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Preface

This book contains the papers presented at the NATO Advanced Research
Workshop, “New Challenges in Complex Systems: Disaster forecasting, crisis
modeling and sustainable development” held in Samarkand, Uzbekistan, from May
20 to 24, 2013.

The focus of the Workshop was to discuss problems and prospects in the area
of complex system physics and its applications to a broad spectrum of problems
from physics, biology, natural disasters and social sciences with a special focus on
nonlinear evolution, extreme events, crisis and critical phenomena.

In the past decade, the physics of complex systems has become one of the
most interdisciplinary subjects of contemporary science. In particular, this field has
penetrated into various areas of natural and even social sciences for the modeling of
complex dynamics, data analysis, prediction and monitoring purposes.

Talks presented at the Workshop covered such topics as econophysics, socio-
physics, earthquake dynamics, crisis and conflict modeling, complex networks and
complex nanoscale systems.

A total of 58 talks were presented by invited and plenary speakers, with 35-
and 20-min durations, respectively. Panel discussions attracted a broad audience of
experts working on physics, mathematics, seismology, economics and sociology.

The conference was successfully organized due to the efforts of the local
organizing committee with K. Sharipov, U. Tashkenbaev, K. Muminov, B. Eschanov,
J. Yusupov and A. Saidov. Our special thanks to Samarkand State University for its
great contribution to the local organizing activity.

Finally, we would like to thank NATO Science for Peace and Security Program
for their funding of the Workshop. Additional support was provided by Physical
Society of Uzbekistan and Turin Polytechnic University in Tashkent.

Tashkent, Uzbekistan H. Eugene Stanley
November, 2013 Davron Matrasulov
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Turkey

Alexander Blumen Physikalisches Institut, Universität Freiburg, Freiburg,
Germany

Evgeny N. Bulgakov Institute of Physics, Krasnoyarsk, Russia

Raffaella Burioni Dipartimento di Fisica e Scienza della Terra and INFN,
Universita’ di Parma, Parma, Italy

Guido Caldarelli IMT Alti Studi Lucca, Lucca, Italy

Davide Cassi Dipartimento di Fisica e Scienza della Terra and INFN, Universita’
di Parma, Parma, Italy

Claudio Castellano Istituto dei Sistemi Complessi (ISC-CNR), Roma, Italy

Dipartimento di Fisica, “Sapienza” Università di Roma, Roma, Italy

Taksu Cheon Kochi University of Technology, Kami, Kochi Prefecture, Japan

Alessandro Chessa IMT Alti Studi Lucca, Lucca, Italy

L.Y. Chew Division of Physics and Applied Physics, Nanyang Technological
University, Singapore

N.N. Chung Temasek Laboratories, National University of Singapore, Singapore

Chester Curme Center for Polymer Studies, Department of Physics, Boston
University, Boston, MA, USA

xi



xii Contributors

Gregorio D’Agostino ENEA – CR Casaccia, Roma, Italy

Alfonso Damiano Dipartimento di Ingegneria Elettrica ed Elettronica, Univ. di
Cagliari, Cagliari, Italy

Angelo De Santis Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome,
Italy

Pavel Exner Doppler Institute for Mathematical Physics and Applied Mathematics,
Czech Technical University, Prague, Czech Republic

Nuclear Physics Institute, ASCR, Řež near Prague, Czech Republic
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Part I
Complexity in Earthquake Dynamics



Chapter 1
Geosystemics, Entropy and Criticality
of Earthquakes: A Vision of Our Planet
and a Key of Access

Angelo De Santis

Abstract Earth is a system of interconnected systems, whose complexity is far
from being fully understood by a reductionist approach alone. In this chapter we
introduce the concept of geosystemics and the use of the entropy to characterize
some aspects of the phenomena under study. We will show how entropy and
criticality of the system are central to better understand the most important general
features of earthquakes. We will analyze two recent seismic sequences culminated
with a main-shock (2009 L’Aquila and 2012 Emilia, both in Italy) to show the
potential of this approach and to understand some important characteristics of the
seismicity under scrutiny.

1.1 Introduction

If we define a rare event as some process that occurs much less frequently than
the times it does not occur, earthquakes are rare events: even in the most known
seismic fault, like S. Andrea’s fault (USA), the times with no earthquakes are
more frequent than the times when there is some seismic activity. In addition,
the more energetic the earthquake, the more rare its occurrence ([17]; see below
for more details). However, as in many other physical processes, it is not only
the frequency of occurrence to be important, but also the energy released by the
seismic phenomenon, and, consequently, its impact to society. When a rare event
has a large impact, especially in terms of catastrophic consequences, it is said to be
an extreme event. One of the most recent frontier of science is represented by the
study of extreme events, meaning with these, many natural environmental events

A. De Santis (�)
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy
e-mail: angelo.desantis@ingv.it

D. Matrasulov and H.E. Stanley (eds.), Nonlinear Phenomena in Complex
Systems: From Nano to Macro Scale, NATO Science for Peace and Security
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4 A. De Santis

that may produce large disasters, such as the already mentioned earthquakes, but
also tsunamis, volcanic eruptions, abnormal weather and climate changes [22, 25].

Although our world has been continuously changing in a more or less self
adapting and organizing way, the present changes are more significant because
they raise even some doubts about the future human species preservation. The main
changes are

• Growing population
• Global warming
• Pollution
• Biodiversity reduction
• Reduction of resources
• Geohazards & greater weakness against disasters

What is more astonishing is that not only humans are affected by these changes,
but also that they are contributing to them significantly, through irreversible actions
which are damaging to the environment.

Earth is really a complex system, being a system of interconnected systems and
any tiny change of one of its parts may affect the rest [35]. We can easily follow the
Baranger’s [1] definition of a complex system for identifying the Earth as a complex
system.

Our planet contains many constituents interacting nonlinearly, and interde-
pendently: Earth is composed by an enormous number of sub-systems and elements
and sub-elements, placed into around 1012 km3 of solid volume and much more
larger volume of its oceans, coversphere, biosphere and gaseous atmosphere. All
these parts are continuously interacting. The processes that occur in the planet
have a wide range of temporal and spatial scales: planetary phenomena range
from atomic scale to thousand – km scale, from almost instant processes to billion –
year timescale [32].

The planet is capable of emerging behaviour, as for example, plate tectonics
and Wilson cycle [39]. The earth as a complex system is characterised by an
interplay between chaos and non-chaos, and between cooperation and compe-
tition. This specific point indicates that chaos on Earth can emerge spontaneously
and sporadically, due to some change of boundary conditions under which the
phenomenon is occurring, with the simultaneous presence of positive and negative
feedbacks that all concur to sustain life on Earth (e.g. see Gaia Hypothesis in
Lovelock [20]).

A new vision of the planet is mandatory: geosystemics wants to fill the gap [7].
In the next section we will introduce this concept, then we will describe some
important mathematical tools, and how one of them, the entropy, is important to
understand earthquakes evolution. We will see also the process of seismic space-
time focalization, with the cases of the recent 2009 L’Aquila (Central Italy) and 2012
Emilia (Northern Italy) earthquakes, for which criticality is an important aspect.
Part of the analysis was already published or submitted to peer review journals (e.g.
[10, 13, 14]). We will complete this contribution with some conclusions.
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1.2 Geosystemics

The French mathematician Poincaré [27] claimed that “The aim of science is not
things themselves, but the relations between things; [. . . ] outside those relations
there is no reality knowable”.

Geosystemics studies Earth system from the holistic point of view, looking with
particular attention at self-regulation phenomena and relations among the parts of
the Earth [7]. The different interfaces composing the Earth system are crucial for
its understanding. Geosystemics focuses on these interfaces, seeing the Earth in its
whole integrity and completeness as always approaching a change of state: this is
why often complexity and criticality represent two analogous facets of the Earth
system.

Following Bekenstein [3] sentence that says “Ask anybody what the physical
world is made of, and you are likely to be told matter and energy. Yet if we
have learned anything from engineering, biology and physics, information is just
as crucial an ingredient.”, we recognize the important concepts of Entropy and
Information: Geosystemics slightly differs from the Earth System Science, because
it puts these quantities at the centre of its scheme of application. To characterize the
world, not only energy and matter are important, but also (and sometime even
more) information, self-regulation, nonlinear coupling, emergent behaviour,
and irreversibility are to be taken into account. They all are decisive ingredients
of the planetary dynamics, and matter of study for geosystemics. Geosystemics
puts the emphasis on contextuality and interactions among the elements of
Earth System, on the cause-effect relationships, on various sub-systems couplings
and on both production and transfer of Information [33] from a sub-system
to another. Geosystemics would intend to overcome the traditional boundaries
between science, mathematics and philosophy, in particular between harmony and
diversity, invariance and variability, simplicity and complexity, symmetry and asym-
metry, uniformity and diversity, order and disorder, reversibility and irreversibility,
which all together characterize Earth’s evolution. Universal tools (e.g. fractal
dimension, phase space, degrees of freedom, information and entropy) plus Multi-
scale/parameter/platform observations help the geosystemic approach in this
challenge.

1.3 Universal Tools

1.3.1 Fractal Dimension

In a fractal with N D N."/ elements with size covering the whole structure, the
fractal dimensionD is defined as:

D D lim
"!0

logN."/

log 1="
(1.1)



6 A. De Santis

Fig. 1.1 The core-mantle
boundary of Earth (2,900 km
deep from the surface) might
be fractal (De Santis and
Barraclough [8]). This figure
shows a simulation of CMB
withD D 2:2

This measure is powerful because with a simple real number (i.e. D) usually
less than the embedding topological dimension E (see also below), it characterizes
the repeatability of the physical phenomenon or distribution at different scales: the
closer D to the embedding dimension, the more the process tends to cover all the
space at disposal.

Figure 1.1 shows an example of fractal interpretation with D D 2:2 that has
been given for the core-mantle boundary (CMB) of Earth, from the study of the
geomagnetic field power spectra over the last 400 years projected to the CMB [8].

The concept of fractal dimension is also important in characterizing the dynami-
cal evolution of complex systems (see next section).

1.3.2 Phase Space

The phase space of a dynamical system is the ideal space where each state of the
system can be represented by a single point. The minimum number E of phase space
axes, which contain all orbits of the dynamics, defines the degrees of freedom of the
system, i.e. the number of variables that are required to describe that system. E is
also said embedding dimension. The theorem for reconstructing a pseudo phase
space from one dimensional signal [37] is fundamental to find the possible chaos of
a dynamical system: generally a chaotic process has an orbit in its phase space that
falls in a restricted region with a fractal dimension (strange attractor).

