Новые особенности фазового перехода смектик-*А*–кристалл-*В* в гомологическом ряду жидких кристаллов

Е. М. Аверьянов¹⁾

Институт физики им. Киренского СО РАН, 660036 Красноярск, Россия

Поступила в редакцию 9 января 2014 г.

Для гомологов ряда алкил-р-(4-алкоксибензилиденамино-)циннаматов определены компоненты L_j тензора Лорентца и плотность поляризуемости молекул G в смектической-A и кристаллической-B фазах. В обеих фазах величина L_j (G) является линейной (квадратичной) функцией параметра ориентационного порядка молекул S, инвариантной (неинвариантной) относительно перехода A-B, который проявляется в виде скачков δL_j и δG и усиления зависимости G(S). Рост длины концевых молекулярных цепей и ослабление межслоевой корреляции молекул сопровождаются усилением перехода первого рода A-B и зависимостей G(S) в обеих фазах вместе с ростом δL_j , δG . Изменение δG и зависимость G(S) в B-фазе связаны с изменением конформации (уплощением) ароматических молекулярных остовов.

DOI: 10.7868/S0370274X14030102

1. Для кристаллических смектиков-В [1] с дальним внутри- и межслоевым позиционным порядком молекул характерен кроссовер между двумерным и трехмерным плавлением при фазовом переходе в смектик-А [2] с жидкостным позиционным порядком молекул в слоях и квазидальним одномерным позиционным порядком слоев. Характер перехода А-В и степень проявления трехмерного упорядочения молекул в В-фазе зависят от степени межслоевой корреляции молекул. В связи с выяснением молекулярной природы перехода А-В возникает вопрос о влиянии внутрислоевого порядка молекул в обеих фазах на тензор молекулярной поляризуемости γ и дипольдипольные межмолекулярные взаимодействия при варьировании межслоевой корреляции молекул. Ответ на него может дать рефрактометрия жидких кристаллов (ЖК) одного гомологического ряда с переходом A-B, для которых степень межслоевой корреляции молекул зависит от длины концевых молекулярных цепей, находящихся в конформационноразупорядоченном состоянии.

Для одноосных ортогональных фаз A и B компоненты $\varepsilon_j = 1 + 4\pi N f_j \gamma_j$ диэлектрической проницаемости для световых волн, поляризованных вдоль $(j = \parallel)$ и поперек $(j = \perp)$ оптической оси **n**, связаны с числом N молекул в единице объема усредненными по ансамблю компонентами γ_j молекулярной поляризуемости, компонентами $f_j = 1 + L_j(\varepsilon_j - 1)$ тензора локального поля и компонентами L_j тензора Лорентца (SpL = 1). В видимой области прозрачно-

179

сти $\varepsilon_j = n_j^2$, где n_j – показатели преломления ЖК. Анизотропия тензора L характеризует анизотропию диполь-дипольного взаимодействия молекул и является индикатором локальной анизотропии среды на мезоскопических масштабах [3]. Для слоистых молекулярных сред, подобных фазам A и B, вклад межслоевого диполь-дипольного взаимодействия молекул в компоненты L_j пренебрежимо мал по сравнению с вкладом внутрислоевого взаимодействия [4]. Это делает компоненты L_j индикаторами внутрислоевого порядка молекул в фазах A и B при определении L_j из экспериментальных данных [5] без априорных предположений о свойствах тензоров γ , L, f.

В данной работе указанный подход используется для исследования компонент L_j и плотности поляризуемости $G_j = N\gamma_j$ в фазах A и B гомологов ряда алкил-р-(4-алкоксибензилиденамино-)циннаматов (nO.mC)

$$\begin{array}{l} \mathbf{H}_{2n+1}\mathbf{C}_{n}\mathbf{O} - \langle \mathbf{Ph} \rangle_{1} - \mathbf{CH} = \mathbf{N} - \langle \mathbf{Ph} \rangle_{2} - \mathbf{CH} = \mathbf{CH} - \mathbf{COO} - \\ - \mathbf{C}_{m}\mathbf{H}_{2m+1}, \end{array}$$

где $\langle Ph \rangle_{1,2}$ – фенильные кольца.

