_____ КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ

УДК 541.49+661.225.2

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МОНОГИДРАТА ТЕТРАБРОМИДОКУПРАТА(II) СПАРФЛОКСАЦИНДИУМА

© 2014 г. А. Д. Васильев*, **, Н. Н. Головнев*

*Сибирский федеральный университет, Красноярск **Институт физики им. Л.В. Киренского СО РАН, Красноярск Поступила в редакцию 05.09.2013 г.

Определена структура соединения, содержащего двухзарядный катион спарфлоксациндиума, $(C_{19}H_{24}F_2N_4O_3)[CuBr_4] \cdot H_2O$ (I), где $C_{19}H_{22}F_2N_4O_3$ – спарфлоксацин. Кристаллы I ромбические: a = 14.533(4), b = 12.557(4), c = 29.370(9) Å, V = 2360(3) Å³, пр. гр. *Pbca*, Z = 8. В отличие от подобных соединений других фторхинолонов, в I второй протон присоединяется к спарфлоксацину через атом азота аминной группы, а не атом кислорода кетонной группы. Эта особенность протонирования SfH проявляется в характере супрамолекулярной организации структуры I.

DOI: 10.7868/S0044457X14040229

Фторхинолоны — важнейший класс синтетических антибиотиков. Они селективно ингибируют один из ключевых ферментов микробной клетки — ДНК-гиразу, ответственную за нормальный биосинтез и репликацию ДНК бактерий. Спарфлоксацин ($C_{19}H_{24}F_2N_4O_3$, SfH) (рис. 1) — первый аминодифторхинолон, показавший высокую активность против грамположительных форм типа *Streptococcus Pneumoniae* и *Mycobacterium Tuberculosis* [1]. Он характеризуется более высокой активностью, чем монофторхинолоны, хорошими фармокинетическими свойствами и биодоступностью, что способствует возрастающему использованию его в клинической практике [2, 3].

Применение спарфлоксацина осложняется изза образования полиморфных форм [4], поэтому получение новых ингредиентов лекарственных средств на его основе представляется актуальным. Можно ожидать, что металлсодержащие соединения спарфлоксацина будут обладать более специфичной противораковой и антимикробной активностью [1, 5, 6]. Анион Sf-, как и подобные анионы других фторхинолонов, способен присоединять, по меньшей мере, три иона Н⁺ [7]. Наличие в нем дополнительной группы NH₂ позволяет связывать четвертый протон. До сих пор не ясна последовательность протонирования его электронодонорных центров в кислой среде, где образуются катионные формы. Соединения, содержащие катионы фторхинолонов, обычно хорошо кристаллизуются и пригодны для определения структуры (например, [8-12]). Синтез и изучение их структуры будут способствовать лучшему пониманию взаимосвязи между строением соединений фторхинолонов и лекарственным эффектом.

В настоящей работе определена структура нового соединения — моногидрата тетрабромокупрата(II) спарфлоксациндиума $SfH_3[CuBr_4] \cdot H_2O$ (I). Ранее показано, что смешанолигандные комплексы меди со спарфлоксацином и 1,10-фенантролином обладают противораковой активностью [1].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали спарфлоксацин (Sigma, содержание основного вещества $\geq 98\%$), HBr (х.ч.) и CuBr₂(х.ч.).

Синтез I. В 4 мл 6 М НВг растворяли 0.30 г спарфлоксацина, затем постепенно при нагревании к полученному раствору добавляли CuBr₂. Молярное отношение SfH : CuBr₂ составляло 1 : 5. Темно-фиолетовые кристаллы соединения выделялись при медленном охлаждении или испарении раствора. Выход соединения по спарфлоксацину составлял 60–70%.

Рис. 1. Строение спарфлоксацина.