A reconstructed phase space of the geomagnetic field is shown in Fig. 1.2. It has
been obtained by placing along the three Cartesian axes the magnetic field variations
taken at three distant geomagnetic observatories: Hartland (UK), Alibag (India) and
Irkutsk (Russia). The reconstructed orbit resembles the picture paradigm of chaos:
the Lorenz’s butterfly, which is the attractor of a toy-model for the atmosphere
dynamics [19].
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Fig. 1.2 Reconstructed
phase space of the
geomagnetic field for the last
150 years (De Santis and
Barraclough [11])

1.3.3 Shannon Entropy

Shannon Entropy [33] of a system characterized by N independent states and a
probability distribution pi .t/ is defined as follows:

H.t/ D �
NX

iD1
pi .t/ � logpi.t/ (1.2)

(for convenience, we impose logpi D 0 for pi D 0). The base of the logarithm can
be arbitrarily chosen. Usually it is taken in a way to be comparable with the number
of possible states, N . Some physical interpretations of this important quantity are
possible, some of them overlapping and non exclusive:

1. A generalized measure of disorder;
2. Measure of the average missing information content to the knowledge about the

state of the system;
3. Measure of unpredictability of the state of the system among many alternatives;
4. Measure of the degree of dispersion of an observable among the system’s parts.

From the above variety of meanings one can realize the importance of studying
entropy for grasping something about the space-time evolution of a complex
system.

1.3.4 Shannon Information and Entropy over a Sphere

If B.t/ is a physical quantity defined over a sphere, we can express it by a linear
combination of orthonormal spherical harmonics �m

n with maximum degree N
(which defines the smallest detail of the representation) through a set of coefficients
cmn , i.e.:
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B.t/ D
NX

iD1

nX

mD0
cmn .t/�

m
n (1.3)

Therefore we can consequently define the information content I.t/ (and its
entropyH.t/) as:

I.t/ D �H D
NX

nD1
pn.t/ � logpn.t/ (1.4)

where pn.t/ is the probability to have a certain n-degree spherical harmonic power
contribution instead of another at different time t [12], i.e.:

pn D hB2
ni

hB2i D
Pn

mD0 .cmn /2PN
n0D0

Pn0

mD0 .cmn0/2

where hx2i is the mean square value of the quantity x.
The information content has been estimated for the geomagnetic field of the last

100 years to suggest a possible imminent magnetic polarity transition [9, 12] and
extended to the past 7,000 years [10]. In principle, the definitions (1.3) and (1.4)
can be applied to any physical quantity over the Earth, supposed a spherical planet
in first approximation.

1.4 Entropy of Earthquakes

Any approach to understanding earthquake physics is worth making. Our geosys-
temic approach is holistic, although it does not intend to be against the reductionist
approach, but it wants to be in parallel/complementary. This approach looks at

– The earth as a whole, and
– The specific phenomenon under study in its most important macroscopic

features.

Here we will see some cases of seismicity. Before doing that, we will recall some
important empirical statistical laws which characterize the typical seismicity over
the globe, and/or over a certain region.

1.4.1 Some Empirical Statistical Laws

Some statistical laws have been established in seismology, based on a great amount
of empirical studies on earthquakes. The most important is the Gutenberg-Richter
(G-R) Law (1944) which is valid for all earthquakes in a given time and region.
Other important laws are valid for aftershocks(i.e. the earthquakes occurred after
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Fig. 1.3 Gutenberg-Richter
(G-R) diagram for the 2009
L’Aquila seismic sequence
(De Santis et al. [13])

a main-shock): Omori [26], Båth [2] and Felzer and Brodsky [16] laws. In the
following we will describe these laws with some more details.

(i) G-R Law (1944). The rate of earthquakes occurrence (number of earthquakes
n in a certain time interval) in a given region follows an exponential law of
the magnitude M (i.e., small earthquakes are many more than larger ones).
Usually this law is given in terms of the cumulative frequency distribution of
earthquakes (n earthquakes equal to or above a given magnitudeM ):

logn D a � bM .b Š 1/ (1.5)

here log is the decimal logarithm, a and b are constant positive parameters
to be estimated in the given region; the latter parameter, the b-value, is the
slope of the cumulative earthquake distribution, and is an important quantity in
seismology assuming almost everywhere a value close to 1.

Because there is an exponential relation between energy and magnitude,
Eq. (1.5) becomes a power law relation between n and energy. In this frame-
work, the G-R law is fractal and b D D=2, where D is the fractal dimension
[38]. For a typical b D 1, then D D 2: this result can also be found from
the statistical distribution of the power spectra vertical to horizontal seismic
components ratio [34].

For Italy (Fig. 1.3 shows the case of 2009 L’Aquila seismic sequence where
b D 0:89; De Santis et al. [13]), we have the following frequencies for different
magnitudes:

Case of M5 (magnitude 5 and above): 1/year Case of M6: 0.1/year, i.e.
1/10 yrs.
Case of M7: 0.01/year, i.e. 1/100 yrs.

As we can understand, the above values are purely statistical and cannot
provide any deterministic prediction on when and where a large earthquake
will occur exactly in Italy, but only some rough spatial and temporal bounds
which are the base for any map of seismic hazard.
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On the other hand, there are other three statistical laws in seismology which
are valid for aftershocks:

(ii) Omori Law (1894; slightly modified by Utsu in 1961 [40]; we give here the
modified version). It is an inverse power law of the rate n(t) of aftershocks
occurrence:

n.t/ D K=.c C t/p with p Š 1 (1.6)

Here K , c and p are appropriate constant parameters, while t is the time after
the main-shock.

(iii) Båth Law (1965). This rule predicts that the largest aftershock occurs with a
given magnitude maxŒMafter� around a unit less than the main-shock magni-
tude,Mmain. That is:

�M D Mmain � maxŒMafter� Š 1:2˙ 0:2 (1.7)

However, among all the laws, this is the most approximated rule. For example,
for the L’Aquila seismic sequence, culminated with a M6:2 main-shock on
6 April 2009, condition (1.7) is satisfied because M D 1:0; while for the
more recent 2012 Emilia seismic sequence culminated with a M5:9 main-
shock on 20 May, 2012, this rule does not fit the real situation, because
another major earthquake (M5:8) occurred 9 days later, so M would be 0:1.
However, if we consider the two major earthquakes as a unique physical entity,
their subsequent largest aftershock was around 1 unit of magnitude less, thus
substantially confirming Båth law.

(iv) Felzer & Brodsky (2006). These authors have proposed an inverse power law
for the probabilityP of having an aftershock at distance r from the main-shock
epicenter (valid at least up to 100 km):

P.r/ D K 0=rs (1.8)

where K 0 and s are appropriate constant parameters; the latter exponent has a
range of variability between 1 and 2 (see also [21]). This law would be related
to the attenuation with distance of the energy released by an earthquake.

1.4.2 Entropy and b-Value of Earthquakes

De Santis et al. [13] have applied the concept of entropyH to earthquakes and then,
for the first time, related this quantity to the b-value of the G-R law, such as:

H.t/ D k0 � log b (1.9)
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Fig. 1.4 Entropy of the 2009
L’Aquila seismic sequence
(De Santis et al. [13])
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Fig. 1.5 Specific heat of 4He as a function of T � T� in Kelvin at different resolutions. T� is the
temperature at which the critical system has a transition (critical point) (Reproduced from Stanley
[36])

where k0 D log .e log e/. Equation (1.9) can also be approximated as:

b � 1:2

10H
(1.10)

These equations provide a new insight into the b-value meaning [13]. Figure 1.4
represents the entropy for the 2009 L’Aquila seismic sequence when considering an
increasing (cumulative) time windows.
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It is interesting to notice that this picture (when we translate entropy to specific
heat and time to temperature) resembles the plots of Fig. 1.5 (which is a reproduction
of Fig. 1.16 by Stanley [36]) for the phase transitions of some critical system,
where the main-shock of Fig. 1.4 belongs to the main singularity of the curve. This
feature would support the idea that the sequence preceding a main-shock is the
manifestation of a critical system moving toward a critical point (the main-shock).
This idea is nothing new and has been already proposed by several authors (e.g.
[4, 18]).

In general, from the behaviour of H.t/ in Fig. 1.4 some major features of the
earthquakes evolution can be noticed:

• A preparation phase as a generalized increase (months before main-shock);
• A concentration (or singularity) phase as a sudden jump from days to hours

before main-shock;
• A diffusive phase, as a general decrease of H.t/ a few hours or days after the

main-shock.

Although the main-shock is not perfectly the entropic singularity, it belongs to the
population of events characterising the singular behaviour ofH . This aspect should
be better exploited to evaluate the possibility of some main-shock predictability.

1.4.3 Magnetic Transfer Function Entropy

The entropy concept can also be applied to other quantities which are not seismic,
although still related to earthquakes. For instance we show here and in the next
section how it can be important when the entropy is used to characterize the
geomagnetic field variations recorded by two different platforms of observation
(i.e. ground observatory and satellite) above the epicentral region during a given
seismic sequence. In the frequency domain the time variations of the components
X; Y;Z of the geomagnetic field observed at Earth surface are each other coupled
(e.g., [15]):

Z.!/ D A.!/X.!/C B.!/Y.!/ (1.11)

A.!/ and B.!/ are the Magnetic Transfer Functions which are related with
the conductivity at a certain depth inversely proportional to the square root of
frequency !.

The (normalised) entropy contributionEi of the harmonic !i is given by:

Ei.t/ D �p.!i ; t/ � logp.!i ; t/

logN
where p.!i ; t/ D K2

r .!i ; t/PN
iD1 K2

r .!i ; t/

Kr D real parts of A or B .
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Fig. 1.6 Contributions to the Transfer Function Entropy from magnetic field records of L’Aquila
Geomagnetic Observatory (Central Italy), in the period 2007–2009 (the star represents the
occurrence of the main-shock). The most emerging peaks are the characteristic periods of 30–40 s.
(penetrating till 15–20 km depth) (Reproduced from Cianchini et al. [6])

The results shown in Fig. 1.6 in terms of the p logp contributions to Ei.t/ for
the two most emerging characteristic periods (30 and 40 s) which correspond to
magnetic field variations that can penetrate till 15–20 km in this area, can be suitably
interpreted as due to some upward migration of fluids from below to the hypocentral
zone (10 km) that activated the 2009 L’Aquila seismic sequence [6].

1.4.4 Wavelet Entropy of Satellite Magnetic Signal

From the Fourier analysis of a certain signal characterised by a power Pi at a given
frequency fi , it is possible to estimate its spectral entropy S [28], i.e.:

S D �
X

i

Pi logPi where Pi D jfi j2P
i 0 jfi 0 j2

This entropic quantity measures how energy concentrates (low spectral entropy)
or spreads (high spectral entropy) in frequency.
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On the other hand, if we consider a wavelet analysis that decomposes a signal
f .t/ both in time and scale (or frequency), transforming it to W.s; �/, analogously
to the Fourier analysis we can define a wavelet entropy such as:

SW D �
X

ps;� log2 ps;� (1.12)

where the probability is expressed in term of proportion of energyE with respect to
the total:

ps;� D E.s; �/P
s E.s; �/

with E.s; �/ D jW.s; �/j2

Please note that, for convenience, we preferred here to use the logarithm in base 2,
just because the scale frequency is usually given in powers of 2.

