15

Исследование методом импедансной спектроскопии допированных ионным сурфактантом жидких кристаллов

© Б.А. Беляев¹⁻³, Н.А. Дрокин¹, А.Н. Масленников¹

¹ Институт физики им. Л.В. Киренского СО РАН,

Красноярск, Россия

² Сибирский федеральный университет,

Красноярск, Россия

³ Сибирский аэрокосмический университет им. акад. М.Ф. Решетнёва,

Красноярск, Россия

E-mail: belyaev@iph.krasn.ru

(Поступила в Редакцию 16 января 2014 г.)

Методом импедансной спектроскопии исследовано влияние постоянного электрического поля на электрофизические характеристики нематических жидких кристаллов из серии алкилцианобифенилов nCB (n = 6-8) и многокомпонентной жидкокристаллической смеси MB-1, допированных ионным сурфактантом. Установлено, что импедансные спектры существенно зависят от величины подаваемого на образец постоянного напряжения смещения. Проведена аппроксимация измеренных спектров с использованием разработанных эквивалентных схем ячейки с образцом, позволившая определить емкость двойного электрического слоя, удельную проводимость образцов, а также подвижность, концентрацию и коэффициент диффузии ионов. Показано, что в диапазоне частот f < 100 Hz вблизи электродов измерительной ячейки с жидкокристаллическим образцом возникает область пространственного заряда, приводящая к увеличению активной (резистивной) и реактивной (емкостной) компонент импеданса.

Работа выполнена при поддержке интеграционного проекта № 109 СО РАН.

1. Введение

Жидкие кристаллы (ЖК), как известно, относят к разряду диэлектриков, однако даже хорошо очищенные от ионных примесей образцы ЖК могут обладать заметной проводимостью из-за адсорбированной влаги и образования ионов в процессе диссоциации молекул, но особенно сильное увеличение проводимости происходит при допировании мезофаз ионными сурфактантами. Сурфактанты, как правило, применяются для модификации металлических поверхностей жидкокристаллической ячейки с целью создания исходной нормальной или гомеотропной ориентации "директора". Существование ионной проводимости обычно рассматривается как нежелательный факт, так как наличие тока через ячейку с ЖК сопровождается разнообразными эффектами накопления и релаксации электрических зарядов вблизи электродов, ухудшающих качество работы жидкокристаллических дисплеев, различных устройств электроники и СВЧ-техники. Однако при определенных условиях изменение свойств мезофазы, обусловленное наличием ионов в ЖК, оказывается весьма полезным. Например, в работе [1] показано, что ячейка с ионсодержащим жидкокристаллическим соединением может выступать в качестве генератора низкочастотных колебаний, возникающих в результате образования у катода автосолитона, его перемещения и исчезновения у анода. В работе [2] предложена конструкция модального многоканального корректора, позволяющего управлять

формой волнового фронта электромагнитного излучения, проходящего через жидкокристаллическую ячейку.

Особый интерес для практики представляют разнообразные ориентационно-структурные переходы мезофазы (локальные переходы Фредерикса), возникающие из-за изменения поверхностного сцепления молекул ЖК с электродом ячейки [3]. Известные способы изменения степени сцепления молекул ЖК с поверхностью ячейки весьма разнообразны. В работе [4], в частности, показано, что эффективная переориентация молекул жидкокристаллической фазы может происходить при воздействии электрического поля на сегнетоэлектрическое полимерное покрытие электродов. Интересные возможности управления ориентацией ЖК представляют фотоиндуцированные эффекты, возникающие в нанесенном на поверхность электрода слое фотоориентанта [5]. В работе [6] изменение ориентирующих свойств поверхности достигалось путем инжекции зарядов в структуре полимер-ЖК.

Существуют также возможности переориентации "директора" в ячейках с жидким кристаллом, допированным ионными сурфактантами. В этом случае молекулы сурфактанта после диссоциации частично адсорбируются на поверхностях электродов и одновременно присутствуют в виде ионов с противоположными знаками заряда в объеме ЖК. В электрическом поле из-за смещения ионов к соответствующим электродам может происходить изменение концентрации адсорбированных молекул сурфактанта, приводящее к модификации поверхностной ориентации "директора". Такой способ управления молекулярной структурой ЖК был апробирован в работе [7] на капельных ансамблях нематиков 5CB, обладающего положительной диэлектрической анизотропией $\Delta \varepsilon = \varepsilon_{\parallel} - \varepsilon_{\perp} > 0$, и метоксибензилиден-бутиланилина (MBBA) с отрицательной анизотропией $\Delta \varepsilon < 0$. Здесь ε_{\parallel} и ε_{\perp} — соответственно параллельная и перпендикулярная компоненты относительной диэлектрической проницаемости. Для реализации и развития ионных методов управления ориентацией молекул ЖК важно знать зависимости ионной проводимости образца жидкого кристалла в ячейке, а также процессов накопления и переноса зарядов вблизи металлических электродов, от частоты и величины управляющего электрического поля.