2. Для фаз A и B с оптической осью **n**, перпендикулярной молекулярным слоям, ориентационный порядок продольных осей **l** молекул относительно **n** характеризуется величиной $S = \langle 3\cos^2\theta - 1 \rangle/2$, где θ – угол между осями **l** и **n**, а треугольные скобки означают усреднение по молекулярному ансамблю. Для одноосных ЖК без ограничения общности определения компонент L_j можно считать молекулы одноосными. Тензор γ характеризуется продольной (γ_l) и поперечной (γ_t) компонентами, или средним значе-

¹⁾e-mail: aver@iph.krasn.ru

нием $\bar{\gamma} = (\gamma_l + 2\gamma_t)/3$ и анизотропией $\Delta \gamma = \gamma_l - \gamma_t$. Для фаз A и B с $\Delta \varepsilon = (\varepsilon_{\parallel} - \varepsilon_{\perp}) \propto \Delta \gamma S > 0$ определение компонент $L_{\perp}, L_{\parallel} = 1 - 2L_{\perp}$ сводится к следующему [5]. Используются параметры $\bar{\varepsilon} = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3$, $Q = \Delta \varepsilon / (\bar{\varepsilon} - 1)$ и величины

$$r_{0} = 1 - \frac{2Q^{2}(\bar{\varepsilon} - 1)}{3(3+Q)(\bar{\varepsilon} + 2)}, \ b = \frac{3(\bar{\varepsilon} - 1)}{4\pi N \bar{\gamma}(\bar{\varepsilon} + 2)} - r_{0},$$

$$b_{1} = \frac{2r_{0}Q^{2}}{(3-Q)(3+2Q)}, \ b_{2} = b_{1}[(6+Q)/Q]^{2},$$
(1)

которые зависят от температуры T и длины световой волны λ . Искомое значение $L_{\perp}(T)$ дается выражением [5]

$$L_{\perp} = L_{\perp k} - \frac{\bar{\varepsilon} + 2}{12(\bar{\varepsilon} - 1)} \times \\ \times \left\{ (b_1 b_2)^{1/2} - b - [(b_1 - b)(b_2 - b)]^{1/2} \right\}, \qquad (2)$$

где $L_{\perp k} = (3+2Q)/[3(3+Q)]$. Сюда входит функция $b(\lambda, T)$, зависящая от неизвестной функции $\bar{\gamma}(\lambda, T)$. При известных значениях $n_j(\lambda, T)$ для дискретного набора величин λ_i (i = 1 - p) в видимой области функция $b(\lambda, T)$ в интервале $\lambda_1 - \lambda_p$ аппроксимируется полиномом

$$b(\lambda, T) = a_0(T) + a_1(T)\lambda + \ldots + a_q(T)\lambda^q.$$
(3)

Величина $L_{\perp}(T)$ не зависит от λ . Температуре T отвечают q + 2 неизвестных $(L_{\perp}^{(q)}, a_0 - a_q)$. Они находятся из системы q + 2 = p уравнений (2), каждое из которых соответствует одному из значений λ_i . Степень используемого в (3) приближения определяется точностью экспериментальных значений $n_j(\lambda, T)$ и шириной интервала аппроксимации $\lambda_1 - \lambda_p$.

Показатели преломления $n_i(\lambda_i, T)$ для фаз A и В гомологов 20.2С, 30.2С, 40.3С, 80.3С и 80.5С были измерены с точностью 5 · 10⁻⁴ в работе [6] и табулированы при значениях $\lambda_1 = 0.5461$ мкм, $\lambda_2 =$ = 0.5893 мкм и $\lambda_3 = 0.6438$ мкм. Для всех гомологов величина $\triangle \varepsilon(\lambda_i, T)$ изменяется скачком при температуре T_{AB} фазового перехода A-B первого рода, характерного для кристаллической-*В* фазы ЖК 2О.2С [7] и других производных азометинов [1]. При данной точности значений $n_i(\lambda_i, T)$ и узком интервале $\lambda_1 - \lambda_3$ параметры $L^{(1)}_{\perp}(T)$ изменяются нерегулярно. Величины $\langle L_{\perp}^{(0)}(T) \rangle$, усредненные по значениям $L^{(0)}_{\perp}(T)$ для трех пар реперов λ_i из набора $\lambda_1 - \lambda_3$, изменяются регулярно и адекватны точности значений $n_i(\lambda_i, T)$. Таким образом, следует принять $L_{\perp}(T) =$ $= \langle L_{\perp}^{(0)}(T) \rangle.$

