	_	0.08
$(4\Gamma_4 + 2\Gamma_{56})$	_	(3648)		3645.3	_	0.06	0	2.10	_	0.17
	_			3670.3	_	6.49	6.03	0.94	-	0.73
	3716	(3713)	Γ_{56}	3710.6	< 2	0.17	0	9.36	2.9	-0.13
	3729	(3738)		3727.9	_	6.01	5.96	3.47	-	0.84
	3835	(3808)	Γ_4	3821.3	0	0.02	0.02	13.0	3.8	0.4
${}^{6}H_{13/2}$	4964		$\Gamma_4 A$	4965.7	15	10.84	8.78	1.23	0.9	-0.56
$(5\Gamma_4 + 2\Gamma_{56})$	4994		$\Gamma_{56} B$	4999.5	0	0.25	0	3.74	1.1	0.75
	5055		$\Gamma_4 C$	5057.4	—	4.02	2.91	5.81	—	0.46
	5119		$\Gamma_4 D$	5119.4	2	3.54	2.82	8.28	0.7	-0.01
	5152		$\Gamma_{56} E$	5152.6	0	0.05	0	11.3	1.4	0.23
	5178		$\Gamma_4 F$	5174.8	< 1	0.59	0.46	13.9	2.4	0.63
	5203		$\Gamma_4 G$	5190	< 1	0.67	0.52	16.3	3.4	0.97
${}^{6}H_{15/2}$	6333		$\Gamma_4 A$	6337.2	13	14.4	10.2	0.91	0.4	-1.27
$(5\Gamma_4 + 3\Gamma_{56})$	-		В	6372.6	—	0.69	0	4.30	—	1.08
${}^{6}F_{1/2}(\Gamma_4)$	6372		$\Gamma_4 C$	6388.1	6.7	7.76	0.36	1.33	1.5	0.05
	-		D	6436.5	-	4.38	2.96	5.15	-	0.69
	6518		$\Gamma_4 E$	6526.8		3.94	2.77	8.00	3.4	-0.19
	6543			6624.5	< 2	0.31		18.5	3.4	1.02
	6606			 Internet of (1 = 15) 				1 14 /114	1 1 14	
6	6626		-	0034.3		2.50	0	9.49	-1.9	-0.92

$^{2S+1}L_J$	Eex	:p	E_{th}	Δ_{exp}	Δ_{th}	g_{\perp}	g_{\parallel}	δE_{exp}	δE_{th}
		1	6716.4		1.18	0.80	13.8	_	-0.19
	_		6742.8	_	1.17	0.75	16.6	_	1.53
${}^{6}F_{5/2}$	7133	Γ_{56}	7122.1	0	0.02	0	3.91	1.2	0.18
$(2\Gamma_4 + \Gamma_{56})$	7148	Γ_4	7149.5	< 2	2.02	1.08	4.05	-0.1	0.38
、 <i>,</i>	7174	Γ_4	7183.4	4	5.51	3.12	0.48	1.9	0.54
${}^{6}F_{7/2}$	7982	$\Gamma_4 A$	7972.6	5.4	4.73	2.84	4.07	1.4	-0.32
$(3\Gamma_4 + \Gamma_{56})$	8000	$\Gamma_{56}B$	7996.4	0	0.20	0	4.39	1.4	0.46
、 <i>,</i>	8021	$\Gamma_4 C$	8016	4.7	3.86	2.18	5.65	1.4	0.65
	8052	$\Gamma_4 D$	8067.8	6.6	8.57	4.96	2.73	1.1	0.64
${}^{6}F_{9/2}$	9146	$\Gamma_4 A$	9136.9	4.2	3.59	2.22	8.97	-1.6	-0.64
$(3\Gamma_4 + 2\Gamma_{56})$	9158	$\Gamma_{56} B$	9165.9	0	0	0	11.6	1.4	0.73
	9191	$\Gamma_4 C$	9186.1	7.6	5.07	2.99	4.80	0.9	-0.32
	9211	$\Gamma_4 D$	9218.3	5.5	6.84	6.38	0.02	-3.5	-3.69
	9213	$\Gamma_{56} E$	9214.4	4.6	4.57	0	3.91	5.9	5.69
${}^{6}F_{11/2}$	10489	$\Gamma_4 A$	10477	0	0.02	0.01	15.8	-0.6	0.17
$(4\Gamma_4 + 2\Gamma_{56})$	10554	$\Gamma_{56} B$	10561	1.4	5.94	0	8.13	-2.6	-6.15
	10565	$\Gamma_4 C$	10557	10.5	9.31	8.31	1.93	3.8	5.88
	10589	$\Gamma_4 D$	10599	-	2.31	3.49	5.67	-	-5.88
	10592	$\Gamma_{56} E$	10602	_	1.43	0	9.24	-	2.09
	10599	$\Gamma_4 F$	10612	7	4.53	3.84	7.98	8.9	6.03
${}^{4}F_{5/2}$	17785	Γ_{56}	17784	0	0	0	2.21	0.4	0.27
$(2\Gamma_4 + \Gamma_{56})$	17901		17874	_	3.22	2.0	0.04	1.4	0.38
	18113		18091	-	1.10	0.28	3.16	2.4	0.33
${}^{4}F_{3/2}$	18879	Γ_4	18867	9	6.46	0.88	0.39	-0.1	-0.26
$(\Gamma_4 + \Gamma_{56})$	18898	Γ_{56}	18884	0	0.23	0	1.50	2.1	0.96
${}^{4}G_{7/2}$	19972		19962	1.3	0.55	1.63	3.54	0	0.33
$(3\Gamma_4 + \Gamma_{56})$	19993		20001	0	0	0	3.09	0.4	0.34
	20017		20029	_	0.87	2.24	0.21	0.4	0.35
	20212		20199	-	0.15	0.35	6.89	-0.1	0.34
${}^{4}I_{9/2}$	-		20388	_	7.84	3.38	1.09	-	-0.21
$(3\Gamma_4 + 2\Gamma_{56})$	-		20410	_	0.18	0	6.37	_	0.74
${}^4M_{15/2}$	20482		20497	0	0.01	0	8.26	0.4	0.24
$(5\Gamma_4 + 3\Gamma_{56})$	20508.5		20524	11	5.86	3.63	0.18	1.4	0.44
	20549		20535	0	0.41	0	5.43	1.4	0.20
	20599		20580	-	0.10	1.97	1.80	-	0.18
	20615		20618	-	0.04	0.44	5.08	-	0.49
	20670		20661	-	2.05	0	3.17	-	0.15
	-		20675	-	1.64	2.16	6.16	-	0.12
1	20695		20683	-	0.94	2.25	3.79	-	0.83