Настоящая работа посвящена экспериментальному изучению электрофизических характеристик ЖК из серии алкилцианобифенилов и жидкокристаллической смеси MB-1, допированных ионным сурфактантом, находящихся в специальной ячейке. Исследование проводится методом измерения полного комплексного сопротивления ячейки (импеданса) в условиях воздействия на ЖК постоянного и переменного электрического поля смещения в диапазоне частот 0.1 Hz-100 MHz.

2. Образцы и методика измерений

В эксперименте использовалась стандартная ячейка, состоящая из двух плоскопараллельных стеклянных подложек с электродами на внутренних сторонах из оксида индия с оловом площадью $S \sim 10 \times 10 \,\mathrm{mm}$ и зазором $d \sim 0.05 - 0.1 \,\mathrm{mm}$. Такие электроды широко используются в различных электрооптических устройствах, так как они прозрачны для света, химически устойчивы и обладают относительно небольшой величиной поверхностного сопротивления $\sim 20 \,\Omega/\Box$. Для контрольных измерений использовались также электроды с напыленными на стеклянные подложки пленками из алюминия и золота. Поверхности электродов специально не обрабатывались, а лишь слегка натирались мягкой кожей. Это способствовало спонтанной ориентации длинных осей молекул ЖК под небольшим углом (~ 5-7°) к поверхности электродов.

В качестве объекта исследований использовались жидкие кристаллы из серии алкилцианобифенилов 6CB, 7CB и 8CB, а также многокомпонентная жидкокристаллическая смесь MB-1, обладающая температурой перехода из нематического в изотропное состояние $t \ge 100^{\circ}$ C. Образцы 6CB и 7CB содержали некоторое количество ионов, обусловленных случайными примесями, поэтому они имели определенную проводимость не только на переменном, но и на постоянном токе. В жидких кристаллах 8CB и MB-1 собственная проводимость на постоянном токе практически отсутствовала. Однако в них, как и следовало ожидать, при допировании ионным сурфактантом цетилтриметиламмоний бромидом (СТАВ) появлялась проводимость на постоянном токе, которая при концентрации СТАВ ~ 1 wt.% и темпера-

Рис. 1. Химическая формула и структура молекулы ионного сурфактанта СТАВ.

туре $t = 70^{\circ}$ С была сравнима с проводимостью образцов 6СВ и 7СВ. Химическая формула и структура молекулы СТАВ приведены на рис. 1.

Молекула СТАВ является полярной молекулой с дипольным моментом, сосредоточенным в группе -N-(СН₃)₃. Длина молекулы составляет величину 2.33 nm, сопоставимую с длиной молекулы ЖК, а диаметр "головки" ~ 0.48 nm [8]. В жидких кристаллах молекулы СТАВ диссоциируют на отрицательно заряженный ион брома Br- и положительно заряженный остов СТА⁺, который частично адсорбируется на поверхности электродов ячейки. При этом находящиеся в объеме комплексы CTA⁺ и ионы Br⁻ участвуют в процессах ионной проводимости. Адсорбированные катионы СТА⁺ формируют мономолекулярные слои с направлением длинных алкильных цепей –(СН2)15СН3 перпендикулярно поверхности электродов. Такое положение молекул сурфактанта способствует гомеотропной ориентации молекул ЖК.

В экспериментах температура жидкокристаллической ячейки устанавливалась на 5-7°С ниже температуры перехода исследуемых образцов *n*CB из нематического в изотропное состояние, а ЖК-смесь МВ-1 исследовалась при $t = 30^{\circ}$ С. Для дополнительного управления исходной ориентацией "директора" ячейка с исследуемым образцом помещалась между полюсами электромагнита с величиной поля *H* = 12 kOe. Исследования проводились с использованием измерителей импеданса WK 4270 (Wayne Kerr Electronics) и ВМ 538 (Tesla), работающих в диапазонах частот 50 Hz-1 MHz и 1-100 MHz соответственно. В интервале частот $0.1 \le f \le 50 \,\mathrm{Hz}$ импеданс ячейки с образцом ЖК измерялся с использованием усилителя с синхронным детектором Lockin amplifier SR 830 DSP (USA). Подаваемое на электроды ячейки переменное напряжение составляло величину $U_f = 0.1 - 0.3$ V. Одновременно с этим на электроды подавалось и постоянное напряжение смещения $0 \le U_0 \le 10$ V. Измерялись частотная зависимость модуля импеданса |Z|(f) и угол сдвига фазы между током и напряжением $\varphi(f)$. Затем рассчитывались спектры действительной $Z'(f) = |Z|(f) \cos \varphi(f)$ и мнимой $Z''(f) = |Z|(f) \sin \varphi(f)$ компонент импеданса, которые позволяют определять и анализировать поведение электрофизических характеристик исследуемых образцов. Относительная погрешность измерений импеданса не превышала 5%.