3.1. При снижении T рост $L_{\perp}(T)$ в A-фазе сменяется скачком $\delta L_{\perp}(T_{AB})$ и последующим ростом в

B-фазе. Для каждого гомолога n O.m C при заданной λ функции $L_{\perp}(T)$ и $L_{\perp k}(T,\lambda)$ связаны выражением

$$L_{\perp}(T) = \alpha(\lambda)L_{\perp k}(T,\lambda) + \beta(\lambda). \tag{4}$$

Эти зависимости приведены на рис. 1 при значении

Рис. 1. Зависимости (4) в фазах A (закрытые кружки) и B (открытые кружки) гомологов 2О.2С (1), 3О.2С (2), 4О.3С (3), 8О.3С (4) и 8О.5С (5) при $\lambda = 0.5893$ мкм. Графики с номерами N = 2-5 смещены вверх на 0.004(N-1) единиц

 $\lambda = \lambda_2$, которому соответствуют все приведенные ниже спектрально-зависимые величины. Вертикальные штрихи на рисунке показывают стандартное отклонение значений $L_{\perp}^{(0)}(T)$ от $\langle L_{\perp}^{(0)}(T) \rangle$. Связь (4) инвариантна относительно перехода A-B. Для гомологов nO.mC коэффициенты формулы (4) зависят от длины концевых цепей молекул и с высокой точностью связаны выражением $\beta = (1 - \alpha)/3$. Так, для 80.5С имеем $\alpha = 1.7092, \beta = -0.2366$ и $(1 - \alpha)/3 = -0.2364$. С учетом этого из (4) следует выражение

$$\alpha = (L_{\perp} - 1/3)/(L_{\perp k} - 1/3) \approx \text{const.}$$
 (5)

В силу малости $Q \ll 3$ выполняется соотношение $L_{\perp k} - 1/3 \propto Q$, откуда с учетом (5) следует пропорциональность $L_{\perp} - 1/3 \propto Q$. Далее учтем связь

$$Q = S \triangle \gamma / [\bar{\gamma}(1+\sigma)], \tag{6}$$

где поправка σ на анизотропию $\triangle f = f_{\parallel} - f_{\perp}$ имеет вид [5]

$$\sigma = \frac{\triangle f(Q^2 - 9)(3 + 2Q)}{Q[3(3+Q)(\bar{\varepsilon}+2)r_0 + \triangle f(3-Q)(3+2Q)]}.$$
 (7)

Подстановка сюда $\Delta f = Q(\bar{\varepsilon}-1)(1-\alpha)/3$ и учет неравенства $Q \ll 3$ показывают, что зависимость σ от $\Delta T = T - T_{AB}$ является слабой. Так, для ЖК 80.5С

Письма в ЖЭТФ том 99 вып. 3-4 2014

при $\Delta T = 35.6 \,\mathrm{K}$ и $-29.9 \,\mathrm{K}$ имеем $\sigma = 0.270$ и 0.285. Для гомологов nO.mC изменение $\sigma(\Delta T) = \sigma_0 + \sigma_1 \Delta T$ в фазах A и B нечувствительно к переходу A-B, а с ростом x = n + m величина $\sigma_0(x)$ монотонно возрастает от $\sigma_0(4) = 0.270$ до $\sigma_0(13) = 0.278$. Таким образом, для каждого гомолога nO.mC пропорциональность $L_{\perp} - 1/3 \propto Q \propto S$ связывает рост $L_{\perp}(T)$ в обеих фазах при снижении T и скачок δL_{\perp} с ростом параметра ориентационного порядка молекул Sвследствие повышения плотности упаковки молекул в слоях. Это согласуется с монотонным ростом толщины молекулярных слоев в обеих фазах ЖК 2О.2С при снижении T и переходе A-B [8].