Таблица 2. Продолжение

$^{2S+1}L_J$	E_{exp}	E_{th}	Δ_{exp}	Δ_{th}	g_{\perp}	g_{\parallel}	δE_{exp}	δE_{th}
	_	20823	—	0.81	0.88	6.96	_	0.22
	20872	20860	—	0.01	1.32	6.38	_	0.17
	20909	20873	_	_	0	7.19	_	0.60
${}^{4}I_{11/2}$	_	20972	_	2.78	4.63	0.24	_	0.30
$(4\Gamma_4 + 2\Gamma_{56})$	21019	21016	_	0	0	2.54	_	0.32
${}^{4}I_{13/2}$	_	21045	_	1.19	2.72	0.03	_	0.36
$(5\Gamma_4 + 2\Gamma_{56})$	21088	21092	_	1.25	2.87	1.02	_	0.33
	—	21103	—	0.67	0.85	5.41	_	0.36
	21160	21161	0	0	0	8.22	_	0.34
	_	21472	_	0.53	6.32	0.45	_	0.34
	_	21478	_	0	0	2.51	_	0.38
	_	21494	—	0.63	5.38	0.24	_	0.37
	21543	21523	—	0.38	2.42	8.97	_	0.38
	_	21556	—	0.47	2.78	7.11	_	0.31
	—	21567	—	0	0	8.17	_	0.27
	21619	21575	_	0.14	0.54	10.6	_	0.54
${}^{4}K_{15/2}$	22142	22120	0	1.26	1.66	2.06	0.4	0.33
$(5\Gamma_4 + 3\Gamma_{56})$	22167	22156	3	0.54	1.25	4.07	0.9	0.34
${}^{4}M_{17/2}$	22188	22200	0	0	0	3.09	1.4	0.35
$(6\Gamma_4 + 3\Gamma_{56})$	22293	22298	—	0.05	0.02	14.0	—	0.34
${}^{4}G_{5/2}$	—	22402	—	0	0	13.5	—	0.33
$(2\Gamma_4 + \Gamma_{56})$	_	22456	_	0.40	7.53	2.79	_	0.33
${}^{4}G_{9/2}$	_	22480	_	0	0	3.98	_	0.30
$(3\Gamma_4 + 2\Gamma_{56})$	—	22481	—	0.29	6.35	0.51	-	0.37
	22491	22489	—	0.26	7.07	1.84	_	0.33
	22592	22597	—	0.90	4.34	6.10	—	0.30
	—	22602	—	0	0	8.06	-	0.33
	—	22611	—	0.17	4.48	5.95	—	0.34
	—	22746	—	0.04	0	4.12	—	0.01
	_	22762	_	1.49	2.98	4.1	_	0.49
	_	22772	_	4.63	5.53	0.54	_	0.51
	_	22815	_	3.11	5.45	3.50	_	0.26
	—	22829	—	3.37	5.19	4.77	-	0.20
	—	22841	—	0.07	0	7.36	-	0.53
	_	22870	_	0	0	9.59	-	0.36
	_	22896	_	0.52	1.07	5.65	-	0.37
	_	22913	_	0	0	12.5	-	0.36
	_	22940	_	0.42	0.81	8.78	-	0.43
	—	23038	_	0.02	0	9.70	-	0.11
	_	23048	_	2.40	5.97	0.42	-	0.52
	_	23052	_	2.53	6.06	0.55	_	0.49

Таблица 2. Продолжение

Рис. 3. Спектры поглощения $SmFe_3(BO_3)_4$ в σ - и π -поляризациях при температуре 40 K в области перехода ${}^6H_{5/2} \rightarrow {}^6F_{7/2}$ в ионе Sm^{3+} . В низкочастотной области приведены спектры поглощения в α -поляризации при высоких температурах, соответствующие переходам с возбужденных штарковских уровней основного мультиплета ${}^6H_{5/2}$ в ионе Sm^{3+}

3.2. Спектры SmFe₃(BO₃)₄ в магнитоупорядоченной фазе

Ниже температуры магнитного упорядочения $T_N = 33$ К [1, 5-7] двукратное крамерсовское вырождение уровней энергии в кристаллическом поле снимается обменным взаимодействием ионов самария с ионами железа, магнитные моменты которых выстраиваются в плоскостях, перпендикулярных оси с. Каждый уровень расщепляется на 2 подуровня, а спектральные линии расщепляются в общем случае на 4 компоненты (см. схему на рис. 4). Пример такого расщепления спектральной линии на 4 компоненты был приведен на рис. 1 в работе [6]. Из анализа температурно-зависимой структуры этой линии при T < T_N, соответствующей оптическому переходу ${}^{6}H_{5/2}(\Gamma_{4}(\mathbf{I})) \rightarrow {}^{6}H_{15/2} + {}^{6}F_{1/2} + {}^{6}F_{3/2}(\Gamma_{4}(C)),$ были определены величины обменных расщеплений при 1.7 К основного состояния, $\Delta_0 = 13.2$ см $^{-1}$, и возбужденного состояния, $\Delta = 6.7 \text{ см}^{-1}$.