We applied (1.12) to the magnetic signal recorded by CHAMP satellite (e.g.
[31]), that flew from 2000 to 2010 in a quasi-polar orbit at 350–450 km of altitude
with a couple of vector and scalar magnetometers aboard. Figure 1.7 shows
(from top to bottom): wavelet spectrum; corresponding wavelet entropy and signal
behavior of almost 1 h around the occurrence of M9 Sumatra mega-earthquake
(26 December, 2004). There is an anomalous behavior that appears in all graphs
and anticipates the main-shock by a few minutes [5]. If this anomaly is really related
with the mega-earthquake, this will represent the result of a solid earth-ionosphere
coupling, a scheme that is often advocated to justify such kinds of anomalies in the
ionosphere (e.g. [29]).
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1.5 Criticality and Multi-scale Space-Time Focalization

This section concerns with the peculiar behavior of seismicity in time and space
that often occurs before a large earthquake. As didactical example we will take the
lessons learnt from the 2009 L’Aquila seismic sequence to apply them to the most
recent 2012 Emilia seismic sequence.

Two recent papers by De Santis et al. [10, 13] analyzed the former sequence
and found some interesting results. The L’Aquila seismic sequence showed a sort
of space-time focalization, in the sense that seismicity accelerated in time around
a year before the main-shock, and in space most of the seismic events migrated
from an almost circular periphery around the impending large earthquake toward the
epicentral region. The latter aspect was already discovered in Japan by Mogi [24],
with the so-called Mogi doughnut of seismicity. In the case of L’Aquila sequence
this doughnut was characterized by a seismicity gap in the fault till sometime before
activation of the epicentral area.

The acceleration in time was characterized by a power law behavior of the
cumulative Benioff strain s(t) (e.g. [4]) such as the following one:

s.t/ D AC B.tf � t/m (1.13)

with the vertical temporal derivative at the main-shock (i.e. at t D tf ).A > 0;B < 0

and 0 < m < 1 are appropriate constant parameters; tf is also called the time of
failure of the region under study, because it is the predicted time of occurrence of
the main-shock.

This behavior has been interpreted as that of the critical process before the large
earthquake moving toward the critical point, i.e. the main-shock, although some
recent works criticize this interpretation (e.g. [23]). Studying the acceleration of
L’Aquila seismicity before the 2009 main-shock, De Santis et al. [10] also found
that the process of preparation behaved as a chaotic process, with characteristic
time of around 10 days.

Figure 1.8 shows the seismicity distribution in Emilia of historical earthquakes
for the last 1,000 years (left) and the more recent distribution of the M � 4

earthquakes for the last 7 years. Comparing the two sides of Fig. 1.8 it is evident that
the recent 2012 seismicity filled the gap at the central of a partial Mogi doughnut
[24], that was characterized by some kind of long quiescence (no significant
seismicity).

Regarding the acceleration in time, also the 2012 Emilia sequence shows a
similar behavior in time (Fig. 1.9), although the acceleration appears weaker than
in the case of 2009 L’Aquila seismic sequence.

To better assess the evolution of the associated seismic events with the distances
from the epicenter, we considered the same dataset of M � 4 events occurring in a
circular region of 200 km from the epicenter of the first major earthquake on 20 May
2012 (Fig. 1.10 left). This distribution of the considered distances with time can be
fit with an anti-diffusion equation of the following type:
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Fig. 1.8 Left: distribution of large earthquakes (red squares) during the last 1,000 years (taken
from ISIDE website, INGV). The blue star indicates the location of the two recent 2012 major
earthquakes (20 and 29 May 2012). Right: distribution of M � 4 earthquakes of the last 7 years,
preceding the 20 May 2012 main shock, except the blue oval where some aftershocks preceding
the second major earthquake of 29 May, 2012 are indicated

Fig. 1.9 Acceleration of the cumulative Benioff strain of Emilia seismic sequence starting around
7 years before. The red star indicates the occurrence of the main-shock on 20 May, 2012. Seismic
events were considered with magnitude equal to or larger than 4 and occurring in a circular
region of 200 km around the epicenter (preliminary seismic data downloaded from ISIDE website;
June 2012)

r.t/ D Dr � .tf � t/m2 (1.14)

with Dr and m2 some appropriate constant parameters. Also this equation in se has
the potential to predict the time of failure, tf . However data are sparse around the
fit, so the error in estimating tf is very large. The same thing could be said for the
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Fig. 1.10 Left: distribution of distances with time of the M � 4 foreshocks preceding the first
major earthquake on 20 May 2012 in an area of 200 km from the epicenter. Right: distribution
of inter-events of the same foreshocks. In both cases the process of focalization is clear from the
negative slope of the best linear fit of the data points. Moreover, an anti-diffusion equation (red
curve) could reasonably represent the mean behavior of both kinds of data. Both diagrams indicate
also the last foreshock before the main-shock

inter-events distribution in time, �.t/. Inter-events are the time intervals between an
earthquake and the next one. The corresponding equation becomes:

�.t/ D D� � .tf � t/m3 (1.15)

whereD� andm3 some appropriate constant parameters; not necessarilym;m2 and
m3 have the same value. Here (Fig. 1.10 right) the situation is even worse in terms
of data dispersion around the fit. Nevertheless, the anti-diffusion equations (1.14)
and (1.15) could reasonably represent the mean behavior of both kinds of data.

This kind of process in time and space is here called multi-scale focalization
of earthquakes, because focalization of either acceleration or distances or inter-
events distributions may change with the choice of the magnitude cut-off (here used
M � 4) and the size of the area of concern (here used a radius of 200 km). The
present choice of minimum magnitude has the advantage to practically decluster the
seismic sequence, i.e. to avoid most of the minor seismicity induced by intermediate
earthquakes. The evident disadvantage is to have a poorer statistics, decreasing the
robustness of the results found.

In the view of geosystemics, for which the information from other platforms of
observation can be important to reconstruct the entire physical scenario, this process
of focalization is also confirmed from space: with a particular statistical technique
covering the previous 32 years, Qin et al. [30] were able to detect above the Emilia
region an Infra-Red thermal anomaly from satellite, occurring some days before the
couple of major earthquakes (Fig. 1.11 top). Similar anomaly was also (although
less) visible in the land surface temperature data (Fig. 1.11 bottom).

Concluding this part, Emilia seismic sequence was a typical case of space time
focalization of seismicity. This because its seismicity that happened before the
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Fig. 1.11 Surface temperatures from satellite (top) and from land (bottom) a month and half before
the two major earthquakes in Emilia (Qin et al. [30])

couple of major earthquakes is compatible with a partial Mogi doughnut model
characterized by a precursory space-time focalization process. This time evolution,
as also confirmed by a power law acceleration of the cumulative Benioff strain, has
many characteristics of a critical point process both in space and in time.

1.6 Conclusions

We defined a new systemic approach (the vision) to Earth system study called
geosystemics where multi-platform/parameter/scale observations are fundamental
to take a whole picture of our planet, in general, or of some important phenomenon
on it, in particular. Fundamental tools (the keys) have been proposed, mainly
based on Entropy (and/or Information) and criticality analysing the whole
and the relationships among components. We showed an important application to
seismology (disclosing the relationship between b-value and entropy) and then
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something more about criticality and space-time focalisation of a seismic process
(cases of 2009 L’Aquila and 2012 Emilia earthquakes). Future can provide other
cases of application in seismology and in other fields of Earth sciences.
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Chapter 2
Aftershock Cascade of the 3.11 Earthquake
(2011) in Fukushima-Miyagi Area

Yoji Aizawa and Satoru Tsugawa

Abstract Details of the aftershock cascade in [35ı–40ıN, 140ı–145ıE] are
reported from the viewpoint of three empirical laws; the Omori law, the Gutenberg-
Richter law and the Weibull law for the interoccurrence times, and the universal
relationship among those three empirical laws is theoretically derived under the
quasi-stationary condition. The generalization of the Omori law enables us to derive
the extrapolation formula of the GR law, and the multi-fractal relation confirmed
universally in moving ensembles combines the magnitude distribution and the
interoccurrence time distribution. Furthermore, the generalized Omori formula is
interpreted in terms of the quasi-stationary interoccurrence time distribution.

2.1 Introduction

Here we give a brief sketch and comments about the empirical laws in seismic
statistics, which will be used in the latter analysis.

2.1.1 Aftershock Frequency: Omori Law

The rate of aftershocks is first formulated by Omori in 1894, where the aftershock
frequency dN=dt was very well adjusted by,

dN

dt
/ t�p; (2.1)
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Here N stands for the total number of aftershocks and t is the time measured from
the main shock. As the p-value is close to unity, the aftershock frequency leads to a
logarithmic scaling of N in relatively long time behavior,

N.t/ � ln.t C c/; (2.2)

This formula is often called the Omori law [8]. Some generalizations of the Omori
formula were pursued to obtain the better prediction of aftershocks. Enya (1901)
discussed by the following form [3],

dN

dt
/ ln

�
1C 1

t C c

�
; (2.3)

and another generalization by Utsu [9] is,

dN

dt
/ .c C t/�p; (2.4)

where c means the characteristic time in each formula. In these generalizations, it
should be noted that the stationary activity, which will be realized at t ! 1, is
discarded in practical treatment. In the latter part of this paper, some refined aspects
of aftershocks will be reported based on the generalized form of the Omori law.

Aftershocks are obviously nonstationary phenomena and reveal remarkable
clustering where a huge number of aftershocks are directly induced by the main
shock. Moreover, the aftereffect of the big main shock remains for long time, for
instance, in the case that Omori reported in 1894, the Omori formula is well justified
for very long time more than 80 years since the main shock. From these facts we
are obliged to be skeptic whether we can admit any stationary statistical laws in
the sequence of earthquakes or not. In the present paper, however, we define the
stationary regime from a practical point of view, that is to say, where the seismic
activity is not in high level but is relatively static one. We assume that the ensemble
which describes the stationary regime could be obtained if we consider a very long
time series of shocks happened in the definite area. Indeed, some important laws are
known in the stationary ensembles, which will be briefly introduced in what follows.

2.1.2 Intensity Distribution: Gutenberg-Richter Law

Gutenberg and Richter [4] suggested, by use of the magnitude m introduced by
Richter, that the cumulative number of earthquake n.m/ (for the magnitude larger
than m) obeys the GR formula,

ln n.m/ � a � bm; (2.5)

where a and b are assumed to be constant. As the GR law was approximately
confirmed in many cases of worldwide data, the magnitude became a useful measure
which characterizes the intensity of earthquake in stationary regime.
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Fig. 2.1 The Gutenberg-Richter law (a) and the Weibull law (b) in stationary regime. The fore-
foreshock region for 10 years (2001–2010) in Fukushima-Miyagi area (C) is compared with other
results for worldwide data in South California (4) and in Taiwan (ı)

Figure 2.1 shows the GR law realized clearly. To compare with other worldwide
data from 2001 to 2010, we showed the GR law for the earthquakes in Taiwan
(21ı–26ıN, 119ı–123ıE) and South California (32ı–37ıN, 114ı–122ıE). Though
the mean magnitudes are different, the GR law seems to be well satisfied in each
case.