3.2. Рассмотрим связь величины δL_{\perp} и характера перехода A-B с длиной цепей x. Величина δL_{\perp} является индикатором различия внутрислоевого порядка фаз A, B (которое определяет характер перехода A-B) и проявления этого различия в дипольдипольном взаимодействии молекул. На рис. 2 приведены зависимости $L_{\perp}(x)$ при $T = T_{AB}$ в фазах A и B. Отсутствие четно-нечетной альтернации в из-

Рис. 2. Зависимости $L_{\perp}(x)$ при $T = T_{AB}$ в фазах A (1) и B (2) гомологов nO.mC. Сплошные линии – аппроксимации функцией (8)

менении $L_{\perp}(x)$ свидетельствует о конформационноразупорядоченном состоянии концевых цепей молекул nO.mC в обеих фазах [9]. Это объясняет соотношение l > d [8] между длиной l молекул nO.mCпри trans-конформации цепей и толщиной d молекулярных слоев в монослойных фазах A и B. Для гомолога 20.2C с короткими концевыми цепями и сильной межслоевой корреляцией молекул малая величина δL_{\perp} свидетельствует о слабом переходе A-Bпервого рода, что соответствует термодинамическим данным [10, 11]. С ростом x и ослаблением межслоевой корреляции молекул вследствие конформаци-

Письма в ЖЭТФ том 99 вып. 3-4 2014

онной разупорядоченности цепей усиление перехода A-B первого рода сопровождается ростом δL_{\perp} .

Снижение $L_{\perp}(x)$ и Q(x) с ростом x в обеих фазах гомологов nO.mC обусловлено снижением отношения $\Delta \gamma/\bar{\gamma}$ при удлинении концевых цепей молекул и подобно снижению $L_{\perp}(m)$ для смектической-A фазы гомологов 2O.mMC [9], отличающихся от nO.mC заменой фрагмента CH=CH на фрагмент CH=C(CH₃). Снижение $L_{\perp}(x)$ также аналогично снижению L_{\perp} при снижении $\Delta \gamma/\bar{\gamma}$ в результате замены π -сопряженных фенильных колец в молекулярном остове насыщенными циклическими фрагментами [5, 12, 13]. Зависимости $L_{\perp}(x)$ в обеих фазах хорошо аппроксимируются функцией [9]

$$F(x) = (Cx + D)/(x + E),$$
 (8)

которая описывает изменение величины $\Delta \gamma/\bar{\gamma}$ в гомологических рядах ЖК [12]. При x = 0 значения $L_{\perp}^{(A)}(0) = 0.452$ и $L_{\perp}^{(B)}(0) = 0.454$ для фаз A и B отвечают слабой кристаллизации A-фазы и переходу A-B, близкому к переходу второго рода. Действительно, уже для гомолога 10.2C с монотропной Bфазой [14] энтальпия перехода A-B вдвое меньше, чем для этого перехода в ЖК 20.2C [11].

С ростом x энтальпия перехода A-B возрастает [11]. Пределу $x \to \infty$ соответствует значение $L_{\perp}(\infty)$ для молекул в виде длинных полиметиленовых цепей либо для молекул, не имеющих в своем остове ароматических π -сопряженных фрагментов (например, при замене фенильных колец в остове циклогексановыми). Для смектической-A фазы гомологов nO.mC значение $L_{\perp}^{(A)}(\infty) = 0.371 \pm 0.014$ совпадает с аналогичной величиной 0.368 ± 0.014 для Aфазы гомологов 20.mMC [9], а также со значениями $L_{\perp} = 0.363 - 0.374$ для бислойных липидных мембран, мультислойных лэнгмюровских пленок арахидата кадмия [5] и A-фазы холестериновых эфиров жирных кислот [13].

Для *B*-фазы значение $L_{\perp}^{(B)}(\infty) = 0.409 \pm 0.009$ дает $\delta L_{\perp}(\infty) = 0.038 \gg 0.004 = \delta L_{\perp}(13)$ и отвечает сильному проявлению внутрислоевого кристаллического порядка в диполь-дипольном взаимодействии молекул по сравнению с *A*-фазой. Это соответствует нереально сильному переходу *A*-*B* первого рода при слабой межслоевой корреляции молекул и объясняет причину того, что для неамфифильных и неполярных мезогенных молекул с циклогексановыми кольцами и/или другими насыщенными циклическими фрагментами в остове кристаллическая-*B* фаза соседствует с нематической или изотропной фазой [15, 16]. Здесь прослеживается аналогия с тем, что для 4-бутокибензилиден-4'-октиланилина с нематической, смектической-*A* и кристаллической-*B* фазами при увеличении давления рост энтропии перехода *A*-*B* сопровождается сужением интервала *A*-фазы и ее исчезновением в концевой критической точке, после которой остается линия переходов кристалл-*B*нематик [2].