На рис. 5 дан другой пример расщепления спектральных линий при магнитном упорядочении кристалла SmFe₃(BO₃)₄ (в области оптического мультиплета ${}^6H_{5/2} \rightarrow {}^6F_{11/2}$). Проследим за изменением формы низшей в мультиплете линии IA, ${}^{6}H_{5/2}(\Gamma_{4}(\mathbf{I}))$ \rightarrow ${}^{6}F_{11/2}(\Gamma_{4}(A)),$ которая наиболее интенсивна, не перекрывается другими линиями и не уширена стимулированными фононами переходами из возбужденного состояния на нижележащие уровни. Линия расщепляется на две компоненты, интенсивность низкочастотной компоненты уменьшается, а расстояние между компонентами увеличивается при понижении температуры и при температуре 5 К достигает величины 13.3 ± 0.3 см⁻¹, которая почти совпадает с расщеплением основного дублета иона самария. Таким образом, расщепление уровня $\Gamma_4(A)$ в мультиплете ${}^{6}F_{11/2}$ не превышает 0.6 см $^{-1}$ и меньше полуширин расщепленных компонент.

Волновые функции дублетов Γ_{56} -симметрии представляют собой линейные комбинации состояний, соответствующих проекциям $J_z = \pm 3/2 \pm 3n$

Рис. 4. Схема оптических переходов между штарковскими уровнями основного ${}^{6}H_{5/2}$ и возбужденного ${}^{6}F_{11/2}$ мультиплетов иона Sm^{3+} в кристаллическом поле $\mathrm{SmFe_3(BO_3)_4}$ и обменных расщеплений крамерсовских дублетов в магнитоупорядоченном состоянии $\mathrm{SmFe_3(BO_3)_4}$

полного углового момента на ось с (п — целое число). Несмотря на равенство нулю поперечной компоненты соответствующего *g*-тензора, дублеты Г₅₆ в легкоплоскостном антиферромагнетике могут расщепляться обменным полем вследствие смешивания с дублетами Г₄, которое снимает рассмотренные выше правила отбора (в частности, запрет на ЭД-переходы $\Gamma_4 \rightarrow \Gamma_{56}$ в π -поляризованных спектрах). Соответствующие линии, запрещенные в парамагнитной фазе, могут появиться в низкотемпературных спектрах в случае близко расположенных дублетов Г₄ и Г₅₆. Возгорание дополнительных линий наблюдается, в частности, при температурах ниже 20 К в коротковолновой области *п*-поляризованного спектра поглощения ${}^{6}H_{5/2} \rightarrow {}^{6}F_{11/2}$ (см. рис. 5). Аналогичный оптический магнитоэлектрический эффект возгорания запрещенных линий в магнитоупорядоченной фазе наблюдался ранее в спектре легкоосного антиферромагнетика PrFe₃(BO₃)₄ в работе [13]. Обменные расщепления дублетов Г₅₆ в измеренных спектрах ${\rm SmFe}_3({\rm BO}_3)_4$ наблюдались для двух дублетов, $\Gamma_{56}(E)$ в мультиплете ${}^6F_{9/2}$ и $\Gamma_{56}(B)$ в мультиплете ${}^{6}F_{11/2}$ (см. табл. 2).

На рис. 6 сравниваются температурные зависимости обменного расщепления рассмотренной выше

линии IA в оптическом мультиплете ${}^{6}H_{5/2} \rightarrow {}^{6}F_{11/2}$ и магнитного момента ионов железа в $SmFe_3(BO_3)_4$, измеренного в работе [7] методом рассеяния нейтронов (заметим, что в работе [6] аналогичное сравнение проводилось с данными по YFe₃(BO₃)₄ — соединению с несколько другой кристаллической структурой, за неимением в то время нейтронных данных по $SmFe_3(BO_3)_4$). Тот факт, что температурная зависимость расщепления спектральной линии иона Sm³⁺ пропорциональна магнитному моменту ионов железа, свидетельствует о доминирующем вкладе обменного взаимодействия Sm-Fe в «обменное поле», действующее на ионы самария. Взаимодействия между ионами самария практически не играют роли, поскольку в силу особенностей кристаллической структуры ферроборатов призмы SmO₆ изолированы друг от друга, они не имеют общих ионов кислорода.

Таким образом, расщепление уровней иона Sm³⁺ определяется в основном взаимодействием с подсистемой железа. Найденные из анализа низкотемпературных спектров величины обменных расщеплений

$$\Delta_{exp}(j) = E_+(j, T = 5 \text{ K}) - E_-(j, T = 5 \text{ K})$$
(1)

и сдвигов центров тяжести некоторых штарковских подуровней (j) возбужденных мультиплетов относительно центра тяжести основного дублета (j = 1) по сравнению с соответствующими энергиями в парамагнитной фазе,

$$\delta E_{exp}(j) = \frac{1}{2} \left[E_{+}(j, T = 5 \text{ K}) + E_{-}(j, T = 5 \text{ K}) \right] - \frac{1}{2} \left[E_{+}(1, T = 5 \text{ K}) + E_{-}(1, T = 5 \text{ K}) \right] - E(j, T = 40 \text{ K}), \quad (2)$$

приведены в табл. 2. Здесь E_+ и E_- — энергии соответственно верхней и нижней компонент расщепленного дублета.