3. Частотные зависимости импеданса исследуемых образцов

Импедансные измерения жидких диэлектриков и электролитов, в том числе и жидких кристаллов, почти всегда сопряжены с необходимостью разделения, как минимум, двух составляющих величины импеданса, одна из которых связана с импедансом, характеризующим объем образца, а другая — с импедансом приэлектродных областей измерительной ячейки. При этом импеданс объема определяется не только молекулярно-ориентированной мезофазой образца, но и существенным вкладом в него удельной проводимости ЖК — объемной проводимостью, которая зависит от заряда ионов, их объемной концентрации и подвижности. "Приэлектродный" импеданс главным образом связан с накоплением и движением зарядов вблизи поверхности электродов ячейки от "электролита" во внешнюю электрическую цепь. Проводимость, связанную с этими явлениями, будем называть поверхностной проводимостью.

Несмотря на некоторую разницу в проводимости образцов жидких кристаллов 6СВ и 7СВ, обусловленную ионами случайных примесей, и образцов 8CB и MB-1, допированных ионным сурфактантом СТАВ, их импедансные спектры оказались очень похожими. В качестве примера на рис. 2 кривыми 1 и 2 показаны частотные зависимости модуля импеданса |Z|(f) и угла сдвига фазы $\varphi(f)$ для образца жидкого кристалла 8CB + CTAB в отсутствие постоянного поля смещения $U_0 = 0$. Наблюдаемое немонотонное поведение этих зависимостей обусловлено различным характером изменения с частотой поверхностной и объемной проводимости. Отметим, что уменьшение |Z|(f) (кривая 1) и возрастание угла $\varphi(f)$ (кривая 2) в области частот выше 1 kHz являются типичными для частотных зависимостей импеданса проводящих материалов. Такие зависимости достаточно хорошо согласуются с частотными зависимостями импеданса простой электрической цепи, состоящей из емкости С_{lc} и параллельно подключенного к ней резистора R_{lc} (встав-

Рис. 2. Частотная зависимость |Z|(1) и фазового угла $\varphi(2)$ ЖК 8СВ + СТАВ. 3 и 4 — результаты аппроксимации.

ка на рис. 2). Этот импеданс описывается формулой

$$Z(\omega) = R_{\rm lc} \frac{1 - j\omega\tau}{1 + \omega^2 \tau^2}.$$
 (1)

Здесь $R_{\rm lc}$ — сопротивление объема жидкого кристалла в ячейке, $C_{\rm lc}$ — емкость ячейки с ЖК, ω — круговая частота, а $\tau = R_{\rm lc}C_{\rm lc}$ — время электрической релаксации.

На рис. 2 линиями 3 и 4 показаны результаты аппроксимации экспериментальных зависимостей при следующих параметрах электрической цепи: $R_{\rm lc} = 1.72 \cdot 10^5 \,\Omega$, $C_{\rm lc} = C_0 \varepsilon = 96.22 \, {\rm pF}$, где $C_0 = 6.9 \, {\rm pF}$ — емкость пустой измерительной ячейки, а $\varepsilon = 13.8$ — относительная величина статической диэлектрической проницаемости ЖК. Время релаксации в этом случае $\tau \approx 1.65 \cdot 10^{-5}$ s. Видно, что такая аппроксимация измеренных спектров |Z|(f) и $\varphi(f)$, использующая фиксированные значения R_{lc} и C_{lc}, применима лишь в диапазоне частот от 0.1-100 kHz. Очевидно, что для более точной аппроксимации результатов измерения в области высоких и сверхвысоких частот, где импеданс носит емкостной характер, необходимо учитывать частотную дисперсию диэлектрической проницаемости ЖК $\varepsilon(f)$ [9], при этом емкость $C_{\rm lc} = C_0 \varepsilon(f)$ становится частотно-зависимой величиной.

