Исследование пиннинга магнитного потока в YBa₂Cu₃O_{7-y}/наноZrO₂ гранулярных композитах

А. В. Ушаков¹⁾, И. В. Карпов, А. А. Лепешев, М. И. Петров, Л. Ю. Федоров

Сибирский федеральный университет, 660074 Красноярск, Россия

Красноярский научный центр СО РАН, 660036 Красноярск, Россия

Институт физики им. Киренского СО РАН, 660036 Красноярск, Россия

Поступила в редакцию 23 декабря 2013 г.

В настоящей работе изучено влияние наночастиц ZrO_2 , полученных в плазме дугового разряда низкого давления, на пиннинг магнитного потока гранулярных $YBa_2Cu_3O_{7-y}/HahoZrO_2$ композитов. Показано, что наночастицы ZrO_2 не меняют сверхпроводящего перехода и микроструктуры сверхпроводников. При температуре 5 К добавление 0.5 и 1 масс. % наночастиц ZrO_2 может привести к дополнительному эффекту пиннинга магнитного потока и увеличению плотности критического тока J_c . Для композитов с 1 мас.% значение J_c в два раза больше, чем у эталонного образца. При температурах 20 и 50 К для композитов $YBa_2Cu_3O_{7-y}/HahoZrO_2$ наблюдается fishtail эффект. Обсуждаются вопросы, связанные с дополнительным эффектом пиннинга магнитного потока гранулярных $YBa_2Cu_3O_{7-y}/HahoZrO_2$ композитов и возникновение fishtail эффекта.

DOI: 10.7868/S0370274X14020088

Большие плотности критического тока J_c имеют существенное значение для множества предполагаемых применений высокотемпературных сверхпроводников, таких, как провода для передачи электроэнергии и магниты [1]. Как правило, ограничение J_c связано с двумя основными факторами [2]. Вопервых, J_c ограничен термоактивированным крипом магнитного потока, т.е. он существенно уменьшается при воздействии магнитного поля, намного меньшего критического поля $H_c(T)$. Это явление вызывается хорошо известными свойствами высокотемпературных сверхпроводников (ВТСП), например большой анизотропией и небольшой длиной когерентности, которые приводят к слабому пиннингу магнитного потока. Во-вторых, в поликристаллических ВТСП Ј_с ограничивается недостаточным упорядочением кристаллитов и их химической неоднородностью, что приводит к слабой связи с низкими значениями плотности критического тока. Данная проблема преодолевается различными методами выращивания текстуры, такими как, "оксидный порошок в трубке" (Oxide-Powder-In-Tube, OPIT) [3]. Благодаря этой технологии в коротких многожильных лентах Bi-2223/Ag уже достигнута величина $J_c > 80 \, {\rm kA/cm^2}$ при температуре 77 К [4].

В последние годы появилось достаточно много новых методов создания центров пиннинга и, соответственно, повышения критического тока J_c высокотемпературных сверхпроводников. Среди них наиболее интересны следующие. Аморфные цилиндрические треки около 10 нм диаметром и от 1 до 10 мкм в длину были получены бомбардировкой тяжелыми ионами монокристаллов YBa₂Cu₃O_{7-y} [5]. Протонным облучением с последующим распадом ядер Ві созданы треки в аморфном Bi₂Sr₂CaCu₂O₈ [6]. Нейтронным облученим HgBa₂CaCu₂O₆ были увеличены его гистерезис намагниченности и критическая температура [7].

Однако применение данных технологий сопряжено со значительными трудностями: серьезными препятствиями в применении ускорителей, радиоактивных материалов, нейтронного облучения.

Очевидно, что существует необходимость дальнейшего изучения методов введения дефектов или примесей в сверхпроводящую матрицу. Повидимому, наиболее реалистичным подходом является предварительное смешивание наночастиц и порошка ВТСП и дальнейшее проведение стандартных технологических процедур, т.е. прокаливания, спекания и насыщения кислородом (при необходимости). При этом будут достигнуты следующие преимущества: возможность промышленного применения, значительное уменьшение анизотро-

Письма в ЖЭТФ том 99 вып. 1–2 2014

105

 $^{^{1)}}$ e-mail: sfu-unesco@mail.ru

пии магнитных свойств, существенное увеличение критического тока при усилении контакта между зернами.