4. ТЕОРЕТИЧЕСКИЙ АНАЛИЗ ШТАРКОВСКОЙ СТРУКТУРЫ И ОБМЕННЫХ РАСЩЕПЛЕНИЙ

Анализ измеренного энергетического спектра ионов ${\rm Sm}^{3+}$ в парамагнитной фазе ${\rm SmFe}_3({\rm BO}_3)_4$ был выполнен с использованием гамильтониана

$$H = H_{FI} + H_{CF}, \tag{3}$$

где H_{FI} — эффективный гамильтониан свободного иона Sm^{3+} , H_{CF} — гамильтониан, отвечающий взаимодействию основной электронной

Рис.5. Спектры пропускания SmFe₃(BO₃)₄ в σ - и π -поляризациях при различных температурах в области перехода ${}^{6}H_{5/2} \rightarrow {}^{6}F_{11/2}$ в ионе Sm³⁺. Видно возгорание линии IB в π -поляризации при магнитном упорядочении

Рис. 6. Температурные зависимости обменного расщепления спектральной линии IA, ${}^{6}H_{5/2}(\Gamma_4(I)) \rightarrow {}^{6}F_{11/2}(\Gamma_4(A))$, в спектре SmFe₃(BO₃)₄ и величины магнитного момента ионов железа в SmFe₃(BO₃)₄ по данным измерений рассеяния нейтронов [7]

конфигурации $4f^5$ иона Sm^{3+} с кристаллическим полем. В гамильтониане свободного иона, представленном в стандартном виде [14, 15], учтено электростатическое взаимодействие между 4f-электронами, определяемое параметрами Слэтеpa F^2 = 78876 cm⁻¹, F^4 = 56633 cm⁻¹, F^6 = $= 40002 \text{ см}^{-1}$, спин-орбитальное взаимодействие (с константой связи $\xi = 1167 \text{ см}^{-1}$), двухчастичные и трехчастичные слагаемые, отвечающие взаимодействию между различными электронными конфигурациями, с параметрами $\alpha = 20.16, \beta =$ $= -567, \gamma = 1500, P^2 = 357, P^4 = 268, P^6 = 178,$ $T^2 = 304, T^3 = 36, T^4 = 56, T^6 = -347, T^7 = 373,$ $T^8 = 348$ и дополнительные релятивистские слагаемые с параметрами $M^0 = 2.6, M^2 = 1.46, M^4 = 0.81$ $(в \ cm^{-1})$. Приведенные выше величины параметров, как и приведенные ниже величины параметров кристаллического поля, были найдены сопоставлением собственных значений гамильтониана (3) с измеренными энергиями уровней ионов самария в области $E_{exp} < 20300 \ {
m cm}^{-1}$ (см. табл. 2). Кристаллическое поле в позициях ионов Sm³⁺ с точечной симметрией D₃ в декартовой системе координат с осями z и х, направленными соответственно вдоль кристаллографических осей с и а (последняя является

осью симметрии C_2), может быть описано шестью независимыми действительными параметрами B_q^p $(p = 2, 4, 6; p \ge q = 0, -3, 6)$:

$$H_{CF} = \sum_{k} \left[B_0^2 C_0^{(2)}(k) + B_0^4 C_0^{(4)}(k) + i B_{-3}^4 \left(C_{-3}^{(4)}(k) + C_3^{(4)}(k) \right) + B_0^6 C_0^{(6)}(k) + i B_{-3}^6 \left(C_{-3}^{(6)}(k) + C_3^{(6)}(k) \right) + B_6^6 \left(C_6^{(6)}(k) + C_{-6}^{(6)}(k) \right) \right].$$
(4)

Суммирование в (4) проводится по всем 4f-электронам, $C_q^{(p)}(k)$ — одноэлектронный сферический тензорный оператор ранга p. В качестве начального набора параметров гамильтониана (3) в вариационной процедуре моделирования измеренного спектра были использованы параметры свободного иона из работы [15] и параметры кристаллического поля, приведенные ранее [16] для ионов Nd³⁺ в кристалле NdFe₃ (BO₃)₄.

Следует отметить, что диагонализация гамильтониана (3) проводилась в полном базисе конфигурации $4f^5$, содержащем 2002 слэтеровских определителя, построенных из одноэлектронных функций. Полученные в настоящей работе параметры кристаллического поля сравниваются в табл. 3 с соответствующими параметрами в изоструктурных РЗ-соединениях. Из приведенных в этой таблице данных следует монотонная зависимость параметров кристаллического поля от числа Nэлектронов на незаполненной 4f-оболочке, а именно, уменьшение абсолютных величин B_q^p в ряду РЗ-ферроборатов от празеодима (N = 2) до тербия (N = 8), обусловленное сжатием электронной оболочки с увеличением N.