3.3. Для выяснения молекулярной природы перехода A-B мы используем компоненты $G_j = N\gamma_j = \gamma_j/v$ плотности поляризуемости, где v – объем, приходящийся на молекулу в среде [9]. Наиболее точно определяемая величина $G = N\bar{\gamma}$ дается выражением

$$G = \frac{3(\bar{\varepsilon} - 1)}{4\pi(\bar{\varepsilon} + 2)(b + r_0)}.$$
(9)

Для каждого ЖК nO.mC при снижении T рост G в *A*-фазе сменяется скачком $\delta G(T_{AB})$ и последующим ростом в *B*-фазе. Изменение G(T) в каждой фазе наилучшим образом аппроксимируется функцией

$$G = G_0 + G_2(\triangle \varepsilon)^2. \tag{10}$$

Эти зависимости при $\lambda = \lambda_2$ показаны на рис. 3. С

Рис. 3. Зависимости (10) в фазах A (закрытые кружки) и B (открытые кружки) гомологов 2О.2С (1), 3О.2С (2), 4О.3С (3), 8О.3С (4) и 8О.5С (5) при $\lambda = 0.5893$ мкм. Графики с номерами N = 2-5 смещены вверх на 0.03(N-1) единиц

учетом $\Delta \varepsilon \propto S$ отсюда следут квадратичная зависимость G(S). Функции (10) неинвариантны относительно перехода A-B, поскольку для каждого гомолога nO.mC коэффициент $G_2^{(B)}$ в B-фазе больше, чем $G_2^{(A)}$ в A-фазе. Рост x и усиление перехода A-B первого рода сопровождаются монотонным ростом величин $G_2^{(A)}$, δG , $G_2^{(B)}$ и разности $G_2^{(B)} - G_2^{(A)}$.

Зависимости G(x) для обеих фаз при $T = T_{AB}$ дают информацию о плотностях поляризуемости моле-

кулярного остова, $G_c = \bar{\gamma}_c/v_c$, и метиленовых фрагментов цепей, $G_\mu = \bar{\gamma}_\mu/v_\mu$. Здесь $\bar{\gamma}_c$ и v_c ($\bar{\gamma}_\mu$ и v_μ) – средняя поляризуемость и объем, приходящиеся на остов молекулы (метиленовый фрагмент цепи) в ЖК. Аддитивность величин $\bar{\gamma}_c$ и $\bar{\gamma}_\mu$ (v_c и v_μ) для молекул nO.mC позволяет записать

$$\bar{\gamma} = \bar{\gamma}_c + x \bar{\gamma}_\mu, \quad v = v_c + x v_\mu. \tag{11}$$

С учетом этого зависимость G(x) сводится к функции (8), в которой $C = G_{\mu}$ и $D/E = G_c$. Зависимости G(x) для обеих фаз ЖК nO.mC при $T = T_{AB}$ хорошо аппроксимируются функцией (8) с параметрами $G_{\mu}^{(A)} = 0.074 \pm 0.005$, $G_{\mu}^{(B)} = 0.075 \pm 0.002$, $G_c^{(A)} = 0.108 \pm 0.034$, $G_c^{(B)} = 0.107 \pm 0.024$. Неизменность G_{μ} при переходе A-B говорит об одинаковом конформационно-разупорядоченном состоянии концевых цепей в обеих фазах. Различие $G_c > G_{\mu}$ способствует внутрислоевой сегрегации молекулярных остовов и цепей в фазах A и B с понижением температуры. Неизменность G_c при переходе A-B показывает близкую степень сегрегации молекулярных остовов в этих фазах при $T = T_{AB}$.