К наночастицам предъявляются следующие основные требования: их размер должен быть сравним с длиной когерентности высокотемпературных сверхпроводников; они должны проявлять стабильность в химически агрессивной среде при повышенных температурах. Это необходимо для оптимизации сверхпроводимости в материале матрицы. В настоящей работе мы выбрали для исследования наночастицы ZrO₂ в виде включений в поликристаллическую сверхпроводящую матрицу YBa₂Cu₃O_{7-и}. Температура плавления ZrO₂ достигает 2400 °C. Они являются химически стабильными. Цель настоящей работы – изучение влияния наночастиц ZrO₂, полученных в плазме дугового разряда низкого давления, на пиннинг магнитного потока гранулярных композитов $YBa_2Cu_3O_{7-u}$ /нано ZrO_2 .

Порошок прекурсора УВа₂Си₃О_{7-у} был получен обычным методом твердофазного синтеза. Синтез композита YBa₂Cu₃O_{7-u}/наноZrO₂ осуществлялся по методике, подробно описанной в [8, 9]. Синтез материала проводился при следующих условиях. В качестве катода для распыления был выбран цирконий технической чистоты. Перед испарением катод нагревался до рабочей температуры 800 К. Очистку в тлеющем разряде проводили при напряжении на подложке 1000 В в течение 1 мин. Активация ионной бомбардировкой осуществлялась в течение 1 мин при токе дугового разряда 20 А и напряжении на подложке 1000 В. Частота вращения устройства перемешивания составляла 8 мин⁻¹. Амплитуда вибрации 1 мм. Частота вибрации 50 Гц. Непосредственное осаждение наночастиц оксида циркония на микрогранулы ВТСП проводилось при токе разряда 500 А. Напряженность продольного магнитного поля, создаваемого фокусирующей катушкой на поверхности катода, достигала 6366.2 А/м. Для осуществления плазмохимических реакций в камеру после предварительной откачки до давления 1 мПа при помощи двухканального регулятора расхода газа напускалась газовая смесь $5\% O_2 + 95\%$ Не. Синтез производился при давлении от 120 Па. После нанесения наночастиц образцы пассивировались в атмосфере чистого кислорода в течение суток. Получаемые образцы материала содержали от 0.1 до 1 мас.% наночастиц.

Полученную смесь предварительно нагревали до 940 °C и выдерживали при этой температуре в течение 30 ч. Предварительно нагретый порошок измельчали и снова прессовали в таблетки с диаметром 1 мм и толщиной 5 мм при давлении $1.2 \cdot 10^5 \text{ H/cm}^2$. Наконец, гранулы спекали при 940 °C в течение 24 ч, а затем охлаждали до комнатной температуры в печи на воздухе.

Для регистрации намагниченности применялся метод дифференциальной холловской магнитометрии. Он заключается в использовании двух полупроводниковых преобразователей Холла (ПХ), включенных встречно относительно холловских потенциальных выводов. Первый ПХ находился вдали от образца и измерял внешнее магнитное поле Н. Второй преобразователь помещался на поверхности образца и измерял магнитную индукцию. В результате аппаратного вычитания холловского потенциала первого ПХ из потенциала второго ПХ возникал суммарный сигнал, соответствующий намагниченности M(H). Согласно формуле Бина, учитывающей размагничивающий фактор и зависимость критического тока от магнитного поля, $J_c(H) = 30M(H)/d$, где М – ширина петли гистерезиса намагниченности, d – средний размер кристаллитов. Нами использовалось значение d = 6 мкм, полученное по результатам электронной микроскопии. Измерение магнитных петель гистерезиса проводилось при 5, 20 и 50 К. Расчет силы пиннинга осуществлялся с помощью уравнения $F_p(B) = J_c(B)B$ [10].

Исследование фазового состава образцов ВТСП было проведено на дифрактометре XRD-6000 на CuK_{α} -излучении. Анализ фазового состава и размера областей когерентного рассеяния осуществлялся с использованием базы данных PCPDFWIN.

Структурные исследования образцов проводились методом растровой электронной микроскопии на электронном микроскопе JEM-100CX с растровой приставкой ASID-4D при ускоряющем напряжении 40 кэВ.