Найденные в настоящей работе параметры кристаллического поля существенно отличаются от параметров, использованных в работе [9] для описания магнитных свойств SmFe₃(BO₃)₄ при учете состояний лишь основного мультиплета ⁶H_{5/2}, а также от параметров, полученных в работе [12] для примесных ионов самария в YAl₃(BO₃)₄ (в частности, различные знаки параметров B_{-3}^4 и B_{-3}^6 в [12] не согласуются с пространственной структурой решетки, что лишает эти параметры физического смысла). Параметры квадрупольной компоненты кристаллического поля B_0^2 в работах [9,12] примерно в два раза меньше величины, необходимой для получения из расчета расщепления мультиплета ⁴F_{3/2}, сопоставимого с данными измерений.

Вычисленные значения энергий E_{th} штар-

ковских подуровней большинства мультиплетов удовлетворительно согласуются с экспериментальными данными (см. табл. 2). Следует отметить, что качественное различие между вычисленными и измеренными штарковскими структурами мультиплетов ${}^{6}F_{9/2}$ и ${}^{6}F_{11/2}$ (близко расположенные подуровни $\Gamma_{56}^{'}(E), \ \Gamma_4(D)$ в мультиплете ${}^6F_{9/2}$ и $\Gamma_{56}(B), \ \Gamma_4(C)$ в мультиплете ${}^6F_{11/2}$ поменялись местами в рассчитанном спектре) может быть вызвано дополнительными смещениями уровней энергии РЗ-иона в кристаллическом поле, обусловленными как электрон-фононным взаимодействием, так и анизотропными взаимодействиями между 4f-электронами [19], которые не учитывались в настоящей работе. В области высоких энергий (выше 20900 см⁻¹) однозначная идентификация наблюдаемых линий невозможна вследствие большой плотности уровней в рассчитанном спектре, относящихся к перекрывающимся мультиплетам.

Расщепление изолированного крамерсовского дублета во внешнем магнитном поле **В** определяется собственными значениями эффективного спинового гамильтониана (S=1/2), который в случае аксиальной симметрии имеет вид

$$H_S = \mu_B g_\perp (S_x B_x + S_y B_y) + \mu_B g_\parallel S_z B_z.$$

Вычислив матричные элементы компонент оператора магнитного момента иона самария,

$$\boldsymbol{\mu} = -\mu_B \sum_k (\mathbf{l}_k + 2\mathbf{s}_k)$$

(\mathbf{l}_k и \mathbf{s}_k — операторы соответственно орбитального и спинового момента k-го электрона) на собственных функциях оператора (3), мы нашли величины поперечного ($g_{xx} = g_{yy} = g_{\perp}$) и продольного ($g_{zz} = g_{\parallel}$) g-факторов для каждого дублета:

$$g_{\alpha\alpha} = \frac{2}{\mu_B} \sqrt{\langle +|\mu_{\alpha}|+\rangle^2 + \langle +|\mu_{\alpha}|-\rangle^2}, \qquad (5)$$

где $|+\rangle$ и $|-\rangle$ — крамерсово-сопряженные волновые функции данного дублета. Результаты приведены в табл. 2. Отметим, что вычисленный определитель матрицы *g*-тензора основного дублета ионов Sm³⁺ имеет положительную величину в отличие от отрицательной величины этого определителя в случае основного состояния ионов Nd³⁺ в NdFe₃(BO₃)₄ [20].

Гамильтониан обменного взаимодействия иона ${\rm Sm^{3+}}$ с ионом ${\rm Fe^{3+}}$ в *S*-состоянии со спином $S_{\rm Fe}=5/2$ можно записать в виде

$$H_{exch} = \mathbf{F} \cdot \mathbf{S}_{\mathrm{Fe}},$$

		B^p_q , cm ⁻¹									
<i>p</i> , <i>q</i>		$\frac{\mathrm{PrFe}_{3}(\mathrm{BO}_{3})_{4}}{[17]}$	$\frac{\text{NdFe}_3(\text{BO}_3)_4}{[16]}$	SmFe ₃ (BO ₃) ₄ настоящая работа	$SmFe_3(BO_3)_4$ [9]	$\begin{array}{c} \mathrm{YAl}_{3}(\mathrm{BO}_{3})_{4} : \mathrm{Sm}^{3+} \\ [12] \end{array}$	$\begin{array}{c} \mathrm{TbFe_3(BO_3)_4} \\ [18] \end{array}$				
2,	0	556	551	502	285	270	464				
4,	0	-1447	-1239	-1048	-900	-1569	-1256				
4,	-3	867	697	575	1520	890	608				
6,	0	534	519	432	—	246	352				
6,	-3	165	105	87	_	-480	73				
6,	6	376	339	290	_	396	270				

Таблица 3. Параметры кристаллического поля в кристаллах боратов $\mathrm{RM}_3(\mathrm{BO}_3)_4$ с пространственной структурой симметрии R32

где оператор **F**, действующий в пространстве состояний иона самария, в общем случае определяется 28 параметрами $a_a^{(p)}$ [21]:

$$\mathbf{F} = \sum_{p=0,2,4,6} \sum_{q=-p}^{p} \sum_{k} a_{q}^{(p)} C_{q}^{(p)}(k) \mathbf{s}_{k}.$$
 (6)