In the nonstationary regime, the GR formula reveals peculiar deviations from the
exponential one as shown in latter sections, where we give the extrapolation formula
of the GR law in aftershocks.

2.1.3 Interoccurrence Time Distribution: Weibull Law

Interoccurrence times play the most important role in the prediction theory of earth-
quakes. When the cutoff magnitudem increases, the corresponding interoccurrence
time � is prolonged in statistical sense. So the interoccurrence time distribution
is parameterized by the magnitude m, i.e., P.� Im/. If we fix the threshold value
m, the sequence of interoccurrence times defines a renewal process. The purpose
of the interoccurrence time statistics is to determine the functional form of the
cumulative probability P.� Im/ and to find out the universal nature hidden behind
those statistical distributions.

Recently, we have shown that the interoccurrence time distribution P.� Im/
is very well adjusted by the superposition of the Weibull distribution Pw.� Im/
and the log-Weibull one Plw.� Im/ for many natural earthquakes in stationary
regime [2, 5–7].

P.� Im/ D pPw.�/C .1� p/Plw.�/ (2.6)
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where p is a parameter (0 � p � 1). Pw and Plw are written by,

Pw.�/ D 1 � exp

�
�
�
�

ˇ1

�˛1�
; (2.7)

Plw.�/ D 1 � exp

�
�
�

log.�=k/

ˇ2

�˛2�
: (2.8)

Here ˛i , ˇi , k, and p are parameters depending on the cutoff magnitude m, but
when the magnitude m increases, the contribution of the log-Weibull distribution
sharply decreases. Furthermore, Plw contributes effectively only in the short time
behavior of P.� Im/, and the dominant part of P.� Im/ comes from the Weibull
distribution (Fig. 2.1). In the paper [2], it is shown that the Weibull fittings well
adjust the nonstationary case of aftershocks as well, though the parameters (˛; ˇ)
depend on the time t .

2.1.4 Multifractal Relation in Stationary Regime

The Weibull parameters .˛; ˇ/ given by the function of m,

˛ D f˛.m/; and ˇ D fˇ.m/ (2.9)

are called the multi-fractal relations, which characterize the magnitude scales as
well as the time-scales in the shock sequence under consideration. The multifractal
relations obey the following universal form [1],

ˇme
�b.m�m�/�

�
1C 1

˛m

�
D e�kEQ ; (2.10)

and this is applied for many cases [2, 6, 7]; kEQ is a constant that determines the
mean interval of two successive shocks, and m� the minimum cutoff magnitude
in our analysis (m� D 2). Figure 2.2 shows the multi-fractal diagram (in rescaled
form) in stationary regime, where mc stands for the reference magnitude satisfying
˛ D 1 and ˇc D c at m D mc .

2.2 Data Analysis Toward Aftershock Statistics

Figure 2.3 shows the time series of the shock sequencemt before and after the main
shock (M9:0) on March 11, 2011. One can see that another big shock (M7:3) had
occurred on March 9. We clearly recognize that there are three regions; (i) aftershock
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Fig. 2.3 Time series of shocks during 10 days before and after the main shock at March 11, 2011
(t D 0) in Fukushima-Miyagi area (JMA database). There are three typical regions; (i) Aftershock
region (light gray), (ii) Foreshock region (dark gray), (iii) Fore-foreshock region (black)

region (light gray), (ii) foreshock region (dark gray), and (iii) fore-foreshock region
(black). In the fore-foreshock region, seismic activity is nearly stationary and the
density of earthquakes is relatively low, but in the foreshock region and aftershock
region the density as well as the intensity of shocks are much enhanced. The number
of earthquakes in the foreshock region is nearly 470, but in the aftershock region
72;636 shocks occurred for 20 months (3.11, 2011–11.11, 2012) and the aftereffect
of the main shock continues still now.
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Fig. 2.4 Time courses of the shock frequency nm.t/

In this section, the detailed structure in the Omori law is elucidated, and the
statistical aspects in the nonstationary shock sequence are mainly studied by using
the moving ensembles, where the interval of each ensemble is defined by the span
Œt ��=2; t C�=2� at � D 100 days (fixed). More details are seen in Ref. [2].

2.2.1 Refined Formula of the Omori Law

Figure 2.4 shows the aftershock frequency (per 1 day) nm.t/.D dNm.t/=dt/, where
Nm.t/ is the cumulative number of aftershocks in Œ0; t � (for the magnitude larger
than m). Each curve is well fitted by the following forms,

nm.t/ D d.1C t=cm/
�qm ; cm D e�Ob.m� Om0/: (2.11)

Nm.t/ is given by the qm-extension;Nm.t/ D dcm.1� qm/�1..1C t=cm/
1�qm � 1/,

and Om0 and qm are monotonically increasing, but they are almost constant for
m > m0.' 4:0/, qm ' 1 and Om0 ' 3:5.
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2.2.2 Generalization of Multi-fractal Relation
in Moving Ensembles

Figure 2.5 displays the magnitude distribution Pt .m/ and the interoccurrence time
distribution Pt.� W m/ for three moving ensembles, which enable us to derive the
multi-fractal relation in each time span. One of the remarkable points is that the
Weibull law is well satisfied, and that the GR law is a convex function of which
fitting curves are given in the next section. The universal aspect discussed in the
previous section appears even in the aftershock region, and the rescaled multi-
fractal universality is given in Fig. 2.6. Only difference from the stationary case
is that the earthquake constant kEQ is not a constant, but is a certain function
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3:81 at t D 350, (�). The universal correlation between ˛m.t/ and ˇm.t/ is confirmed

of time kEQ.t/, though kEQ.t/ does not depend on the magnitude m except for
small tolerable errors. Furthermore, the .˛; ˇ/t diagrams suggest that the universal
correlation exists between two multifractal forms

˚
f˛.m; t/; fˇ.m; t/

�
even in the

nonstationary regime of aftershocks.

2.3 Unified Formulae and Cascade in Aftershocks

Aftershocks are non-stationary process, but the results shown in the previous
section demonstrate that the aftershock-sequence obeys some regular statistical rules
in each moving ensemble. Here we theoretically consider the temporal change
of the statistical laws in the aftershock-sequence under the assumption that the
distribution functions are slowly varying in contrast to the characteristic time scale
of shock-intervals. This is the quasi-stationary assumption in aftershock statistics,
and then the real process of natural aftershocks can be understood as the mean
behaviors of the quasi-stationary distributions. Here we theoretically study the
detailed mechanism in the aftershock cascade of the 3.11 EQ.

2.3.1 Extrapolation Formula of the Gutenberg-Richter Law

Denote the magnitude distribution function at the time t by Pt .m/, then the
generalized form of the Omori law (Eq. (2.11)) leads to,
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Pt .m/ D Probability.the magnitude � m/

D e�Ob.m�m�/
�
1 � cm � cm�

t C cm

�
; (2.12)

wherem� stands for the minimum cutoff magnitude and qm ' 1 is assumed for the
sake of simplicity. When t goes to large enough, the exponential formula of the GR

law in stationary case is exactly recovered as cm ; e�Ob.m� Om0/.
The same idea is extended to the moving ensemble Œt � �

2
; t C �

2
�, and the

magnitude distribution function Pt;�.m/,

Pt;�.m/ D Nm.t C�=2/�Nm.t ��=2/
Nm�.t C�=2/�Nm�.t ��=2/

D cm

cm�

ln
�
1C �

cmCt��=2
�

ln
�
1C �

cm�Ct��=2
� ; (2.13)

Here the exponential formula of the GR law is also recovered as t goes to large,
but transient behaviors depend on the interval of the ensemble�. In the case of the
generalization by the qm-extension,

Pm;�.t/ D c
qm
m

c
qm�
m�

1 � qm�

1 � qm

.t C cm C�=2/1�qm � .t C cm ��=2/1�qm

.t C cm� C�=2/1�qm� � .t C cm� ��=2/1�qm�
(2.14)

The GR parameter is modified by qm, though the exponential form is realized when
t goes to large. The GR law in Fig. 2.5 is well explained by Eq. (2.14).

2.3.2 Multi-fractal Relation and the Interoccurrence
Time Distribution

Consider the case for small �(; 1 day), and denote the interoccurrence time
distribution at the time t for the cutoff magnitude m by PW

t;m.�/, where � is the
successive shock-interval. The mean interval < � >m;t is related to the shock
frequency nm.t/ at arbitrary value of m,

< � >m;t nm.t/ D 1 (2.15)

Therefore, if we use the Weibull parameters ˛m.t/ and ˇm.t/, the general form
(Eq. (2.11)) of the Omori law leads us to,

ˇm.t/�

�
1C 1

˛m.t/

��
1C t

cm

��qm
D d�1 (2.16)
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When t goes to large enough, this ensures the previous universal relation in the
stationary ensemble, and that the earthquake constant kEQ.t/ is connected to the

coefficient d and other parameters . Ob; Om0/.
In the case of moving ensembles Œt � �

2
; tC �

2
�, the Weibull parameters .˛m;�.t/

and ˇm;�.t// satisfy the following time-dependent relation (in re-scaled form) for
m > Om0,

�
ˇm;�.t/

ˇmc;�.t/

�
�

�
1C 1

˛m;�.t/

� ln.1C �
tCcm��=2 /

ln.1C �
tCcmc��=2 /

e�Ob.m�mc/ D 1: (2.17)

In this paper we consider only the Weibull distribution for PW
t;m, but the more

consistent way to derive the interoccurrence time distribution is given by the
quasi-stationary assumption. Here we discuss only the idea toward the theoretical
unification between the Omori law and the generalized interoccurrence time statis-
tics. Consider the interoccurrence time distribution density pt;m.�/.D dPt;m.�/

d�
/, then

the expectation value of the renewal event in Œt; t C �� is determined by using the
convolution of the density pt;m.�/, i.e.,

P1
rD1 P r�

t;m, where P r�
t;m denotes the r-th

convolution. The number of events in Œt; t C �� is surmised to obey the generalized
formula Eq. (2.11) if the aftershock sequence is quasi-stationary,

Nm.t C �/ �Nm.t/ D
X

r

P r�
t;m.�/: (2.18)

This implies that the interoccurrence time distribution can be derived only from
the aftershock statistics Nm.t/. The distribution density is given by the inverse
transformation L�pt;m.�/ D Opt;m.s/, and the interoccurrence time distribution is
subordinate (for small �) to the Omori law,

OPt;m.s/ D 1 � 1

1C acm Onm.as/ ; (2.19)

where Onm.s/ is the Laplace transformation of nm.�/ and a D 1C t=cm.