На рис. 1 представлены рентгеновские дифрактограммы всех композиций YBa₂Cu₃O_{7-y}/наноZrO₂. Пики, связанные с примесью фазы ZrO₂ или других оксидов, отсутствуют. При этом характерные пики YBa₂Cu₃O_{7-y} не сдвигаются. Изучение температурной зависимости магнитной восприимчивости показало, что температура сверхпроводящего перехода T_c не изменяется и составляет для всех образцов 90 К. С помощью сканирующей электронной микроскопии было обнаружено отсутствие больших скоплений наночастиц ZrO₂. Таким образом, они гомогенно распределены в сверхпроводниковой матрице. Полевые зависимости $F_p(B)$ и J_c композита YBa₂Cu₃O_{7-y}/наноZrO₂ приведены на рис. 2–4.

На рис. 2 приведены зависимости от магнитного поля расчетной плотности критического тока J_c и силы пиннинга F_p при температуре 5 K для всех ис-

Рис. 1. Рентгеновские дифрактограммы композитов $YBa_2Cu_3O_{7-y}/ZrO_2$ с 0, 0.5 и 1.0 мас.% наночастиц ZrO_2

Рис. 2. Зависимости от магнитного поля J_c (a)
и F_p (b) для композитов $\rm YBa_2Cu_3O_{7-y}/ZrO_2$ с
 0, 0.5 и 1.0 мас.% наночастиц ZrO_2 при 5 К

следованных композитов. Из рис. 2
а видно, что для всего ряда приложенных магнитных поле
й J_c суще-

Письма в ЖЭТФ том 99 вып. 1-2 2014

ственно выше для композитов с 0.5 и 1.0% наночастиц ZrO₂ по сравнению с образцом без добавления наночастиц ZrO₂. Для композита с 1.0 масс.% наночастиц $ZrO_2 J_c$ в два раза больше, чем у образцов без наночастиц. Из рис. 2b видно, что для всех композитов сила пиннинга F_p увеличивается с увеличением приложенного магнитного поля. Во всем диапазоне приложенного магнитного поля сила пиннинга F_p композитов с 0.5 и 1.0 масс.% наночастиц ZrO₂ выше, чем у чистого образца YBa₂Cu₃O_{7-y}. Приведенные графики показывают, что добавление наночастиц ZrO2 приводит к образованию дополнительных эффективных центров пиннинга. Эти центры могут повысить силу пиннинга сверхпроводников YBa₂Cu₃O_{7-y} и улучшить их плотности критического тока J_c при температуре 5 К.

На рис. 3 приведены зависимости от магнитного поля расчетной плотности критического тока J_c и си-

Рис. 3. Зависимости от магнитного поля $J_c(a)$ и F_p (b) для композитов $\rm YBa_2Cu_3O_{7-y}/ZrO_2$ с 0, 0.5 и 1.0 мас.% наночастиц ZrO_2 при 20 К

лы пиннинга F_p при температуре 20 К для всех исследованных композитов. Видно, что для образцов с

0.5 и 1.0 масс.% наночастиц ZrO₂ при величине магнитного поля ниже 1.5 Т J_c и F_p ниже, чем у образцов без наночастиц ZrO₂. Однако в диапазоне полей от 1.5 до 5 Т величина J_c образцов с 0.5 и 1 мас.% наночастиц ZrO₂ сравнима с таковой для чистого образца YBa₂Cu₃O_{7-y}. Данный факт свидетельствует о том, что наночастицы ZrO₂ усиливают слабые межгранулярные связи YBa₂Cu₃O_{7-y} в указанном диапазоне магнитных полей. При возрастании магнитного поля выше 2 Т плотность критического тока для композитов YBa₂Cu₃O_{7-y}/наноZrO₂ с 0, 0.5 и 1.0 мас.% наночастиц ZrO₂ растет, т.е. наблюдается fishtail эф-фект.

На рис. 4 приведены зависимости от магнитного поля расчетной плотности критического тока J_c и си-

Рис. 4. Зависимости от магнитного поля J_c (a) и F_p (b) для композитов YBa₂Cu₃O_{7-y}/ZrO₂ с 0, 0.5 и 1.0 мас.% наночастиц ZrO₂ при 50 K

лы пиннинга F_p при температуре 50 K для всех исследованных композитов. Видно, что для образцов с 0.5 и 1.0 мас.% наночастиц ZrO₂ J_c и F_p ниже, чем у образцов без наночастиц ZrO₂, при величине магнитного поля ниже 0.8 Т. Этот факт означает, что добавки наночастиц ZrO₂ в указанном диапазоне магнитных полей способствуют ослаблению межгранулярных связей сверхпроводника. Однако для магнитных полей от 0.8 до 3 Т J_c композитов выше, чем у контрольного образца. Для поля же выше 3 Т J_c композитов ниже, чем у контрольного образца, т.е. также наблюдается fishtail эффект.