Возрастание импеданса и угла φ в области низких частот $f < 100 \, \text{Hz}$ связано со смещением положительных и отрицательных ионов к электродам с противоположными знаками и образованием вблизи электродов тонкого мономолекулярного двойного электрического слоя, который характеризуется емкостью большой величины (слой Гельмгольца). За этим слоем возникает область с неравновесным распределением ионов и нейтральных молекул (диффузионный слой), которые диффундируют от электрода в объем и обратно. Поскольку подвижность ионов в ЖК мала ($\mu \le 1 \cdot 10^{-5} \, \text{cm}^2/\text{V} \cdot \text{s}$) [10], процессы накопления зарядов вблизи электродов, их диффузии и переноса через интерфейс ЖК-металлический электрод проявляются лишь в области низких частот $f < (2\pi \tau_i)^{-1}$, где $\tau_i \sim 1.6 \cdot 10^{-3} \,\mathrm{s}$ — время ионной релаксации. Заметим, что поведение импеданса, наблюдаемое на низких частотах, характерно для большинства электролитов, а экспериментально измеренные зависимости широко используются исследователями для анализа приэлектродных процессов на интерфейсе [11]. С повышением частоты импеданс образца существенно уменьшается, и в диапазоне $\sim 0.01 - 3 \,\text{kHz}$ его модуль остается практически постоянной величиной, а протекающий через жидкокристаллическую ячейку ток почти полностью определяется сопротивлением R_{lc} объема ЖК. В результате измерения зависимостей импеданса жидких кристаллов в различных частотных диапазонах позволяют провести разделение процессов, отвечающих за протекание тока через образец, связанных с приэлектродными (поверхностными) и объемными явлениями, а также определить важные электрофизические характеристики исследуемых ЖК, как показано далее.

	• • •			1	
Образец	$\sigma_{ m lc},10^{-8}\Omega^{-1}\cdot{ m cm}^{-1}$	$\langle \mu angle$, $10^{-5} \mathrm{cm}^2 \cdot \mathrm{V}^{-1} \cdot \mathrm{s}^{-1}$	$n_0, 10^{19} \mathrm{cm}^{-3}$	$n_i, 10^{16} \mathrm{cm}^{-3}$	α
6CB 7CB	2.9 2.0	0.9 1.6	_	20.0 7.8	
8CB + CTAB MB-1 + CTAB	7.6 0.15	1.1 1.2	2.1 1.6	4.2 0.51	0.001 0.00016

Таблица 1. Электрофизические характеристики жидкокристаллических образцов при $U_0 = 0$

Поскольку сопротивление объема ЖК $R_{\rm lc}$ является активной компонентой импеданса $R_{\rm lc} = Z'(\omega)$ $= |Z|(\omega) \cos \varphi$, в области частот, где $\varphi \approx 0$, именно оно определяет осциллирующий ток через образец, синфазный с переменным электрическим полем. Величина проводимости ЖК, как и электролитов, зависит от концентрации ионов, причем сначала с ростом концентрации ионов проводимость линейно увеличивается, затем достигает максимума, а далее начинает убывать из-за уменьшения подвижности ионов в результате ион-ионного взаимодействия. Однако для сравнительно небольших концентраций ионов объемную удельную проводимость ЖК $\sigma_{\rm lc}$ можно вычислить по сопротивлению $R_{\rm lc}$, учитывая геометрические размеры ячейки (*S* — площадь электродов, *d* — зазор между ними):

$$\sigma_{\rm lc} = \frac{d}{R_{\rm lc}S} = F \sum_{i} |z|_i \mu_i c_i = e n_0 \alpha (\mu_+ + \mu_-), \quad (2)$$

где F — постоянная Фарадея, z_i — величина заряда, c_i — молярная концентрация, а μ_i — подвижность ионов *i*-типа. Поскольку в исследуемых ЖК большинство случайных ионных примесей и диссоцированных молекулярных комплексов СТАВ одновалентные, т.е. $|z_i| = 1$ [12], результирующую удельную проводимость жидкого кристалла можно вычислять, используя правую часть уравнения (2). Здесь *е* — заряд электрона, n_0 объемная концентрация вводимых в ЖК нейтральных молекул СТАВ, α — степень диссоциации этих молекул. Подвижности μ_+ и μ_- соответствуют катионам СТА⁺ и анионам Br⁻.

Для оценки μ_+ и μ_- можно воспользоваться связью между величинами подвижности ионов и вязкости раствора η , которая в случае жидких диэлектриков имеет вид [13]

$$\mu = \frac{e}{6\pi r\eta},\tag{3}$$

где r — радиус иона. При расчете подвижности ионов жидкого кристалла 8CB в условиях, когда в электрическом поле они смещаются в направлении "директора", использовались измеренное при температуре $t = 34^{\circ}$ C значение вязкости $\eta = 0.032 \text{ Pa} \cdot \text{s}$ [14,15], величины радиуса иона Br⁻ 0.196 nm и иона CTA⁺ 0.24 nm. В результате вычисленные подвижности $\mu_{-} = 1.35 \cdot 10^{-5} \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$ и $\mu_{+} = 1.1 \cdot 10^{-5} \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$, как видно, примерно одинаковые.