2.3.3 Birth and Death Cascade in Aftershocks

We have not yet succeeded to derive the theoretical multi-fractal relation (Fig. 2.6b)
in nonstationary regime, but the data-analysis for the 3.11 EQ (2011) shows that
there exist clear hierarchical time-dependent structures among different magnitude-
scales. Here, the regularity hidden behind the nonstationary aftershock sequence
will be formulated and the birth and death cascade in aftershocks is discussed based
on the generalized Omori law at qm ' 1 for the simplicity sake.
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Fig. 2.7 The solitary wave propagation in the space of magnitude m; Q	m.t/ D .d Qb/�1	m.t/

We define the magnitude density 	m.t/ that describes the number of shocks with
the magnitudem,

	m.t/ D
ˇ̌
ˇ̌dnm.t/
dm

ˇ̌
ˇ̌

D d Ob.t=cm/.1C t=cm/
�2; .ln cm D Ob. Om0 �m// (2.20)

By introducing a scaled variable z D t=cm, it is known that the magnitude density
obeys a universal behavior .	m.t/ D 	.z//, in all magnitude classes. This indicates
that the magnitude scale controls the time scale of shocks, and vice versa. The
control mechanism is formulated in the following by using new scaled variables,
Qz.D ln z D � C Obm/ and �.D ln t � Obm0/, i.e.,

nm.t/ D d

1C eQz ; and

	m.t/ D d ObeQz

.1C Qz/2 D � Ob dnm.t/
d Qz

D � Obnm.1 � nm=d/ (2.21)

One can see that these solutions represent the typical nonlinear wave (kink and
soliton) in m-space, of which traveling velocity is determined by Ob�1.Ddm=d�/.
Figure 2.7 shows the cascade process of 	m.t/ in (m; �) space, which corresponds
to the soliton-propagation in m-space.
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It is difficult to derive the nonlinear wave equation uniquely for the aftershock
cascade only from the above special solution, but we can surmise the essential
mechanism leading to the solitary wave mentioned above. From Eq. (2.11), 	m.�/
obeys,

@	m

@�
D 	m fnm=d � .1 � nm=d/g ; (2.22)

in other words, by using the relations nm D R mM
m

	mdm, and
R mM
m�

	mdm D d ,

@	m

@�
D 1

d
	m

(Z mM

m

	0
mdm

0 �
Z m

m�

	0
mdm

0
)
; (2.23)

wheremM and m� indicate the maximum and the minimum magnitude in practical
analysis respectively, and mM D 1 and m� D �1 are assumed in the present
treatment. The 1st and the 2nd terms of Eq. (2.23) show the growth and decay
effects of 	m.�/. One can check easily that Eq. (2.21) is the particular solution of
Eq. (2.23).

The interaction between two shocks is not known clearly, but the interaction
obtained in Eq. (2.23) seems to give us a hint, which may enlighten on the hidden
coupling mechanism among many shocks with different magnitude-scales. As
an approximation, let us consider the birth and death model described by the
generalized transition probabilityWm;m0 ,

d	m

d�
D
Z mM

m�

Wm;m0	0
mdm

0 �
Z mM

m�

Wm;m0	mdm
0: (2.24)

If we assume Wm;m0 / 	m.m
0 � m/ and Wm;m0 D 0.m0 < m/, Eq. (2.23) is

recovered and the birth and death cascade shown in Fig. 2.7 is obtained again as
a particular solution; as a matter of course, there are many other possible solutions
in Eq. (2.24). The details studied in this section will be reported in the next paper by
using much longer data of the aftershocks.

2.4 Discussions and Prospects

The aftershock cascade reveals a very clear regularity not only in the birth and
death process but also in the statistical aspects. In this paper, some parts of the
regularity are confirmed even in the short time region t ' 10�2 (days). The more
precise studies immediately after the big shock seem to be important to elucidate
the precursive mechanism leading to the main shock. The onset time t D 0 is the
critical point in statistical seismology, but some analytical continuations beyond
the singular point must be pursued to obtain the information in the prestage of big
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shocks (t � 0). The birth and death model may give the hint for this end, where some
latent variables, for instance, the stress accumulated in the plate interface, should be
taken into account. These subjects are still open and in our future challenge.
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Chapter 3
Is It Necessary to Lie to Win a Controversial
Public Debate? An Answer from Sociophysics

Serge Galam

Abstract Controversial public debates driven by incomplete scientific data where
nobody can claim absolute certainty, due to the current state of scientific knowledge,
are studied. To adopt a cautious balanced attitude based on clear but inconclusive
data appears to be a lose-out strategy. In contrast overstating arguments with
incorrect claims which cannot be scientifically refuted appears to be necessary but
not sufficient to eventually win a public debate. The underlying key mechanisms of
these puzzling and unfortunate conclusions are identified using the Galam Unifying
Frame (GUF) of opinion dynamics. It reveals that the existence of inflexible agents
and their respective proportions are the instrumental parameters to determine the
faith of incomplete scientific data in public debates. Acting on one’s own inflexible
proportion modifies the topology of the flow diagram, which in turn can make
irrelevant the value of initial support. On the contrary focusing on open-minded
agents may be useless given some topologies. Accordingly, the inflexibles rather
than the data are found to drive the opinion of the population. The results shed a
new but disturbing light on designing adequate strategies to win a public debate.
The cases of global warming is briefly discussed.

3.1 The Central Role of Public Opinion

Public opinion is today a key factor to be accounted for by any policymaker in order
to make decision whatever the scale of the associated issue is. This reality holds true
in democratic countries but not only as seen recently in a few countries in the arab
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world. Polls are heavily used to measure the current stand of a public opinion about
a sensitive issue. And although their accuracy is sometimes questioned, most of the
times, they provide rather good estimates of the reality.

Such a novel situation is praised by all democrats on the “obvious assumption”
that the public opinion is the direct expression of everyone voice aggregated equally
to express the will of the majority. Put under those terms, the role of public opinion
deserves to be the major instrument to be used for any major and even minor
collective decision.

But this paradigmatic view of the public opinion is an a priori which ignores what
makes the public opinion. Its “obvious democratic nature” is never questioned. And
yet, no one would dismiss the fact that people do discuss together in small informal
groups about a given issue and that those local discussions eventually trigger some
shifts of individual opinions. Accordingly, one should ask what are the mechanisms
by which a public opinion is formed before any judgment is stated about the political
weight to be given to the public opinion.

The identification of those rules should be a prerequisite to the assessment
of the democratic character of the dynamics of public opinion, such a feature
being never disputed though its internal making is far from being understood. In
particular, it happens that contrary to the expected “democratic” perception of a
free public debate, several works of sociophysics [1] have hint to the possibility
that, although hardly conceivable, the holding of a free and open public debate may
give rise to a natural attraction towards initial tiny minority views making a huge
majority of individuals to change naturally their minds along the initial minority
view [2–5, 29].

It is worth to recall that while sociophysics [6] was adamantly rejected by
physicists at its first steps during the earlier 1980s [7] it is today flourishing field
of research among physicists all over the world [8]. Among a large series of topics
of investigation, opinion dynamics is very active with numerous papers published
every year [9–20]. Indeed a unifying frame denoted Galam Unifying Frame (GUF)
has been shown to embed most of the discrete models [21].

Voting has also attracted a good deal of works [22–26]. Coexistence of opposite
sates were found [27,28]. Economical applications have been done like for instance
for the wine market [29] and innovations [30]. Several review are available
[31–35].

In this paper using GUF for opinion dynamics [21] it is shown how a few percents
of liars about an issue may overcome a majority of 80 % by just holding on the same
opinion whatever arguments are given to them. They do not win by more powerful
arguments, they simply behave as inflexibles within the local group of discussions,
just sticking to their opinion [20, 36]. We use here the term “liar” to emphasize the
fact that given a controversy based on partial scientific results, those agents overstate
their conviction by asserting that their view has been scientifically proved. Such
an attitude is emblematic of the debate about the anthropic cause of the recently
observed global warming [2, 3].



3 Is It Necessary to Lie to Win a Controversial Public Debate? An Answer. . . 39

3.2 The Ideal Model of Opinion Dynamics

We start from a societal issue for which two opposite views A and B compete to
enforce an eventual new policy about some observed problems. Let denote the real
problem as RR and rr the leading explanation about RR. Opinion A claims that
rr D RR while opinion B disclaims the equality stating that at the moment rr ¤ RR.
Usually, the mere available data and facts are consistent with the equality rrDRR but
neither prove it nor forbid an other explanation. Let us denote pA.t/ and pB.t/ D
1�pA.t/ the respective proportions of people supporting respectively opinion A and
B at time t D, each person having an opinion.

As time passes by, starting from the initial configuration pA.t/, people keep on
discussing the issue. the debate is not formally set and gatherings are shaped by
social life. Those informal meeting convene a few agents not large groups.

No advantage being given to either A or B, we assume that while discussing
within a group, the agents end up adopting the opinion which had the initial majority
support. In case of a tie, each agents keeps its initial opinion. However during a
public debate, people keep on discussing for a long period of time moving from one
group to another. The associate dynamics is monitored by a series of successive ran-
dom distributions of the agents in various size groups, all being reshuffled once local
majority rule have been applied to each group. An illustration is given in Fig. 3.1.

Fig. 3.1 Illustration of the various steps making two successive local updates
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Fig. 3.2 The tipping dynamics produced by repeated local updates. Arrows show the direction of
the flow

To analyse the model we restrict the local groups of discussion to the same size 3.
The first update is thus obtained by distributing randomly the whole population in
groups of size 3, and subsequently having the 3 agents in each group people to adopt
the initial local majority, i.e., 3 A and (2 A � 1 B) end 3 A and vice versa for B. After
one update, at time .t C 1/ the new proportion of people supporting opinion A is,

pA.t C 1/ D pA.t/
3 C 3pA.t/

2f1 � pA.t/g: (3.1)

Repeating the same process again and again yields,

pA.t C k/ D pA.t C k � 1/3 C 3pA.t C k � 1/2.1 � pA.t C k � 1//; (3.2)

where pA.tCk�1/ is the proportion of supporters A at a distance of .k�1/ updates
from time t .

The update function exhibits two attractors pA;0 D 0 and pA;1 D 1. First
one corresponds to a total opinion polarization along the refutal of the claim
rrDRR asserting that indeed rr ¤ RR. At the other extremity the second attractor
pA;1 represents the case of a total support for the claim that rrDRR with no one
supporting the view that rr ¤ RR. Both attractors are sitting on each side of a
separator pc;3 D 1

2
. The separator makes the dynamics a tipping point dynamics

with pA.t/ < 1
2

leading towards pA;0 and pA.t/ > 1
2

towards pA;1 as shown in
Fig. 3.2.

According to our ideal model of opinion dynamics, opinion dynamics obeys
the main criterion of a democratic practice sharing its main expected features.
Any initial supporter proportion pA.t/ < 50% is weakened by on going mutual
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exchanges of arguments among agents to eventually disappear. However this
polarization effect requires a sufficient number of updates to be completed. For
instance we have the series pA.t/ D 0:48, pA.t C 1/ D 0:47, pA.t C 2/ D 0:45,
pA.t C 3/ D 0:43, pA.t C 4/ D 0:40, pA.t C 5/ D 0:35, pA.t C 4/ D 0:28 down
to pA.t C 9/ D 0:03 and pA.t C 10/ D 0:00. Within 10 successive updates, 48%
of support to some issue has turned against it.

Though the numbers of required updates are of the order of less than 10, apart
for the special case pA.t/ � 0:50, it is worth the stress that to make an application
to a real public debate, one update should be mapped to some numbers of days,
whose value has to be evaluated using a series of polls. Notice that the dynamics is
perfectly symmetric with respect to both opinions with a threshold of initial support
at (50%).