Учитывая лишь изотропную часть обменного взаимодействия,

$$H_{is} = -2J_{fd}\mathbf{S}_{\mathbf{R}}\cdot\mathbf{S}_{\mathbf{F}}$$

 $(\mathbf{S}_{\mathbf{R}} = \sum_{k} \mathbf{s}_{k} -$ оператор полного спинового момента иона Sm³⁺), можно оценить обменный интеграл $J_{fd} = -a_{0}^{(0)}/2$, определяющий обменное взаимодействие ближайших ионов самария и железа, используя величину измеренного при низкой температуре расщепления Δ_{0} основного состояния ионов самария. Заменяя оператор спинового момента ионов Fe³⁺ соответствующим средним значением $(\langle S_{\mathrm{Fe},z} \rangle = \langle S_{\mathrm{Fe},y} \rangle = 0, \langle S_{\mathrm{Fe},x} \rangle = \pm 2.1 [7])$, а оператор полного спина иона Sm³⁺ его проекцией на состояния дублета (в предположении отсутствия смешивания волновых функций различных мультиплетов) и учитывая шесть ближайших ионов Fe³⁺, получаем эффективный спиновый гамильтониан иона самария в виде $H_{S} = -\Delta_{0}S_{x}$, где

$$|\Delta_0| = 12g_{\perp} |J_{fd} \langle S_{\mathrm{Fe},x} \rangle (1 - g_J^{-1})|.$$
 (7)

Подставив в выражение (7) измеренную при температуре 5 К величину расщепления основного дублета $\Delta_0 = 13.2 \text{ см}^{-1} = 19.1 \text{ K}$, фактор Ланде $g_J =$ = 2/7 и вычисленный *g*-фактор ($g_{\perp} = 0.68$), получаем обменный интеграл $J_{fd} = 0.446 \text{ K}$ (соответствующее обменное поле равно $B_{exch} = \Delta_0/\mu_B g_{\perp} =$ = 41.9 Тл). Из анализа спектра ионов Sm^{3+} в магнитоупорядоченной фазе кристалла $\mathrm{SmFe}_3(\mathrm{BO}_3)_4$, основанного на вычислении собственных значений гамильтониана ионов Sm^{3+}

$$H_{MP} = H_{FI} + H_{CF} - 12J_{fd} \langle S_{\mathrm{Fe},x} \rangle S_{\mathrm{R},x} \qquad (8)$$

в полном пространстве состояний электронной оболочки $4f^5$, мы получили более точное значение обменного интеграла $J_{fd} = 0.345$ К. Существенное отличие от первоначальной оценки обусловлено сильным смешиванием волновых функций основного мультиплета ⁶H_{5/2} и относительно близко расположенных возбужденных мультиплетов ⁶H_J (J = 7/2, 9/2, ...) кристаллическим полем, в результате этого смешивания величина полного момента не является «хорошим» квантовым числом. Положительный знак обменного интеграла соответствует ферромагнитному упорядочиванию подрешеток железа и самария в каждом слое, перпендикулярном оси с, и, соответственно, антипараллельному выстраиванию магнитных моментов ионов самария и ближайших ионов железа, расположенных в вершинах правильных треугольников в соседних слоях. Найденная величина обменного интеграла хорошо согласуется с полученными ранее параметрами обменного f-d-взаимодействия в кристаллах РЗ-ферроборатов RFe₃(BO₃)₄: $J_{fd} = 0.513 \text{ K} (\text{R} = \text{Pr} [17]); J_{fd} = 0.48 \text{ K} (\text{R} = \text{Nd})$ [16]); $J_{fd} = 0.26$ K (R = Tb [18]). С увеличением числа электронов на 4*f*-оболочке и уменьшением ее радиуса обменный интеграл, как и параметры кристаллического поля, монотонно уменьшается.

Выполнив анализ измеренных частот возбуждений монокристаллов SmFe₃(BO₃)₄ при температурах $T < T_N$ в субмиллиметровых спектрах пропускания, авторы работы [20] пришли к выводу о сильной анизотропии f-d-взаимодействия. Динамическое обменное поле, действующее на ионы самария в базисной плоскости и индуцируемое флуктуациями спиновых моментов ионов железа, на порядок величины больше обменного поля в направлении тригональной оси c [20]. При низких температурах эффективное обменное взаимодействие можно представить проекцией оператора H_{is} на состояния основного дублета ионов самария:

$$H_{is}^{(0)} = = -2J_{fd} \left[G_{\perp} (S_{\text{Fe},x} S_x + S_{\text{Fe},y} S_y) + G_{\parallel} S_{\text{Fe},z} S_z \right].$$
(9)

Введенные в спиновом гамильтониане (9) компоненты «спинового» *G*-фактора определяются соотношениями, подобными (5). Вычислив матричные элементы оператора полного спинового момента иона Sm^{3+} в базисе, построенном из собственных функций оператора (3), мы нашли величины $|G_{\perp}| = 2.2$ и $|G_{\parallel}| = 0.328$, т.е., действительно, обменная анизотропия ($G_{\perp}/G_{\parallel} = 6.71$) существенно сильнее магнитной анизотропии ($g_{\perp}/g_{\parallel} = 1.38$).

Полученные из расчета собственных значений гамильтониана (8) (при использовании приведенных выше значений обменного интеграла и среднего значения спина ионов железа) расщепления Δ_{th} крамерсовских дублетов ионов самария и сдвиги δE_{th} их центров тяжести относительно центра тяжести основного дублета, индуцированные обменным полем, сравниваются с данными измерений в табл. 2. Отличные от нуля сдвиги дублетов обусловлены эффектами второго порядка по обменному взаимодействию. Поскольку основное состояние может смещаться только вниз по шкале энергий, большинство величин δE_{th} имеет положительный знак. Величины смещений порядка одного см⁻¹ сопоставимы с погрешностью в определении частот широких спектральных линий. Аномально большие по абсолютной величине (более 1 см⁻¹) сдвиги некоторых соседних дублетов с противоположными знаками свидетельствуют о сильном перемешивании их волновых функций в магнитоупорядоченной фазе. В частности, отметим найденное из вычислений и согласующееся с данными измерений сильное расталкивание уровней $\Gamma_{56}(E)$ и $\Gamma_4(D)$ в мультиплете ${}^6F_{9/2}$, а также уровней $\Gamma_{56}(B)$ и $\Gamma_4(C), \Gamma_4(D)$ и $\Gamma_{56}(E), \Gamma_4(F)$ в мультиплете ${}^{6}F_{11/2}$.