Т, К	298
Пр. гр.	Pbca
Ζ	8
20 _{max} , град	42
<i>a, b, c,</i> Å	14.533(4), 12.557(4), 29.370(9)
<i>V</i> , Å ³	2360(3)
$ρ_{\rm выч}$, γ/cm ³	1.972
μ, мм ⁻¹	6.852
Всего измерено отражений	24488
Независимых отражений	2818
Число отражений с $F > 4\sigma(F)$	1968
Интервалы <i>h</i> , <i>k</i> , <i>l</i>	$-14 \le h \le 14,$
	$-12 \le k \le 12,$
	$-29 \le l \le 29$
Число уточняемых параметров	314
$R1 [F_{o} > 4\sigma(F_{o})]$	0.0424
wR2	0.0989
GOOF	1.037
$(\Delta \rho)_{\text{max}}, (\Delta \rho)_{\text{min}}, e/Å^3$	0.90, -0.60

Таблица 1. Экспериментальные данные и параметры уточнения структуры I

РСА. Структура определена с кристалла размерами $0.16 \times 0.28 \times 0.47$ мм. Интенсивности отражений измерены с помощью рентгеновского монокристального дифрактометра SMART APEX II с ССD детектором (Bruker AXS), Мо K_{α} -излуче-

Рис. 2. Ион SfH₃²⁺ с нумерацией атомов. Внутримолекулярные водородные связи показаны штриховыми линиями. Эллипсоиды тепловых колебаний рассчитаны с доверительной вероятностью 50%. ние. Экспериментальные поправки на поглощение введены с помощью программы SADABS [13] multi-scan методом. Модель структуры установлена прямыми методами (SHELXS) и уточнена в анизотропном приближении для неводородных атомов (SHELXTL) [14]. Положения всех атомов водорода определены из разностных синтезов электронной плотности и затем уточнены в связанном виде. В табл. 1 приведены параметры эксперимента и результаты уточнения структуры. Структура I депонирована в Кембриджском банке структурных данных (№ 963775; deposit@ccdc. cam.ac.uk или ttp://www.ccdc.cam.ac.uk/data_ request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кроме ионов SfH_3^{2+} и $CuBr_4^{2-}$ в независимой части ячейки I присутствует молекула воды. Катион спарфлоксациндиума имеет в своем составе три 6-членных цикла, два из которых, N1-C2-C3-С4-С10-С9 и С5-С6-С7-С8-С9-С10, практически плоские, а третий, N2-C14-C15-N3-С16-С17, имеет конформацию кресла (рис. 2). Кроме них в SfH₃²⁺ содержится 3-членный цикл С11-С12-С13, связанный с атомом N1. Длины связей С-О, С-N, С-F и С-С и соответствующие валентные углы в пределах ошибок совпадают с найденными ранее для других соединений спарфлоксацина [15]. Анион CuBr₄²⁻ представляет собой искаженный тетраэдр (Cu-Br 2.361(2)-2.403(2) Å, углы Br_iCuBr_i 97.15(6)°-136.95(6)°). Такие же вариации параметров получены нами ранее для комплекса (CfH₃)[CuBr₄] \cdot H₂O (CfH – ципрофлоксацин, C₁₇H₁₈FN₃O₃) [11].

Потенциометрическим методом определены pK_a для спарфлоксацина [4]. Значение 6.40 отнесено к диссоциации карбоксильной группы, а 8.90 — к диссоциации вторичного амина пиперазинового цикла (рис. 1). В синтезе I использовали концентрированную HBr, что дополнительно приводило к протонированию группы – NH₂. При такой кислотности раствора для других фторхинолонов установлено протонирование атома О1 кетонной группы [8–12, 15]. Отсутствие его протонирования для спарфлоксацина можно объяснить формированием О1 прочных внутримолекулярных водородных связей с участием атомов водорода группы $-NH_3^+$ и атома H карбоксильной группы (рис. 2, табл. 2). Эта особенность протонирования SfH существенно отражается на характере водородных связей (BC) в структуре I и приводит к образованию ранее неизвестных для фторхинолонов структурных мотивов. Так, атом О1 является двойным акцептором внутримолекулярных ВС, формируя два шестичленных кольца С1-С3-С4-О1-Н1-О2 и С4-С10-С5-N4КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МОНОГИДРАТА ТЕТРАБРОМИДОКУПРАТА(II)