It is worth to notice that increasing the size of the discussing group to odd values
does not change the main properties of the dynamics with yet a separator at 50 %
and the two attractors pA;0 and pA;1. The only difference is the shrinking of the
number of required updates to reach an attractor. The case of even size is more
subtle. While choosing not change opinion at a tie preserves the odd-size properties,
it is possible to consider a bias at a tie, which in turn can produce some interesting
minority spreading situations.

3.3 The Disturbing Effect of Liars

While the ideal model of opinion dynamics reproduces the expected features of a
democratic paradigm, the assumption of ideal agents who follow nicely the majority
of arguments given during an informal discussion is a bit at most very naive but
at least a little excessive. While many agents are certainly open minded and are
sincerely looking for the best choice, some other agents adopt a totally different
attitude. For all kind of reasons, they do have a solid interest in making one choice
to be dominant. Accordingly, in case of difficulty in a local debate, they will lie
claiming their opinion is not an opinion but the truth, despite an eventual majority
of opposite arguments.

To grasp the drastic effect of liars, we consider that a proportion a of agents
assert that the equality rrDRR has been proved scientifically although only limited
evidence has been established. For instance, in the debate about global warming
some agents do believe that it has been scientifically proven that the anthropic pro-
duction of carbon dioxide is the main cause of the increase of global temperatures.
At contrast, other agents claim there is no scientific proof of human responsibility
but could convinced of the opposite if given enough evidence.

The update Eq. (3.1) has to be rewritten as,

pA.t C 1/ D pA.t/
3 C 3pA.t/

2.1 � pA.t//C a.1 � pA.t/2/; (3.3)
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Fig. 3.3 The tipping dynamics produced by repeated local updates with a proportion of inflexibles
in the range 0 � a < ac � 3� 2

p
2 � 0:172. Arrows show the direction of the flow

where last term accounts for the configurations where one inflexible A is against
two B agents with both B agents keep their B opinion since it is majority while the
A inflexible preserves its A choice.

Given a support pA.t/ for opinion A means a subgroup of a inflexibles and
.pA.t/ � a/ open minded agents with the constraint pA.t/ � a. Solving the
associated fixed point equation preserves the total A spreading attractor with paA;1 D
pA;1 D 1 and yields the shifts,

pA;0 ! paA;0 D 1

4

	
1C a �

p
1 � 6aC a2



; (3.4)

and

pc;3 ! pac;3 D 1

4

	
1C a C

p
1� 6aC a2



: (3.5)

From above formulas it is seen that both paA;0 and pac;3 are real only when 0 �
a < ac � 3 � 2

p
2 � 0:172. Associated with opinion flow diagram is shown in

Fig. 3.3, which becomes identical to Fig. 3.2 at a D 0. Having a ¤ 0 gives some
substantial advantage to the A claim that rrDRR since to invade the full population
the initial support does not need to be higher that 50%. However opinion B can still
wins the debate provided it starts from an initial support larger than pac;3.

The variations of paA;0 and pac;3 as a function of a are exhibited in Fig. 3.4. From
the figure it is seen that both values get closer one to another as a increases to
eventually coalesce at a critical value of ac � 3 � 2

p
2 � 0:172. At a D ac we

have pacA;0 D p
ac
c;3 � 0:293. The area in the lower part represents the incompressible

A inflexible zone.
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Fig. 3.4 The tipping dynamics produced by repeated local updates with a proportion of inflexibles
in the range 0 � a < ac � 3� 2

p
2 � 0:172. Arrows show the direction of the flow

Fig. 3.5 In the range a � ac the dynamics is totalitarian with no tipping point. A opinion always
wins the public debate. Arrows show the direction of the flow

In the range a � ac the dynamics is put upside down with a dramatic breaking
of the democratic balance. There, even a huge support for B opinion of the order
of 80% will systematically be shifted to adopt the opinion A. Such a phenomena is
triggers by the fact that the dynamics is monitored by a unique attractor located at
paA;1 D 1 as seen from both Figs. 3.4 and 3.5.
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3.4 Unfortunate Conclusion

From above model the conclusion is rather unfortunate since it appears that the
instrumental key to win a public debate is not to try to convince a maximum of
agents but instead to produce inflexibles on its own side and to distribute them
randomly.

It leads to a disturbing situation when facing a public debate about an important
issue. It is a Kafka like paradox: to adopt a fair attitude is found to be a lose-out
strategy to promote a cause while to adopt a cynical behavior is the guarantee to
win the debate.

On this basis we are facing a central unsolved ethical issue. What to do? How
to account for the people will? How tp preserve one’s own rigor and oppose people
who have some few liars on their side?

Although reality is much more complicated, the model might not be totally
absurd to envision new winning strategies in the now on going wars of opinions,
which prevail before any major political choice.

Application to Global Warming and Evolution Theory controversies might shed
a different light on the way some activists behave [2, 3].
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Chapter 4
Anticipating Stock Market Movements
with Google and Wikipedia

Helen Susannah Moat, Chester Curme, H. Eugene Stanley, and Tobias Preis

Abstract Many of the trading decisions that have led to financial crises are captured
by vast, detailed stock market datasets. Here, we summarize two of our recent
studies which investigate whether Internet usage data contain traces of attempts to
gather information before such trading decisions were taken. By analyzing changes
in how often Internet users searched for financially related information on Google
(Preis et al., Sci Rep 3:1684, 2013) and Wikipedia (Moat et al., Sci Rep 3:1801,
2013), patterns are found that may be interpreted as “early warning signs” of stock
market moves. Our results suggest that online data may allow us to gain new insight
into early information gathering stages of economic decision making.

4.1 Introduction

Stock market data provide extremely detailed records of decisions that traders have
made, in an area in which disasters have a widespread impact. As a result, these
stock market records have generated considerable scientific attention [7, 8, 11–13,
18–24, 26–28].
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Decisions, such as trading decisions, do not however consist solely of the final
execution of a chosen action, such as a trade recorded at the stock exchange. Instead,
humans often begin by gathering information to help identify what the consequences
of possible actions might be [33].

Nowadays, the Internet has greatly extended human capabilities to distribute and
gather information [1, 6, 14, 15, 31]. As a result, online resources have become
the first port of call in many quests for new information. Providers of such
online resources often collect extensive data on their usage, adding to a range of
new large-scale measurements of collective human behavior [5, 17]. These new
Internet derived datasets open up new avenues for scientists to investigate the early
information gathering stages of decision making processes.

Previous studies have demonstrated that analysis of search data can provide
insight into current or even subsequent behavior in the real world. For example,
changes in the frequency with which users look for certain terms on search engines
such as Google and Yahoo! have been correlated with changes in the numbers
of reports of flu infections across the USA [9], the popularity of films, games
and music on their release [10], unemployment rates [2, 4], tourist numbers [4],
and trading volumes in the US stock markets [3, 25]. A recent study showed that
Internet users from countries with a higher per capita gross domestic product (GDP)
search for proportionally more information about the future than information about
the past, in comparison with Internet users from countries with a lower per capita
GDP [29].

In the two studies summarized here and described in [16] and [30] in full length,
we ask whether online searches for information might contain information relevant
not only to the current state of the stock market, but also to subsequent trends.
Specifically, can we find any evidence that changes in the volume of searches
for financial information on Google and Wikipedia may provide insight into the
information gathering process of investors before they make decisions to buy
or sell?

4.2 Google Searches and Subsequent Stock Market Moves

To investigate whether changes in information gathering behavior as captured by
Google Trends data were related to later changes in stock price in the period
between 2004 and 2011, in [30] we implemented a hypothetical investment strategy
for a portfolio using search volume data, called ‘Google Trends strategy’ in the
following. In this strategy, as described in both [30] and [16], we quantify changes
in information gathering behavior by using the relative change in search volume:
�n.t;�t/ D n.t/�N.t�1;�t/ withN.t�1;�t/ D .n.t�1/Cn.t�2/C : : : C
n.t � �t//=�t , where t is measured in units of weeks. We sell the DJIA at the
closing price p.t C 1/ on the first trading day of week t C 1 if search volume has
increased in week t such that �n.t;�t/ > 0. We then close the position by buying
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Fig. 4.1 Cumulative performance of an investment strategy based on Google Trends data
(Reproduced from [30]). Profit and loss for an investment strategy based on the volume of the
search term debt, the best performing keyword in our analysis, with �t D 3 weeks, plotted as
a function of time (blue line). This is compared to the “buy and hold” strategy (red line) and the
standard deviation of 10,000 simulations using a purely random investment strategy (dashed lines).
The Google Trends strategy using the search volume of the term debt would have yielded a profit
of 326 %

the DJIA at price p.t C 2/ at the end of the first trading day of the following week
t C 2. If instead search volume has decreased or remained the same in week t such
that �n.t;�t/ � 0, then we buy the DJIA at the closing price p.t C 1/ on the first
trading day of week t C 1, and sell the DJIA at price p.t C 2/ at the end of the first
trading day of the coming week t C 2 to close the position.

In [30], we analyzed the performance of a set of 98 Google search terms.
We included terms related to the concept of stock markets, with some terms
suggested by the Google Sets service, a tool which identifies semantically related
keywords.

In Fig. 4.1, taken from [30], we depict the performance of our strategy between
2004 and 2011 using the search term debt, a keyword with an obvious semantic
connection to the most recent financial crisis, and overall the term which performed
best in our analyses. The performance of the Google Trends strategy based on
the search term debt is depicted by a blue line, whereas dashed lines indicate
the standard deviation of the cumulative return from a strategy in which we buy
and sell the market index in an uncorrelated, random manner (‘random investment
strategy’). The standard deviation is derived from simulations of 10,000 independent
realizations of the random investment strategy. Figure 4.1 shows that the use of the
Google Trends strategy, based on the search term debt and �t D 3 weeks, would
have increased the value of a portfolio by 326 %. The performance of Google Trends
strategies based on all other search terms that we analyze is depicted in a similar
manner in [30].

We rank the full list of the 98 investigated search terms by their trading
performance when using search data for U.S. users only (Fig. 4.2a) and when using
globally generated search volume (Fig. 4.2b). In order to ensure the robustness of
our results, the overall performance of a strategy based on a given search term
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is determined as the mean value over the six returns obtained for �t D 1 : : : 6

weeks. Returns of the strategies are calculated as the logarithm of percentage
profit, following the usual definition of returns. Here we report R, the cumulative
returns of a strategy, in standard deviations of the cumulative returns of these
uncorrelated random investment strategies. In [30], we find that returns from the
Google Trends strategies we tested are significantly higher overall than returns from
the random strategies (hRiUS D 0:60; t D 8:65, df D 97, p < 0:001, one sample
t-test).