Аналогичное поведение наблюдается для зависимости силы пиннинга от магнитного поля. Как показывают полученные результаты, в ҮВСО сверхпроводящих системах добавление несверхпроводящих наночастиц ZrO₂, гомогенно диспергированных в матрице, может влиять на пиннинг и крип магнитного потока. Роль наночастиц ZrO₂ в повышении плотности критического тока схожа с ролью включений фазы 211 [11]. Она предполагает, что уменьшенный размер этих частиц непосредственно обусловливает повышенный пиннинг. В то же время достаточно крупные частицы нормальной (не сверхпроводящей) фазы 211 естественным образом понижают сверхпроводящие свойства образца. Поэтому для оптимизации свойств керамики необходимо контролировать концентрацию и размер наночастиц ZrO₂ в порошке прекурсора, используемого при изготовлении YBCO [12].

Пока относительно механизма влияния У211 на пиннинг в высокотемпературных сверхпроводящих плавленых текстурированных керамических материалах на основе $YBa_2Cu_3O_{7-y}$ не достигнуто общего понимания. Считается [13], что У211-частицы могут действовать как эффективный поток центров пиннинга. В [14] предпринимались попытки полуколичественно теоретически интерпретировать поведение $J_c(T, H)$ при высоких температурах в высоких магнитных полях. Авторы [15] рассмотрели дефекты, связанные с интерфейсом У211-частиц и $YBa_2Cu_3O_{7-u}$, как эффективные центры пиннинга, что весьма успешно подтверждено многими экспериментальными результатами. Альтернативным объяснением увеличения плотности тока J_c может служить переход от упорядоченного состояния вихревой решетки (ВР) к неупорядоченному при ее взаимодействии с наночастицами ZrO₂. Предполагается [16], что переход порядок-беспорядок (ПБ) реализуется, если поперечные деформации вихревых нитей u удовлетворяют критерию Линдемана: $u = c_{\rm L} a_0$, где $c_{\rm L}$ – число Линдемана, $a_0 = (\Phi_0/B)^{1/2}$ – межвихревое расстояние, Φ_0 – квант магнитного потока. Эти деформации приводят к увеличению упругой энергии ВР. Поэтому ПБ-переход реализуется в том случае, когда увеличение упругой энергии E_el компенсируется энергией пиннинга E_p . При пиннинге на точечных дефектах энергия E_p не зависит от угла.

Письма в ЖЭТФ том 99 вып. 1-2 2014

Многие исследования показывают, что кислородные вакансии приводят к появлению у образцов $YBa_2Cu_3O_{7-y}$ fishtail эффектов [13]. Установлено, что проведение насыщения образцов кислородом в условиях его контролируемого изостатического давления и высоких температур (при условии первоначального нагрева до высоких температур в среде азота) позволяет существенно снизить трещинообразование в керамике YBCO, повысить механические характеристики материала и ускорить процесс насыщения, а также достичь рекордно высоких значений плотности критического тока.

Средний размер наночастиц ZrO₂ существенно больше, чем длина когерентности сверхпроводников YBa₂Cu₃O_{7-u}. Поэтому утверждение о том, что наночастицы ZrO₂ действуют как эффективные центры пиннинга, кажется неверным. Кроме того, средний размер наночастицы ZrO₂ сравним с глубиной проникновения системы сверхпроводников YBaCuO, так что роль межфазного пиннинга в системах $ZrO_2/YBa_2Cu_3O_{7-u}$ ограничена. По нашему мнению, наночастицы ZrO₂ в сверхпроводнике YBa₂Cu₃O_{7-y} отвечают за расширение пиннинга. Они приводят к искажениям кристаллической структуры на поверхности раздела и влияют на распределение кислорододефицитных областей, а также увеличивают количество микрообластей с низкой J_c . В связи с этим по сравнению с чистыми образцами композиты $ZrO_2/YBa_2Cu_3O_{7-y}$ в широких диапазонах температуры и магнитного поля проявляют усиление пиннинга. В результате они имеют более высокую плотность критического тока.