Зависимость (10) аналогична квадратичной зависимости $\bar{\gamma}(S)$ в нематической фазе 4-метоксибензилиден-4'- бутиланилина (MBBA) [17]. Она обусловлена изменением сил осцилляторов $f_{\pi\pi}(S)$ и $f_{n\pi}(S)$ длинноволновых электронных переходов $\pi - \pi^*$ и $n-\pi^*$, поляризованных вдоль длинной оси l молекулы, в результате межмолекулярных взаимодействий и изменения конформации молекулярного остова. Уплотнение молекул в слоях сопровождается уменьшением угла φ_N между фрагментом CH=N и фенильным кольцом (Ph)₂ молекулярного остова. Это ведет к росту параметра $Q_2 = \langle \cos^2 \varphi_N \rangle = \eta_0 + \eta_2 S^2$ конформационного состояния молекул ЖК [18]. Результатом соотношений $f_{\pi\pi} \propto Q_2$ и $f_{n\pi} \propto 1 - Q_2$ являются квадратичные зависимости $f_{\pi\pi}(S)$ и $f_{n\pi}(S)$, которые дают вклад в квадратичные зависимости $\gamma_l(S), \ \Delta \gamma(S)$ и $\bar{\gamma}(S)$. Для фаз A и B квадратичная зависимость $Q_2(S)$ сохраняется при различии коэффициентов $\eta_{0,2}$ в разных фазах.

Для гомологов nO.mC аппроксимация зависимостей $G_{\parallel}(\lambda), G(\lambda)$ в интервале $\lambda_1 - \lambda_3$ функцией

$$Y(\lambda) = Y_b + P\lambda^2 / (\lambda^2 - \lambda_r^2)$$
(12)

в каждой температурной точке дает близкие величины $\lambda_r(G_{\parallel}) \gtrsim \lambda_r(G)$. Для всех гомологов nO.mC в *А*-фазе зависимости $\lambda_r(T)$ регулярны и близки к аналогичным величинам $\lambda_r(\gamma_l) \gtrsim \lambda_r(\bar{\gamma})$ и максимумам полос электронного поглощения MBBA для переходов $\pi - \pi^*$ и $n - \pi^*$ [17]. На рис. 4 приведены темпера-

Рис. 4. Температурные зависимости величин λ_r для функций $G_{\parallel}(\lambda)$ вида (12) в фазах A и B гомологов ЗО.2С (1) и 8О.5С (2). Сплошные и штриховые линии – интерполяции

турные зависимости величин $\lambda_r(G_{\parallel})$ для гомологов ЗО.2С и 8О.5С с наименьшим и наибольшим значениями δG . Разброс величин $\lambda_r(G_{\parallel})$ в обеих фазах обусловлен неточностью значений $n_i(\lambda_i)$. Разброс значений $L_{\perp}(T)$ на рис. 1 в масштабе рис. 4 не проявляется. В A-фазе рост $\lambda_r(G_{\parallel})$ с понижением температуры свидетельствует о смещении длинноволновых полос электронного поглощения за счет усиления межмолекулярных взаимодействий при внутрислоевой сегрегации молекулярных остовов и концевых цепей. Максимальная (минимальная) производная $|d\lambda_r/dT|$ для 80.5С (30.2С) коррелирует с максимальным (минимальным) значением $G_2^{(A)}$. Для ЖК 80.5С переход А-В сопровождается слабым скачком $\lambda_r(G_{\parallel})$ по сравнению с полным изменением $\lambda_r(G_{\parallel})$ в A-фазе. Для остальных гомологов nO.mCизменение $\lambda_r(G_{\parallel})$ при этом переходе отсутствует. Это подтверждает близкую степень сегрегации молекулярных остовов в фазах A и B в окрестности T_{AB} . Постоянство $\lambda_r(G_{\parallel}), \ \lambda_r(G)$ в фазе *B* для всех ЖК nO.mC говорит об изменении $\delta G(T_{AB})$ и возрастании G(S) в этой фазе преимущественно за счет увеличения $Q_2(S)$, слабо влияющего на $\lambda_r(G_{\parallel}), \lambda_r(G)$ [17]. Уплощение молекулярных остовов при их псевдогексагональной упаковке в слоях В-фазы [19] согласуется с низким значением среднего межмолекулярного расстояния d_w в слоях гомологов 20.2С и 80.5С [7, 8] по сравнению с шириной фенильного кольца, а также с отсутствием свободного вращения молекул вокруг их продольных осей l.