Значения объемной концентрации вводимых в ЖК нейтральных молекул СТАВ (*n*₀) можно рассчитать, используя формулу [16]

$$n_0 = \frac{N_{\rm A} \nu \rho}{M}.\tag{4}$$

Здесь $N_{\rm A}$ — число Авогадро, ν — концентрация СТАВ по массе, $\rho \sim 1 \, {\rm g/cm^3}$ — плотность, $M \approx 291 \, {\rm g/mol}$ — молекулярная масса жидкого кристалла 8СВ. Поскольку массовая концентрация СТАВ в исследуемом образце $\nu = 0.01$, рассчитанная величина составляет $n_0 = 3 \cdot 10^{19} \, {\rm cm^{-3}}$.

Используя экспериментально измеренные значения удельной проводимости объема образца жидкого кристалла $8CB + CTAB \sigma_{lc} \approx 7.6 \cdot 10^{-8} \Omega^{-1} \cdot cm^{-1}$, а также вычисленные значения подвижности и концентрации нейтральных молекул СТАВ, из выражения (2) несложно получить степень диссоциации молекул СТАВ $\alpha \approx 0.001$.

Следует отметить, что в данном расчете не учитывался процесс адсорбции катионов сурфактанта СТА⁺ на электродах, так как в соответствии с имеющимися в литературе данными концентрация адсорбированных катионов мала и, как правило, не превышает значений $1 \cdot 10^{-7} - 1 \cdot 10^{-8}$ mol/cm³ [17]. Поскольку адсорбция уменьшает число электроактивных ионов, для согласования расчета с экспериментально измеренным значением проводимости σ_{lc} степень диссоциации α должна быть увеличена примерно на 10%.

В табл. 1 приведены значения объемной удельной проводимости образцов исследованных ЖК σ_{lc} , объемной концентрации нейтральных молекул СТАВ n_0 , концентрации электроактивных ионов n_i , их средней подвижности $\langle \mu \rangle = (\mu_+ + \mu_-)/2$ и степени диссоциации α , экспериментально измеренные в отсутствие постоянного электрического поля смещения $U_0 = 0$.

Как видно из табл. 1, величины удельной проводимости образцов жидких кристаллов 6CB и 7CB, обусловленной собственными ионами, приблизительно одинаковы и имеют тот же порядок, что и в случае образца жидкого кристалла 8CB + СТАВ. Такое совпадение проводимостей этих образцов ЖК связано, очевидно, с близкими величинами средних подвижностей $\langle \mu \rangle$ и объемных концентраций ионов n_i . Значительное уменьшение удельной проводимости образца MB-1 + СТАВ связано с соответствующим уменьшением коэффициента диссоциации молекул СТАВ и объемной концентрации ионов n_i . Важно отметить, что приведенные в табл. 1 объемные концентрации и средние подвижности ионов по порядку величины совпадают с соответствующими значениями, полученными в работе [12].

Приэлектродные процессы накопления и переноса зарядов

Теоретические подходы к изучению и интерпретации особенностей переноса заряда на интерфейсе электролит-контакты к внешней электрической цепи развиваются на протяжении многих лет [18]. Однако для объяснения влияния интерфейса на поведение измеренных частотных зависимостей проводимости и импеданса широкое распространение получили методы, заключающиеся в построении для исследуемых систем эквивалентных электрических схем с определенными элементами, обеспечивающими требуемое согласие с экспериментом [19,20]. Накопленный экспериментальный опыт показывает, что для описания спектров импеданса электролитов хорошо подходят относительно простые эквивалентные схемы, содержащие обычные резисторы и емкости, а также специфическую частотно-зависимую цепь, моделирующую процессы диффузии ионов в системе, импеданс которой Z_W называют импедансом Варбурга [19]. Эта цепь содержит соединенные последовательно частотно-зависимые элементы — активный (резистивный) R_W и реактивный (емкостный) C_W :

$$R_W(f) = \frac{W}{\sqrt{2\pi f}}, \quad C_W(f) = \frac{1}{W\sqrt{2\pi f}}.$$
 (5)

Здесь $W = k_f / \sqrt{D}$ — постоянная Варбурга, зависящая от скорости движения зарядов у поверхностей электродов k_f и коэффициента диффузии ионов *D*.

Для выбора эквивалентной схемы, содержащей частотно-зависимую цепь Варбурга, и для определения оптимальных значений элементов схемы удобно представлять экспериментально полученные импедансные спектры Z(f) в виде годографа импеданса, построенного в координатах его действительной Z' и мнимой Z'' компонент. При этом очевидно, что каждая точка кривой годографа отражает значения действительной и мнимой компонент импеданса, измеренных на конкретной частоте в исследуемом диапазоне.