Соотношения между величинами вычисленных расщеплений Δ_{th} различных дублетов при рассмот-

Рис.7. Измеренные (Δ_{exp} , •) и вычисленные (Δ_{th} , •) расщепления дублетов в спектре иона Sm^{3+} при температуре 5 К

рении только изотропной составляющей обменного взаимодействия с обменным интегралом, соответствующим расщеплению основного состояния, согласуются качественно с экспериментальными данными (см. табл. 2). Различие численных значений Δ_{th} и Δ_{exp} можно уменьшить, учитывая анизотропные слагаемые в операторе обменного взаимодействия H_{exch} . В частности, расчет расщеплений при учете в выражении (6) трех отличных от нуля параметров, $a_0^{(0)} = -0.7$ K, $a_0^{(2)} = 1.45$ K и $a_0^{(6)} = 6.52$ K, дает возможность уменьшить среднеквадратичное отклонение вычисленных расщеплений от измеренных с 2.4 см⁻¹ до 1.9 см⁻¹ для двадцати штарковских уровней с наибольшими измеренными расщеплениями.

Наглядное представление о степени соответствия используемой модели результатам измерений дает рис. 7, где по оси абсцисс отложены порядковые номера (начиная с основного состояния) дублетов, для которых в табл. 2 приведены измеренные расщепления Δ_{exp} . В настоящее время мы не обладаем информацией (например, об изменениях спектра во внешних магнитных полях), необходимой для более детального анализа структуры оператора (6), однако очевидно, что, в отличие от ферробората празеодима, исследованного в работе [17], в ферроборате самария доминирующую роль играет изотропная составляющая обменного взаимодействия. Данный вывод согласуется с результатами выполненного ранее [18] анализа спектральных и магнитных свойств ферробората тербия, основанного на рассмотрении изотропного f-d-обмена. Следует заметить, что расчет спектра иона самария в рамках модели, использованной в работе [9] для описания измеренной анизотропии намагниченности при T = 2 К в магнитных полях **В** || **с** и **В** \perp **с** (в операторе обменного взаимодействия (см. (6)) учитывались три отличных от нуля параметра, $a_0^{(0)} < 0$, $a_0^{(2)} = -18.8$ К и $a_0^{(4)} =$ = 21.7 К), приводит к расщеплениям дублетов, существенно отличающимся от измеренных величин.

Определив параметры кристаллического поля и обменного *f*-*d*-взаимодействия, мы получаем возможность моделировать равновесные магнитные свойства кристаллов ферробората самария. Ограничимся рассмотрением температурных зависимостей продольной $(\chi_{zz} = \chi_{\parallel})$ и поперечной $(\chi_{xx} = \chi_{yy} = \chi_{\perp})$ компонент тензора магнитной восприимчивости монокристалла $SmFe_3(BO_3)_4$, измеренных в магнитном поле B = 0.1 Тл [1, 9]. Заниженные значения восприимчивости χ_{\parallel} и, наоборот, существенно завышенные значения χ_{\perp} при низких температурах в работе [1] по сравнению с данными измерений в работе [9], по-видимому, являются следствием погрешности в ориентации образца. Наведенная внешним полем намагниченность РЗ-ферроборатов содержит вклады от двух взаимодействующих между собой магнитных подсистем: квазиодномерной подсистемы ионов железа, связанных антиферромагнитным обменным взаимодействием с ближайшими соседями в винтовых цепочках, параллельных оси с, и РЗ-подсистемы. Вклад ионов железа можно оценить по результатам исследований характеристик кристалла YFe₃(BO₃)₄ [22], в котором РЗ-ионы замещены диамагнитными ионами иттрия. Однако детальное сравнение восприимчивостей кристаллов SmFe₃(BO₃)₄ и YFe₃(BO₃)₄ (см. рис. 4 в работе [9]) некорректно, поскольку соответствующие кристаллические решетки имеют различную пространственную структуру (соответственно R32 и $P3_{1}21$), а также вследствие различия температур магнитного упорядочивания; более высокая температура $T_N = 38$ К в YFe₃(BO₃)₄ по сравнению с $T_N = 33$ К в SmFe₃(BO₃)₄ свидетельствует о более сильном взаимодействии между ионами железа и, соответственно, более слабом отклике (меньшей восприимчивости подсистемы Fe³⁺) на внешнее поле в ферроборате иттрия. Хотя можно ожидать, что различие восприимчивостей подсистем Fe³⁺ в ферроборатах самария и иттрия относительно невелико, оно может быть сопоставимо с вкладом ионов самария, имеющих малые величины g-факторов подуровней основного мультиплета.