We compare the performance of these search terms with two benchmark
strategies. The ‘buy and hold’ strategy is implemented by buying the index in the
beginning and selling it at the end of the hold period. This strategy yields 16 %
profit, equal to the overall increase in value of the DJIA in the time period from
January 2004 until February 2011. We further implement a ‘Dow Jones strategy’
by using changes in p.t/ in place of changes in search volume data as the basis of
buy and sell decisions. In [30] we find that this strategy also yields only 33 % profit
with �t D 3 weeks, or when determined as the mean value over the six returns
obtained for �t D 1 : : : 6 weeks, 0.45 standard deviations of cumulative returns of
uncorrelated random investment strategies (Fig. 4.2a, b).

It is widely recognized that investors prefer to trade on their domestic market,
suggesting that search data for U.S. users only, as used in analyses so far, should
better capture the information gathering behavior of U.S. stock market participants
than data for Google users worldwide. Indeed, in [30] we find that strategies based
on global search volume data are less successful than strategies based on U.S.
search volume data in anticipating movements of the U.S. market (hRiUS D 0:60,
hRiGlobal D 0:43; t D 2:69, df D 97, p < 0:01, two-sided paired t-test).

J
Fig. 4.2 Performances of investment strategies based on search volume data (Reproduced
from [30]). (a) Cumulative returns of 98 investment strategies based on search volumes restricted
to search requests of users located in the United States for different search terms, displayed for
the entire time period of our study from 5 January 2004 until 22 February 2011 – the time
period for which Google Trends provides data. We use two shades of blue for positive returns
and two shades of red for negative returns to improve the readability of the search terms. The
cumulative performance for the “buy and hold strategy” is also shown, as is a “Dow Jones strategy”,
which uses weekly closing prices of the Dow Jones Industrial Average (DJIA) rather than Google
Trends data (see gray bars). Figures provided next to the bars indicate the returns of a strategy,
R, in standard deviations from the mean return of uncorrelated random investment strategies,
hRiRandomStrategy D 0. Dashed lines correspond to �3, �2, �1, 0, +1, +2, and +3 standard deviations
of random strategies. We find that returns from the Google Trends strategies tested are significantly
higher overall than returns from the random strategies (hRiUS D 0:60; t D 8:65, df D 97,
p < 0:001, one sample t-test). (b) A parallel analysis shows that extending the range of the
search volume analysis to global users reduces the overall return achieved by Google Trends trading
strategies on the U.S. market (hRiUS D 0:60, hRiGlobal D 0:43; t D 2:69, df D 97, p < 0:01,
two-sided paired t-test). However, returns are still significantly higher than the mean return of
random investment strategies (hRiGlobal D 0:43; t D 6:40, df D 97, p < 0:001, one sample t-test)
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4.3 Wikipedia Views and Edits and Subsequent
Stock Market Moves

In [16], we investigate whether data from the popular online encyclopedia Wikipedia
may hold similar insights. We consider data on both how often pages on the English
language Wikipedia have been viewed, and how often pages on the English language
Wikipedia have been edited. We calculate our weekly measure of information
gathering behavior, n.t/, as previously described, but using either view or edit data
for Wikipedia in place of search volume data from Google. Data on Wikipedia page
views were downloaded from the online service http://stats.grok.se, and data on
Wikipedia page edits were obtained by parsing the Wikipedia “Revision history”
page associated to the article. In [16], we then implement the same trading strategy
described above using data generated between 10th December 2007, the earliest
date for which Wikipedia views data are available from http://stats.grok.se, and 30th
April 2012.

Figure 4.3, taken from [16], shows the distributions of returns from two portfolios
of 30 hypothetical strategies, trading weekly on the DJIA. These trading strategies
are based on changes in how often the 30 Wikipedia pages describing the companies
in the DJIA were viewed (blue)) and edited (red) during the period December
2007–April 2012, with �t D 3 weeks. The distribution of returns from 10,000
independent realizations of a random strategy is also shown (gray).

We find that there are significant differences between these three distributions
(
2 D 10:21, df D 2, p D 0:006, Kruskal-Wallis rank sum test). Our analysis
shows that the returns of Wikipedia page view based strategies for this period are
significantly higher than the returns of the random strategies (hRiViews D 0:50;W D
199;690, p D 0:005, two-tailed two-sample Wilcoxon rank-sum test, Bonferroni
correction applied). There is however no statistically significant difference between
the returns from the Wikipedia edit based strategies and the random strategies
(hRiEdits D �0:09; W D 140;781, p > 0:9, two-tailed two-sample Wilcoxon rank-
sum test, Bonferroni correction applied).

We investigate whether these results extend to Wikipedia articles on more general
financial topics. To address this question, we make use of the fact that Wikipedia
contains lists of pages relating to specific topics. In [16], we examine view and edit
data for 285 pages relating to general economic concepts, as listed in the subsection
“General Economic Concepts” on the English language Wikipedia page “Outline of
Economics”.

Figure 4.4 shows the results of an analysis of the distribution of returns
from two portfolios of 285 hypothetical strategies, trading weekly on the DJIA.
These strategies are based on changes in how often these 285 financially related
Wikipedia pages were viewed (blue) and edited (red) during the same period,
again with �t D 3 weeks. As before, we find that there is a significant dif-
ference between the returns generated by the random strategies, the Wikipedia
view based strategies and the Wikipedia edit based strategies (
2 D 307:88, df D 2,

http://stats.grok.se
http://stats.grok.se
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Fig. 4.3 Returns from trading strategies based on Wikipedia view and edit logs for articles
relating to the companies forming the Dow Jones Industrial Average (DJIA) (Reproduced
from [16]). The distributions of returns from two portfolios of 30 hypothetical strategies, trading
weekly on the DJIA, based on changes in how often the 30 Wikipedia articles describing the
companies listed in the DJIA were viewed (blue) and edited (red) during the period December
2007–April 2012, with �t D 3 weeks. The distribution of returns from 10,000 independent
realizations of a random strategy is also shown (gray). Data is displayed using a kernel density
estimate and the ggplot2 library [35], with a Gaussian kernel and bandwidth calculated using
Silverman’s rule of thumb [32]. Whereas we show in the text that random strategies lead to no
significant profit or loss, we find that the returns of Wikipedia article view based strategies for
this period are significantly higher than the returns of the random strategies (hRiViews D 0:50;
W D 199;690, p D 0:005, two-tailed two-sample Wilcoxon rank-sum test, Bonferroni correction
applied). There is however no statistically significant difference between the returns from the
Wikipedia edit based strategies and the random strategies (hRiEdits D �0:09; W D 140;781,
p > 0:9, two-tailed two-sample Wilcoxon rank-sum test, Bonferroni correction applied)

p<0:001, Kruskal-Wallis rank sum test). Again, the returns of Wikipedia page
view based strategies are significantly higher than the returns of random strategies
for this period (hRiViews D 1:10; W D 2;286;608, p<0:001, two-tailed two-sample
Wilcoxon rank-sum test, Bonferroni correction applied). In contrast, we find no evi-
dence of a statistically significant difference between the returns from the Wikipedia
edit based strategies, and the random strategies (hRiEdits D 0:12; W D 1;516;626,
p D 0:19, two-tailed two-sample Wilcoxon rank-sum test, Bonferroni correction
applied).

We note in [16] that the lack of relationship found for the data on Wikipedia
edits may simply reflect the substantial difference in the volume of data available
for views and for edits, despite the much larger number of pages considered in this
second analysis, where further relevant statistics on views and edits of Wikipedia
pages are provided in [16]. For the purposes of these investigations, we therefore do
not consider edit data further.
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Fig. 4.4 Returns from trading strategies based on Wikipedia access and edit logs for pages
relating to finance (Reproduced from [16]). Parallel analysis of the distribution of returns from
two much larger portfolios of 285 hypothetical strategies, based on changes in how often a set
of 285 financially related Wikipedia pages were viewed (blue) and edited (red) during the same
period as Fig. 4.3, again with �t D 3 weeks. Our analysis shows that the returns of Wikipedia
page view based strategies are significantly higher than the returns of random strategies for this
period (hRiViews D 1:10; W D 2;286;608, p < 0:001, two-tailed two-sample Wilcoxon rank-sum
test, Bonferroni correction applied). Once again however, we find no evidence of a statistically
significant difference between the returns from the Wikipedia edit based strategies, and the random
strategies (hRiEdits D 0:12; W D 1;516;626, ˛ D 0:05, two-tailed two-sample Wilcoxon rank-
sum test, Bonferroni correction applied)

4.4 Financial Relevance of Information Searched
for Before Stock Market Falls

Our assumption so far was that only Google and Wikipedia usage data relating
to financial topics would provide any insight into information gathering processes
before trading decisions, and therefore future changes in the DJIA. To verify this
assumption, in [16] we carry out a further analysis of view data relating to 233
Wikipedia pages describing actors and filmmakers, where further details of these
pages are provided in [16]. We suggest that such pages have less obvious financial
connotations.

We analyze the distribution of returns for a portfolio of 233 hypothetical trading
strategies based on changes in how often these pages were viewed, trading weekly
on the DJIA with �t D 3 weeks during the period December 2007–April 2012, as
in the previous Wikipedia analyses. We ensured that this set of pages, of similar size
to the set of pages relating to financial topics, had at least equivalent traffic during
the period of investigation, to ensure that any failure to find a relationship was not
due to power issues caused through lack of data on Wikipedia views.
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Fig. 4.5 Returns from trading strategies based on Wikipedia access logs for pages relating to
actors and filmmakers (Reproduced from [16]). Parallel analysis of the distribution of returns
for another portfolio of 233 hypothetical strategies based on changes in how often a set of 233
Wikipedia pages relating to actors and filmmakers were viewed (blue). Here, we find that there is
no significant difference between the returns generated by the random strategies and the Wikipedia
view based strategies (hRiViews = 0.04; W D 1;189;114, p D 0:59, two-tailed two-sample
Wilcoxon rank-sum test)

In Fig. 4.5, we show the returns from these 233 strategies based on changes in the
number of views of Wikipedia articles on actors and filmmakers (blue), alongside
returns from the random strategies (gray). We find that there is no significant
difference between the returns generated by the random strategies and the Wikipedia
view based strategies (hRiViews D 0:04;W D 1;189;114, p D 0:59, two-tailed two-
sample Wilcoxon rank-sum test).

Similarly, in [30], we investigate whether differences in performance of the 98
Google Trends strategies we tested can be partially explained using an indicator of
the extent to which different terms are of financial relevance. We quantify financial
relevance by calculating the frequency of each search term in the online edition of
the Financial Times from August 2004 to June 2011, normalized by the number of
Google hits for each search term (Fig. 4.6). We find that the return associated with a
given search term is correlated with this indicator of financial relevance (Kendall’s
tau D 0:275, z D 4:01, N D 98, p < 0:001) using Kendall’s tau rank correlation
coefficient.

4.5 Discussion

In the investigations described in [16] and [30], summarized here, we find evidence
of increases in searches for financially related information before stock market falls.
These results are consistent with the hypothesis that historic usage data from Google
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and the online encyclopedia Wikipedia may have provided some insight into future
trends in the behavior of financial market actors.