На рис. З представлены годографы импеданса, построенные для образца жидкого кристалла 8CB + CTABпо результатам измерений на частотах в диапазоне от 0.1 Hz до 10 MHz при различных постоянных напряжениях электрического поля смещения, приложенного к электродам измерительной ячейки $U_0 = 0$, 2.0, 2.5 и 3.0 V (годографы 1–4). Видно, что поведение годографов в области высоких и средних частот практически одинаково, а их форма близка к полуокружности. В этом диапазоне частот годограф показывает изменение импеданса, связанное с объемом исследуемого образца, которое рассматривалось выше. Тот факт,

Рис. 3. Годографы импеданса жидкого кристалла 8CB + CTAB, построенные для различных напряжений смещения на контактах ячейки U_0 , V: 1 - 0, 2 - 2.0, 3 - 2.5, 4 - 3.0. Штриховые линии — результаты аппроксимации с использованием эквивалентной схемы (см. рис. 4).

что поведение импеданса практически не зависит от смещающего напряжения, приложенного к электродам ячейки, объясняется тем, что молекулы жидкого кристалла 8CB в объеме ячейки уже упорядочены за счет ориентирующего действия сурфактанта СТАВ, причем в направлении, совпадающем с направлением электрического поля. Частота, соответствующая максимальному значению Z'' на полуокружности годографа, является частотой релаксации измерительной ячейки с образцом ЖК $f_r \approx 11 \text{ kHz}$, по которой можно вычислить время релаксацию $\tau_r = 1/2\pi f_r \approx 1.45 \cdot 10^{-5}$ s, характеризующего релаксацию молекул жидкого кристалла в ячейке.

В области низких частот $(f < 100 \, \text{Hz})$ наблюдается радикальное изменение в поведении годографа, которое сильно зависит также от смещающего постоянного на-

1408

Образец	$C_{\rm dl},10^{-7}{\rm F/cm^2}$	$C_a, 10^{-7} \mathrm{F/cm^2}$	$R_q, 10^7 \Omega$	W, $10^6 \Omega/s^{1/2}$	$D, \mathrm{cm}^2/\mathrm{s}$
6CB	0.73	6.4	1.8	1.5	$\frac{1.2 \cdot 10^{-6}}{2.6 \cdot 10^{-8}}$
7CB	2.4	8.2	2.0	1.2	
8CB+CTAB	3.5	37.0	10.0	0.6	$\begin{array}{c} 2.7\cdot 10^{-7} \\ 5.8\cdot 10^{-10} \end{array}$
MB-1+CTAB	5.4	9.2	35.0	3.0	

Таблица 2. Номиналы элементов эквивалентных схем образцов ЖК в отсутствие электрического поля смещения ($U_0 = 0$)

пряжения U_0 на контактах ячейки. При $U_0 = 0$ (кривая 1 на рис. 3) этот участок годографа имеет вид почти прямолинейного луча. Именно такое поведение годографа описывает импеданс Варбурга, действительные и мнимые компоненты которого имеют одинаковые частотные зависимости: $\operatorname{Re}(Z_W) = -\operatorname{Im}(Z_W)$, при этом, очевидно, луч годографа должен иметь наклон 45° к оси абсцисс. Однако с ростом напряжения смещения U₀ наблюдается постепенное увеличение изгиба низкочастотного участка годографа, что приводит к его трансформации из прямой линии почти в полуокружность (кривые 2-4 на рис. 3). Это означает, что вблизи электродов измерительной ячейки наряду с образованием двойного электрического слоя и существующей диффузией ионов происходят некоторые дополнительные процессы, которые могут быть связаны с явлениями адсорбции поверхностноионного сурфактанта, инжекцией носителей заряда или с электрохимическими реакциями, в которых может участвовать и материал электродов. Эти дополнительные процессы должны учитываться при моделировании электрической схемой с помощью различного сочетания цепей, содержащих резистивно-емкостные элементы.

В настоящей работе для аппроксимации результатов эксперимента была разработана эквивалентная схема, показанная на рис. 4. Здесь левое звено схемы моделирует сопротивление электродов $R_{\rm el} = 20 \,\Omega/\Box$ и импеданс объема жидкого кристалла $R_{\rm lc}C_{\rm cl}$. Эти элементы формируют полуокружность высокочастотного участка годографа. В правой части схемы присутствуют емкость двойного электрического слоя $C_{\rm dl}$ и активное сопротивление переноса зарядов через интерфейс R_q , включенное параллельно $C_{\rm dl}$. Это сопротивление фактически определяет проводимость жидкокристаллической ячейки на постоянном токе. В схему также введены емкость C_a , моделирующая адсорбцию катионов CTA⁺ на электродах, и сопротивление R_a , определяющее время

Рис. 4. Эквивалентная схема измерительной ячейки с образцом жидкого кристалла.