D–H	D-H	HA	DA	Угол DHA	А	Преобразование для атома А
O2-H1	0.82	1.82	2.578(8)	153	01	<i>x</i> , <i>y</i> , <i>z</i>
N3-H31	0.90	2.42	3.318(7)	172	Br2	1 - x, 0.5 + y, 0.5 - z
N3-H32	0.90	2.48	3.337(7)	160	Br1	<i>x</i> , <i>y</i> , <i>z</i>
N4-H41	0.89	1.88	2.74(1)	160	Ow	0.5 + x, y, 0.5 - z
N4-H42	0.89	1.93	2.628(9)	134	O1	<i>x</i> , <i>y</i> , <i>z</i>
N4-H43	0.89	2.38	3.236(7)	161	Br3	1 - x, y - 0.5, 0.5 - z
C14-H14A	0.97	2.32	2.800(9)	110	F1	<i>x</i> , <i>y</i> , <i>z</i>
C17-H17B	0.97	2.31	2.790(9)	110	F2	<i>x</i> , <i>y</i> , <i>z</i>
Ow-Hw1	0.90	2.56	3.437(8)	165	Br3	<i>x</i> , <i>y</i> , <i>z</i>
Ow-Hw2	0.90	2.99	3.533(6)	121	Br4	x, y, z

Таблица 2. Геометрические параметры водородных связей D–H...А (длины связей, Å; углы, град) в структуре I

Н42…О1 (структурные мотивы *S*(6)) [16]. Межмолекулярные ВС с участием молекулы воды (рис. 3) также образуют 6-членный цикл Cu–Br4…Hw2–

Оw-Hw1···Br3 (R_2^1). Все атомы водорода молекулы воды и при атомах азота (кроме одного при N4) участвуют в межмолекулярных водородных связях. Два укороченных расстояния F1····H14A (2.32(1) Å) и F2····H17B (2.31(1) Å) можно рассматривать как слабые BC, которые замыкают два подобных 6-членных цикла, соответствующих мотиву S(6) (рис. 2). Протоны H14A и H17B, связанные с атомами C14 и C17 соответственно, имеют "кислотный характер" [16] по сравнению с другими С–H-протонами благодаря индуктивному эффекту ближайшего атома N2 и поэтому образуют BC данного типа. Такие кольца характерны и для других фторхинолонов [8–12].

Мы впервые определили структуру соединения с двухзарядным катионом SfH_3^{2+} . Из всех десяти решенных структур монопротонированный спарфлоксацин SfH_2^+ содержится только в соединении (SfH_2^+)[BF_4^-] \cdot 0.63 H_2O [7]. В нем протон H^+ присоединен к атому О депротонированной карбоксильной группы, а не к атому N концевой группы $-NH_2$. Снижение основности последней группы можно отнести за счет сильных электроноакцепторных свойств близлежащего фторидиона и ароматической системы спарфлоксацина.

Ионы спарфлоксациндиума распределены в кристалле I по парам, в которых они связаны центрами симметрии (рис. 4). В структуре имеет место супрамолекулярное π - π -взаимодействие с участием циклов N1-C2-C3-C4-C10-C9 (цикл Cg_1) и C5-C6-C7-C8-C9-C10 (Cg_2) типа "голова к хвосту", характерное для других ионных соединений фторхинолонов [8–12]. Его вычисленные параметры [17] приведены в табл. 3. Следует отметить, что в подобном соединении ципрофлокса-

Таблица 3. Параметры π - π -взаимодействий в І

$Cg_i - Cg_j$	d, Å	α, град	β, град	<i>Cg_i_</i> p, Å	Δ, Å
$Cg_1 - Cg_1$	3.704(5)	0	24.45	3.372(3)	1.533
$Cg_1 - Cg_2$	3.802(5)	5.4(4)	27.60	3.428(3)	_
$Cg_2 - Cg_1$	3.803(5)	5.4(4)	25.63	3.370(4)	_

цина, (CfH₃)[CuBr₄] · H₂O, π - π -взаимодействие отсутствует [11], т.е. упаковка в кристаллах зависит от природы фторхинолона. Кроме того, в I, если судить по межатомным расстояниям и вза-имному расположению атомов, структурообразующими межмолекулярными контактами, сопут-

Рис. 3. Водородные связи в структуре І. Атомы N заштрихованы вертикально, F – горизонтально.