В соответствии с данными измерений [1,9] кривая $\chi_{\parallel}(T)$ расположена несколько выше кривой

Рис.8. Вычисленные (сплошные линии) температурные зависимости компонент тензора статической магнитной восприимчивости кристалла SmFe₃(BO₃)₄. Данные измерений из работы [9] представлены символами

 $\chi_{\perp}(T)$ во всей исследованной области температур (рис. 8). Поскольку разность продольной и поперечной компонент тензора восприимчивости ионов Sm³⁺ имеет отрицательный знак, по крайней мере, при низких температурах (T < 70 K) вследствие соотношения $g_{\parallel} < g_{\perp}$ между компонентами g-тензора основного состояния, положительный знак измеренной разности продольной и поперечной восприимчивостей можно связать только с магнитной анизотропией ионов железа. Компоненты тензора восприимчивости, вычисленные в рамках модели, развитой ранее в работах [16–18], удовлетворительно согласуются с экспериментальными данными (см. рис. 8). В настоящей работе расчет был выполнен с использованием оператора билинейного анизотропного обменного взаимодействия между соседними ионами железа в цепочках,

$$H_{dd} = -2\sum_{\alpha} J_{nn}^{(\alpha\alpha)} S_{\mathrm{Fel},\alpha} S_{\mathrm{Fel},\alpha}$$

с параметрами $J_{nn}^{(xx)} = J_{nn}^{(yy)} = J_{nn,\perp} = -7$ К и $J_{nn}^{(zz)} = J_{nn,\parallel} = -6.4$ К в отличие от введенного ранее оператора изотропного взаимодействия с обменными интегралами $J_{nn,\perp} = J_{nn,\parallel} = J_{nn} = -6.25$ К в кристаллах ферроборатов неодима [16] и празеодима [17] и -6.7 К в ферроборате тербия [18]. Отметим, что введенное соотношение между параметрами $|J_{nn,\perp}| > |J_{nn,\parallel}|$ согласуется с наблюдаемой магнитной структурой ферробората самария.

5. ЗАКЛЮЧЕНИЕ

В настоящей работе измерены энергии в парамагнитной и в магнитоупорядоченной фазах мультиферроика $SmFe_3(BO_3)_4$, а также обменные расщепления в магнитоупорядоченной фазе для штарковских уровней основного и возбужденных мультиплетов ионов Sm^{3+} в кристалле $\mathrm{SmFe}_3(\mathrm{BO}_3)_4$, определены свойства симметрии соответствующих волновых функций. Найдены величины параметров кристаллического поля, действующего на ионы самария, и параметров обменного *f*-*d*-взаимодействия, в котором доминирует изотропная составляющая, между ближайшими ионами железа и ионами самария и *d-d*-взаимодействия между ближайшими ионами железа. Показано, что вследствие сильного смешивания основного и возбужденных мультиплетов ионов самария кристаллическим полем анизотропия эффективного обменного взаимодействия существенно сильнее магнитной анизотропии.

Работа выполнена при финансовой поддержке РФФИ (грант № 13-02-00787) и РАН (по Программе фундаментальных исследований Президиума РАН «Квантовые мезоскопические и неупорядоченные структуры»).

ЛИТЕРАТУРА

- 1. Ю. Ф. Попов, А. П. Пятаков, А. М. Кадомцева и др., ЖЭТФ 138, 226 (2010).
- А. А. Мухин, Г. П. Воробьев, В. Ю. Иванов и др., Письма в ЖЭТФ 93, 305 (2011).
- J. C. Joubert, W. B. White, and R. J. Roy, J. Appl. Cryst. 1, 318 (1968).
- J. A. Campa, C. Cascales, E. Gutierrez-Puebla et al., Chem. Mater. 9, 237 (1997).
- Yukio Hinatsu, Yoshihiro Doi, Kentaro Ito et al., J. Sol. St. Chem. 172, 438 (2003).

- E. P. Chukalina, M. N. Popova, L. N. Bezmaternykh, and I. A. Gudim, Phys. Lett. A 374, 1790 (2010).
- C. Ritter, A. Pankrats, I. Gudim, and A. Vorotynov, J. Phys.: Condens. Matter 24, 386002 (2012).
- M. Janoschek, P. Fisher, J. Schefer et al., Phys. Rev. B 81, 094429 (2010).
- А. А. Демидов, Д. В. Волков, И. А. Гудим и др., ЖЭТФ 143, 922 (2013).
- **10**. А. М. Калашникова, В. В. Павлов, Р. В. Писарев и др., Письма в ЖЭТФ **80**, 339 (2004).
- D. Fausti, A. A. Nugroho, P. H. M. van Loosdrecht et al., Phys. Rev. B 74, 024403 (2006).
- 12. I. Kibaili and M. Dammak, J. Luminescence 132, 2092 (2012).
- M. N. Popova, T. N. Stanislavchuk, B. Z. Malkin, and L. N. Bezmaternykh, Phys. Rev. Lett. 102, 187403 (2009).
- 14. H. M. Crosswhite and H. Crosswhite, J. Opt. Soc. Amer. B 1, 246 (1984).
- 15. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, J. Chem. Phys. 90, 3443 (1989).
- 16. M. N. Popova, E. P. Chukalina, T. N. Stanislavchuk et al., Phys. Rev. B 75, 224435 (2007).
- M. N. Popova, T. N. Stanislavchuk, B. Z. Malkin, and L. N. Bezmaternykh, Phys. Rev. B 80, 195101 (2009).
- M. N. Popova, T. N. Stanislavchuk, B. Z. Malkin, and L. N. Bezmaternykh, J. Phys.: Condens. Matter 24, 196002 (2012).
- 19. B. R. Judd, Phys. Rev. Lett. 39, 242 (1977).
- 20. А. М. Кузьменко, А. А. Мухин, В. Ю. Иванов и др., Письма в ЖЭТФ 94, 318 (2011).
- 21. P. M. Levy, Phys. Rev. 135, A155 (1964).
- 22. E. A. Popova, A. N. Vasiliev, V. L. Temerov et al., J. Phys.: Condens. Matter 22, 116006 (2010).