заряда и разряда этой емкости. Диффузионный элемент Варбурга W включен в цепь последовательно с R_a и C_a , а эта цепь подключена параллельно к емкости двойного слоя C_{dl} .

Для такой схемы импеданс рассчитывается с помощью следующего уравнения [19]:

$$Z(j\omega) = R_{\rm el} + (R_{\rm lc}^{-1} + j\omega C_{\rm lc})^{-1} + \left\{ j\omega C_{\rm dl} + R_q^{-1} + [R_a + (j\omega C_a)^{-1} + Z_W]^{-1} \right\}^{-1}, \quad (6)$$

в котором импеданс Варбурга описывается выражением

$$Z_W = (1 - j)W\omega^{-1/2}.$$
 (7)

Постоянная Варбурга W выражается через такие электрофизические характеристики исследуемого образца, как поверхностная концентрация ионов c_s в области интерфейса электродов и коэффициент диффузии ионов D:

$$W = \frac{RTN_{\rm A}}{F^2 z S \sqrt{2}} \left(\frac{1}{c_s \sqrt{D}}\right),\tag{8}$$

где R — газовая постоянная, T — температура [K], N_A — число Авогадро, F — постоянная Фарадея, S — площадь пластин измерительной ячейки, z = 1 — заряд ионов. Коэффициент диффузии вычисляется по известной формуле

$$D = \frac{\langle \mu \rangle k_B T}{e}.$$
 (9)

Результаты аппроксимации экспериментально измеренных годографов импеданса Z''(Z') образца 8CB + CTAB, полученные с использованием выражения (6), показаны на рис. 3 штриховыми линиями, а электрические параметры эквивалентных схем для всех исследованных образцов представлены в табл. 2. Здесь же приведены вычисленные по формуле (9) значения коэффициента диффузии D.

Из табл. 2 видно, что емкость двойного слоя на интерфейсе C_{dl} по порядку величины ~ $1 \cdot 10^{-7}$ F/cm², что типично для электролитов, когда в приэлектродных процессах нет электрохимических реакций. Наиболее высокая емкость адсорбции C_a наблюдается у жидкого кристалла 8CB + CTAB. В этом же образце величина W, характеризующая диффузионный процесс, оказалась минимальной. При отсутствии напряжения смещения сопротивление утечки $R_q \sim 10^7 - 10^8 \Omega$, что в

Таблица 3. Номиналы элементов эквивалентной схемы образца жидкого кристалла 8CB + CTAB при различных значениях напряжения смещения U_0

U_0, V	$C_{\rm dl}, 10^{-7} {\rm F/cm^2}$	$C_a, 10^{-6}{ m F/cm^2}$	$R_q, 10^7 \Omega$	W, $10^6 \Omega/s^{1/2}$
0	3.5	3.7	10	0.6
2.0	4.2	3.1	2.0	0.8
2.5	4.9	5.1	0.31	1.4
3.0	5.6	5.6	0.038	1.2

несколько раз превышает сопротивление объема жидкого кристалла $R_{\rm lc} \sim 1.7 \cdot 10^5 \Omega$. Причина такого различия может состоять в наличии потенциального барьера, препятствующего взаимному обмену зарядами между электролитом и металлическими электродами.

При подаче на контакты измерительной ячейки постоянного напряжения смещения U_0 установлено, что полученные в результате аппроксимации реактивные элементы эквивалентных схем (рис. 4) для всех исследованных ЖК практически не изменяются. Наблюдаемое изменение низкочастотных лучей годографа с ростом U_0 связано исключительно с изменением активного сопротивления R_q . В качестве примера в табл. 3 приведены зависимости номиналов эквивалентной схемы для образца жидкого кристалла 8СВ + СТАВ при воздействии на ячейку постоянного поля смещения U_0 .

Из табл. З видно, что номиналы элементов эквивалентной схемы $C_{\rm dl}$, C_a и W с ростом U_0 слабо изменяются (менее чем в 2 раза), в то время как величина R_q уменьшается на три порядка. При максимальном напряжении величина R_q практически соответствует сопротивлению объема ЖК $R_{\rm lc} \sim 1.7 \cdot 10^5 \Omega$. Вероятную причину уменьшения сопротивления R_q с ростом U_0 можно связать с понижением потенциального барьера, препятствующего взаимному обмену зарядами между электролитом и металлическими электродами, а соответственно с нарастанием процессов переноса зарядов на границе электрод–ЖК.