При низкой температуре (в нашем случае $T = 5 \,\mathrm{K}$) роль локализованных микрообластей минимальна. Поэтому мы не наблюдали fishtail эффекта в композитах $\mathrm{ZrO}_2/\mathrm{YBa}_2\mathrm{Cu}_3\mathrm{O}_{7-y}$ с добавками 0, 0.5 и 1.0% наночастиц ZrO_2 . При более высоких температурах (T = 20 и 50 K) роль локализованных микрообластей начинает проявляться, появляется дополнительный поток центров пиннинга и fishtail эффект можно наблюдать для всех композитов $\mathrm{ZrO}_2/\mathrm{YBa}_2\mathrm{Cu}_3\mathrm{O}_{7-y}$.

Таким образом, гомогенно диспергированные в матрице сверхпроводников $YBa_2Cu_3O_{7-y}$ наночастицы ZrO_2 могут привести к существованию дополнительных эффективных центров пиннинга магнитного потока. Как результат плотность критического тока J_c в композите $ZrO_2/YBa_2Cu_3O_{7-y}$ с 1.0% наночастиц ZrO_2 улучшается в два раза по сравнению с чистым сверхпроводником $YBa_2Cu_3O_{7-y}$. При температурах 20 и 50 K fishtail эффект наблюдался в зависимостях плотности тока и силы пиннинга от магнитного поля для всех исследованных композитов $\operatorname{ZrO}_2/\operatorname{YBa}_2\operatorname{Cu}_3\operatorname{O}_{7-y}$. Наночастицы ZrO_2 вызывают искажения кристаллической структуры на поверхности раздела и влияют на распределение кислорододефицитных областей. Кроме того, благодаря им увеличивается количество микрообластей с низкой плотностью J_c .

Работа выполнена при частичной финансовой поддержке исследований в рамках государственного задания Министерства образования и науки Российской Федерации на оказание услуг (выполнение работ) (проект #7.4484.2011).

- S. R. Foltyn, L. Civale1, J. L. MacManus-Driscoll, Q. X. Jia1, B. Maiorov, and H. Wang, M. Maley, Nat. Mater 6, 631 (2007).
- D. Larbalestier, A. Gurevich, D. Feldmann, and A. Polyanskii, Nature 414, 368 (2001).
- L. R. Vale, R. H. Ono, and D. A. Rudman, IEEE Trans. Appl. Supercond. 7, 3193 (1997).
- 4. C. C. Chin, R. J. Lin, Y. C. Yu, C. W. Wang, E. K. Lin, W. C. Tsai, and T. Y. Tseng, IEEE Trans. Appl. Supercond. 7, 1403 (1997).
- A. Goyal, S. Kang, K. J. Leonard, P. M. Martin, A. A. Gapud, M. Varela, M. Paranthaman, A.O. Ijaduola, E. D. Specht, J. R. Thompson, D. K. Christen, S. J. Pennycook, and F. A. List, Supercond. Sci. Tech. 18, 1533 (2005).
- D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, and F.A. List, Science **274**, 755 (1996).
- A. Goyal, D. P. Norton, D. M. Kroeger, D. K. Christen, M. Paranthaman, E. D. Specht, J. D. Budai, Q. He, B. Saffian, F. A. List, D. F. Lee, P. M. Martin, C. E. Klabunde, E. Hatfield, J. Mathis, and C. Park, J. Mater. Res. 12, 2924 (1997).
- И. В. Карпов, А. В. Ушаков, Л. Ю. Федоров, А. А. Лепешев, ЖТФ 84, 93 (2014).
- 9. Патент Р
Ф 2486990.
- T. Mochida, N. Chikumoto, and M. Murakami, Phys. Rev. B 62, 1352 (2000).
- S. Sengupta, D. Shi, Z. Wang, A.C. Biondo, U. Balachandran, and K.C. Goretta, Phys. C. 199, 43 (1992).
- W. Lo, D. A. Cardwell, S. L. Dung, and R. G. Barter, J. Mater. Res. **11**, 39 (1996).
- T.A. Prikhna, W. Gawalek, F. Sandiumenge, V.E. Moshchil, V.S. Melnikov, S.N. Dub, T. Habisreuther, and A.B. Surzhenko, P.A. Nagorny, J. Mater. Sci. 35, 1607 (2000).
- K. Salama and D.F. Lee, Supercond. Sci. Technol. 7, 177 (1994).
- D.F. Lee, V. Selvamanickan, and K. Salama, Physica. C 202, 83 (1992).
- 16. D. Ertas and D. R. Neison, Physica. C 272, 79 (1996).

Письма в ЖЭТФ том 99 вып. 1-2 2014