ЖУРНАЛ НЕОРГАНИЧЕСКОЙ ХИМИИ том 59 № 4 2014

479

Рис. 4. Взаимное расположение двух ионов SfH_3^{2+} , связанных центром симметрии, в проекции на плоскость, параллельную плоским циклам. Черным цветом отмечены межатомные связи и атомы С в расположенной выше молекуле. Атомы N заштрихованы, F – затемнены.

ствующими π — π -взаимодействию, также являются Cu—Br··· π -контакты. Расстояния Br1···центр Cg_2 и Br4···центр Cg_1 соответственно равны 3.539(4) и 3.794(4) Å, значения соответствующих углов Cu—Br···центр кольца — 90.16(7)° и 89.05(7)°. Наличие такого взаимодействия можно объяснить относительно высокой поляризуемостью ("мягкостью") атома брома. Известно, что даже для "жесткого" атома фтора C—F··· π -контакты значимы при формировании структуры бициклических ароматических соединений [18].

СПИСОК ЛИТЕРАТУРЫ

- Shingnapurkar D., Butcher R., Afrasiabi Z. et al. // Inorg. Chem. Commun. 2007. V. 10. P. 459.
- 2. Mitscher L.A. // Chem. Rev. 2005. V. 105. № 2. P 559.
- Stein G.E., Havlichek D.H. // Pharmacotherapy. 1997. V. 17. № 6. P. 1139.
- 4. *Llinàs A., Burley J.C., Prior T.J. et al.* // Cryst. Growth Des. 2008. V. 8. № 1. P. 114.
- 5. *Efthimiadou E.K., Karaliota A., Psomas G.* // J. Inorg. Biochem. 2010. V. 104. P. 455.
- Vieira L.M.M., Almeida M.V., Lourenso M.C.S. et al. // Eur. J. Med. Chem. 2009. V. 44. P. 4107.

- Головнев Н.Н., Петров А.И., Дорохова Н.В. и др. // Журн. Сиб. фед. ун-та. 2010. Т. 3. № 1. С. 58.
- Васильев А.Д., Головнев Н.Н. // Журн. структур. химии. 2013. Т. 54. № 3. С. 539.
- Головнев Н.Н., Молокеев М.С., Головнева И.И., Глущенко Г.А. // Журн. структур. химии. 2013. Т. 54. № 2. С. 325.
- Головнев Н.Н., Наумов Н.Г., Головнева И.И., Дорохова Н.В. // Журн. структур. химии. 2011. Т. 52. № 5. С. 1011.
- Васильев А.Д., Головнев Н.Н. // Журн. структур. химии. 2011. Т. 52. № 4. С. 829.
- 12. Васильев А.Д., Головнев Н.Н. // Журн. структур. химии. 2011. Т. 52. № 5. С. 940.
- 13. *Sheldrick G.M.* SADABS. Version 2.01. Bruker AXS Inc. Madison, Wisconsin, USA, 2004.
- 14. *Sheldrick G.M.* SHELXTL. Version 6.10. Bruker AXS Inc. Madison, Wisconsin, USA, 2004.
- 15. Cambridge Structural Database. Version 5.33. Cambridge (UK): Univ. of Cambridge, 2011.
- Стид. Дж.В., Этвуд Дж.Л. Супрамолекулярная химия. Ч. 1–2. М.: ИКЦ Академкнига, 2007. 895 с.
- 17. PLATON A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands (2008).
- 18. Багрянская И.Ю., Гришина М.А., Сафина Л.Ю. и др. // Журн. структур. химии. 2008. Т.49. № 5. С. 933.