Снижение угла φ_N при переходе A-B для гомологов nO.mC сопровождается усилением электронного сопряжения фрагментов остова, ростом величин γ_l , $\Delta \gamma$, $\bar{\gamma}$ и усилением межмолекулярного притяжения, стабилизирующего *B*-фазу. Этому способствует мягкость бензилиденанилинового остова к изменению Q_2 под влиянием межмолекулярных взаимодействий в ЖК по сравнению с остовами молекул других химических классов [20]. Так, в слагаемом $\Delta F_Q = (\Delta Q_2)^2/2\chi_Q$ плотности свободной энергии ЖК [18] для МВВА и алкилцианобифенилов имеем, соответственно, $\chi_Q = 0.80$ и $\simeq 0.07$ см³/Дж [20]. Введение в кольцо $\langle Ph \rangle_2$ заместителей, приводящих к росту угла φ_N и снижению χ_Q , сопровождается снижением термостабильности либо исчезновением *B*-фазы [20]. Теперь становится понятной склонность мезогенных производных бензилиденанилина к образованию кристаллической-*B* фазы [1, 16].

4. Полученные результаты расширяют известные возможности рефрактометрии в исследовании перехода A-B [6, 21]. При наличии значений $n_i(\lambda)$ в достаточно широкой области прозрачности определяемые с их помощью величины $L_i(T)$ и $G_i(\lambda, T)$ являются чувствительными индикаторами внутрислоевой упорядоченности молекул и межмолекулярных взаимодействий. Установленные здесь зависимости (4), (8), (10), (12) дают новые сведения о межмолекулярных взаимодействиях в обеих фазах, молекулярной природе перехода А-В и зависимости характера этого перехода от степени межслоевой корреляции молекул в гомологическом ряду. При переходе А-В структурное упорядочение молекул изменяется взаимосогласованно с конформационным состоянием молекулярных остовов. Это позволяет с единых позиций рассматривать структурные, физические и химические аспекты данного перехода.

- G. W. Gray and J. W. Goodby, Smectic Liquid Crystals

 Textures and Structures, Glasgow, Leonard Hill (1984).
- С. М. Стишов, С. Н. Нефедов, А. Н. Зисман, Письма в ЖЭТФ 36, 284 (1982).
- 3. Е.М. Аверьянов, ЖЭТФ **135**, 194 (2009).
- 4. M.R. Philpott, J. Chem. Phys. 58, 588 (1973).
- 5. Е.М. Аверьянов, ЖЭТФ **137**, 705 (2010).
- G. Pelzl and H. Sackmann, Symp. Faraday Soc. 5, 68 (1971).
- A. M. Levelut and M. Lambert, Compt. Rend. Acad. Sci. B 272, 1018 (1971).
- S. Diele, P. Brand, and H. Sackmann, Mol. Cryst. Liq. Cryst. 16, 105 (1972).
- 9. Е.М. Аверьянов, ЖФХ **86**, 810 (2012).
- 10. H. Arnold, Mol. Cryst. 6, 63 (1966).
- A. Beguin, J. Billard, F. Bonamy, J. M. Buisine, P. Cuvelier, J. C. Dubois, and P. Le Barny, Mol. Cryst. Liq. Cryst. **115**, 1 (1984).

- 12. Е.М. Аверьянов, Эффекты локального поля в оптике жидких кристаллов, Наука, Н. (1999).
- 13. Е.М. Аверьянов, Письма в ЖЭТФ **89**, 381 (2009).
- I. G. Chistyakov, L. S. Schabischev, R. I. Jarenov, and L. A. Gusakova, Mol. Cryst. – Liq. Cryst. 7, 279 (1969).
- R. Eidenschink, Mol. Cryst. Liq. Cryst. 123, 57 (1985).
- 16. D. Demus, Hanbook of Liquid Crystals, ed. by D Demus, J. D. Goodby, J. W. Gray et al., Weinheim, Wilei-VCH

(1998), v. 1, ch. VI, p. 133.

- 17. Е.М. Аверьянов, ФТТ 55, 2020 (2013).
- 18. Е.М. Аверьянов, ФТТ 24, 2839 (1982).
- 19. J. Doucet, J. de Phys. Lett. 40, L-185 (1979).
- 20. Е.М. Аверьянов, Стерические эффекты заместителей и мезоморфизм, Изд. СО РАН, Н. (2004).
- K.-C. Lim and J.T. Ho, Phys. Rev. Lett. 43, 1167 (1979).