Отсутствие влияния постоянного поля смещения на емкость двойного электрического слоя типично для многих электролитов. Однако наблюдаемое в эксперименте отсутствие изменения емкости адсорбции, формируемой поверхностно закрепленными на электродах катионами СТА⁺, является неочевидным фактом. По-видимому, связь катионов сурфактанта с металлическими электродами оказывается настолько сильной, что она не позволяет измениться их равновесной концентрации при наложении постоянного смещающего поля.

5. Заключение

Результаты работы показали, что по измеренным спектрам импеданса можно определять величину ионной проводимости в объеме жидких кристаллов, легированных поверхностно-ионным сурфактантом, а также изучать явления, происходящие вблизи интерфейса электрод-ЖК. В частности, импедансная спектроскопия позволила исследовать влияние постоянного электрического поля на электрофизические характеристики нематических жидких кристаллов из серии алкилцианобифенилов и многокомпонентной жидкокристаллической смеси MB-1, допированных ионным сурфактантом. Проведена аппроксимация измеренных спектров с использованием разработанных эквивалентных схем ячейки с образцом, позволившая определить емкость двойного электрического слоя, удельную проводимость образцов, а также подвижность, концентрацию и коэффициент диффузии ионов. Показано, что в диапазоне частот f < 100 Hz вблизи электродов измерительной ячейки с жидкокристаллическим образцом возникает область пространственного заряда, приводящая к увеличению активной и реактивной компонент импеданса.

Установлено также, что только в низкочастотной области импедансные спектры существенно зависят от величины подаваемого на образец постоянного напряжения смещения, приводящего к существенному увеличению проводимости через интерфейс жидкий кристаллметаллический электрод. Причина этого эффекта наиболее вероятно связана с понижением потенциального барьера, который препятствует взаимному обмену зарядами между ЖК и металлическими электродами. Однако емкость двойного слоя и емкость адсорбции практически не зависят от материала электродов и не изменяются при подаче на образец постоянных электрических полей смещения. Этот факт свидетельствует о том, что адсорбированные на металлических электродах катионы СТАВ очень сильно связаны с поверхностью контактов, поэтому их концентрация не меняется даже в предельно больших электрических полях.

Список литературы

- [1] Я. Бартонь, А.А. Кальнин. ЖТФ 68, 1, 125 (1998).
- [2] И.Р. Гуральник, С.А. Самагин. Квантовая электроника 32, 4, 362 (2002).
- [3] Л.М. Блинов, Е.И. Кац, А.А. Сонин. УФН 152, 3, 449 (1987).
- [4] L. Komitov, B. Helgee, J. Flix, A. Matharu. Appl. Phys. Lett. 86, 023 502 (2005).
- [5] V.G. Chigrinov, V.M. Kozenkov, H.-S. Kwok. Photoalignment of liqud crystalline materials: physics and applications. John Wiley & Sons, Ltd. (2008). 221 p.
- [6] P. Pagliusi, G. Cipparrone. J. Appl. Phys. 92, 9, 4863 (2002).
- [7] V.Ya. Zyryanov, M.N. Krakhalev, O.O. Prishchera. Mol. Cryst. Liq. Cryst. 489, 273/[599] (2008).
- [8] Т.В. Безродная, В.В. Несправа, Г.А. Пучковская, И.Т. Чашечникова, Ю.П. Бойко, Я. Баран. ЖПС **78**, *1*, 56 (2011).
- [9] Б.А. Беляев, Н.А. Дрокин, В.Ф. Шабанов, В.Н. Шепов. ФТТ
 45, 3, 567 (2003)
- [10] М.Г. Томилин. Взаимодействие жидких кристаллов с поверхностью. Политехника, СПб (2001). 325 с.

- [11] Н.Г. Букун, А.Е. Укше. Электрохимия 45, 13 (2009).
- [12] S. Naemura, A. Savada. Mol. Cryst. Liq. Cryst. 400, 79 (2003).
- [13] А.И. Жакин. УФН 173, 51 (2003).
- [14] P. Patricio, C.R. Leal, L.F.V. Pinto, A. Boto, M.T. Cidade. Liq. Cryst. 39, 25 (2012).
- [15] W. Martienssen, H. Walimont. Springer handbook of condensed matter and materials data. Springer Berlin–Heidelberg–NY (2005). 977 p.
- [16] М.Ф. Гребенкин, А.В. Иващенко. Жидкокристаллические материалы. Химия, М. (1989). 288 с.
- [17] M. Halder. Chem. Educ. 12, 33 (2007).
- [18] Б.Б. Дамаскинб, О.А. Петрий, Г.А. Цирлина. Электрохимия. Химия, КолосС, М. (2006). 672 с.
- [19] Б.М. Графов, Е.А. Укше. Успехи химии XLIV, 11, 1979 (1975).
- [20] J.R. Macdonald. Ann. Biomed. Eng. 20, 289 (1992)