In [16], we have proposed one potential explanation in line with these results. We
first suggest that Google and Wikipedia records may provide a proxy measurement
of the information gathering process of a subset of investors for the investigated
period. We further note that previous studies in behavioral economics have demon-
strated that humans are loss averse [34]: that is, they are more concerned about
losing $5 than they are about missing an opportunity to gain $5. By this logic, it
could be argued that the trading decision of greatest consequence for a trader would
be to sell a stock at a lower price than they had previously believed it was worth.
If we assume that investors may be willing to invest more efforts in information
gathering before making a decision which they view to be of greater consequence,
then it would follow that increases in information gathering would precede falls in
stock market prices, in line with our results.

Our results suggest that Internet usage data may offer a window into the
information gathering processes which precede real world actions captured in large
behavioral data sets. By combining these new data sets, we may be able to gain new
insight into different stages of collective economic decision making.

Acknowledgements The results summarized here were first reported in Preis, T., Moat, H.S.,
Stanley. H.E.: Quantifying trading behavior in financial markets using Google Trends. Sci.
Rep. 3, 1684 (2013), http://www.nature.com/srep/2013/130425/srep01684/full/srep01684.html,
and Moat, H.S. et al.: Quantifying Wikipedia usage patterns before stock market moves. Sci.
Rep. 3, 1801 (2013), http://www.nature.com/srep/2013/130508/srep01801/full/srep01801.html.
We thank Adam Avakian and Dror Y. Kenett for comments. H.S.M. and T.P. acknowledge
the support of the Research Councils UK Grant EP/K039830/1. This work was also supported
by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior
National Business Center (DoI/NBC) contract number D12PC00285. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

References

1. Alanyali M, Moat HS, Preis T (2013) Quantifying the relationship between financial news and
the stock market. Sci Rep 3:3578

2. Askitas N, Zimmermann KF (2009) Google econometrics and unemployment forecasting.
Appl Econ Q 55:107–120

3. Bordino I et al (2012) Web search queries can predict stock market volumes. PLOS One
7:e40014

4. Choi H, Varian H (2012) Predicting the present with Google Trends. Econ Rec 88:2–9
5. Conte R et al (2012) Manifesto of computational social science. Eur Phys J Spec Top

214:325–346

http://www.nature.com/srep/2013/130425/srep01684/full/srep01684.html
http://www.nature.com/srep/2013/130508/srep01801/full/srep01801.html


58 H.S. Moat et al.

6. Corley M, Brocklehurst PH, Moat HS (2010) Error biases in inner and overt speech: evidence
from tongue twisters. J Exp Psychol: Learn Mem Cognit 37:162–175

7. Feng L, Li B, Podobnik B, Preis T, Stanley HE (2012) Linking agent-based models and
stochastic models of financial markets. Proc Natl Acad Sci USA 109:8388–8393

8. Gabaix X, Gopikrishnan P, Plerou V, Stanley HE (2003) A theory of power-law distributions
in financial market fluctuations. Nature 423:267–270

9. Ginsberg J et al (2009) Detecting influenza epidemics using search engine query data. Nature
457:1012–1014

10. Goel S, Hofman JM, Lahaie S, Pennock DM, Watts DJ (2010) Predicting consumer behavior
with web search. Proc Natl Acad Sci USA 107:17486–17490

11. Hommes CH (2002) Modeling the stylized facts in finance through simple nonlinear adaptive
systems. Proc Natl Acad Sci USA 99:7221–7228

12. Lux T, Marchesi M (1999) Scaling and criticality in a stochastic multi-agent model of a
financial market. Nature 397:498–500

13. Mantegna RN, Stanley HE (2002) Scaling behaviour in the dynamics of an economic index.
Nature 376:46–49

14. Moat HS (2010) Modelling subphonemic information flow: an investigation and extension of
Dell’s (1986) model of word production. Doctoral dissertation, University of Edinburgh

15. Moat HS, Corley M, Hartsuiker RJ (2008) Connecting phonological encoding to articulation:
is cascading required? A computational investigation. In: Love BC, McRae K, Sloutsky VM
(eds) Proceedings of the 30th annual conference of the Cognitive Science Society, Washington,
DC, pp 1320–1325. Cognitive Science Society, Austin

16. Moat HS, Curme C, Avakian A, Kenett DY, Stanley HE, Preis T (2013) Quantifying Wikipedia
usage patterns before stock market moves. Sci Rep 3:1801

17. Moat HS, Preis T, Olivola CY, Liu C, Chater N (in press) Using big data to predict collective
behavior in the real world. Behav Brain Sci

18. Preis T (2010) Quantifying and modeling financial fluctuations. Doctoral dissertation, Univer-
sity of Mainz

19. Preis T (2011) Econophysics—complex correlations and trend switchings in financial time
series. Eur Phys J Spec Top 194:5–86

20. Preis T (2011) GPU-computing in econophysics and statistical physics. Eur Phys J Spec Top
194:87–119

21. Preis T, Stanley HE (2010) Switching phenomena in a system with no switches. J Stat Phys
138:431–446

22. Preis T, Golke S, Paul W, Schneider JJ (2006) Multi-agent-based order book model of financial
markets. EPL 75:510

23. Preis T, Golke S, Paul W, Schneider JJ (2007) Statistical analysis of financial returns for a
multiagent order book model of asset trading. Phys Rev E 76:016108

24. Preis T, Paul W, Schneider JJ (2008) Fluctuation patterns in high-frequency financial asset
returns. EPL 82:68005

25. Preis T, Reith D, Stanley HE (2010) Complex dynamics of our economic life on different
scales: insights from search engine query data. Philos Trans R Soc A 368:5707–5719

26. Preis T, Schneider JJ, Stanley HE (2011) Switching processes in financial markets. Proc Natl
Acad Sci USA 108:7674–7678

27. Preis T, Virnau P, Paul W, Schneider JJ (2011) Accelerated fluctuation analysis by graphic
cards and complex pattern formation in financial markets. New J Phys 11:093024

28. Preis T, Kenett DY, Stanley HE, Helbing D, Ben-Jacob E (2012) Quantifying the behavior of
stock correlations under market stress. Sci Rep 2:752

29. Preis T, Moat HS, Stanley HE, Bishop SR (2012) Quantifying the advantage of looking
forward. Sci Rep 2:350

30. Preis T, Moat HS, Stanley HE (2013) Quantifying trading behavior in financial markets using
Google Trends. Sci Rep 3:1684

31. Preis T, Moat HS, Bishop SR, Treleaven P, Stanley HE (2013) Quantifying the digital traces of
Hurricane Sandy on Flickr. Sci Rep 3:3141



4 Anticipating Stock Market Movements with Google and Wikipedia 59

32. Silverman BW (1986) Density estimation. Chapman and Hall, London
33. Simon HA (1955) A behavioral model of rational choice. Q J Econ 69:99–118
34. Tversky A, Kahneman D (1991) Loss aversion in riskless choice: a reference-dependent model.

Q J Econ 106:1039–1061
35. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York



Chapter 5
Nonequilibrium Quantum Dynamics
of Biomolecular Excitons

Cesar A. Mujica-Martinez, Peter Nalbach, and Michael Thorwart

Abstract We investigate the effect of equilibrium and nonequilibrium localized
vibrations on the excitation energy transfer efficiency of the Fenna-Matthews-Olson
complex. By means of numerically exact real-time path-integral simulations of
the transfer dynamics we find that equilibrium vibrations do not enhance coherence
times. On the other hand, nonequilibrium vibrations induce prolonged coherence
times and increased transfer efficiency. By quantifying the transfer dynamics in
terms of a non-Markovianity measure based on the time evolution of the trace
distance of two quantum states we find, in all cases, a monotonic decrease of the
trace distance with increasing time which implies that the exciton transfer follows a
Markovian dynamics.

5.1 Introduction

The directed transport of excitation energy is at the heart of photosynthesis which
is one of the most important biochemical processes on earth. It is a typical nonequi-
librium transfer process and funnels the energy provided by the solar photons down
to usable chemical energy in photoactive living systems. Photosynthesis allows the
living systems to harvest an enormous amount of energy, for instance, the energy
captured by photosynthesis per year on our planet is of the order of 100 TW which
should be compared to roughly 15 TW of human energy consumption per year [1].
Along with the harvest of energy goes the production of about 105 billion tons of
biomass per year or 12 million tons per hour on the planet. Roughly half of the
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photosynthesis happens in organisms in water, i.e., mainly in the ocean, while the
other half is performed by systems on the shore.

Since long, the molecular mechanism of the light harvesting has been of interest
for many different fields in science. For instance, green plants contain chloroplasts
in their leaves which contain a stack of membranes whose molecular structure is
highly nontrivial. On a length scale of nanometer, many different biomolecular
clusters act in concert to harvest the energy of a solar photon and to convert it into
chemical energy which starts a complicated sequence of chemical reactions [2]. As
physicists, we are predominantly interested in the early steps of the photosynthetic
chain of reaction, in particular, in the ultrafast processes when the excitation energy
is intermittently stored in an exciton which forms a quasiparticle of a strongly
bound electron-hole pair. These initial steps happen in particular ring-shaped parts
of the biomolecular complexes which are denoted as antenna structures. After the
exciton is formed at a certain molecular site, it transfers its energy by a radiationless
Coulomb dipole coupling to neighboring sites such that the energy eventually finds
its way through a network of few molecular sites. Finally, the energy ends up in the
reaction center which is an energy sink and which is the place where an electron
transfer is initiated [3].

A central role during this cascade of excitation energy transfers is played by the
fluctuations provided by the environment in which the biomolecule is hosted. By
nature, the transfer processes are quantum mechanical transfer processes. However,
the presence of strong fluctuations has led to the orthodox picture of the Förster
theory of excitation energy transfer which is based on the assumptions that the
excitons are well localized quasiparticles and the transfer is a classical hopping-like
dynamics along the molecular sites. The exciton population of each site is described
by a classical probability and quantum mechanics in this description enters only
when the transfer rates are determined by Fermi’s Golden Rule, being perturbative
in the dipole coupling strength.

Recent experiments [4–8] though have challenged this picture and have described
signatures of nontrivial quantum effects in biological matter under ambient condi-
tions. Particular active compounds have been studied such as the Fenna-Matthews-
Olson (FMO) complex in the green sulfur bacterium Chlorobium tepidum by
ultrafast two-dimensional optical spectroscopy [9]. It was found that the time-
resolved spectral signal associated to the excitonic coherence displayed beating
oscillations which lasted over longer than 1 ps at 77 K [5]. Even at room temper-
ature, rather long-lasting oscillations for a few hundreds of fs were described [6].
Similar features were found in marine cryptophyte algae [7] and in the light-
harvesting complex 2 of purple bacteria [8].

These reports posed various challenges for an accurate theoretical description
due to the complexity of the systems under study. One of the best characterized
biomolecular systems is the FMO complex [10, 11]. It is sufficiently simple for an
effective but still accurate modelling and consists of seven relevant active molecular
sites (see below). Most importantly, also the frequency spectrum of the fluctuations
which act on the molecular levels is rather well known [12]. One problem is
that it exhibits a rather non-typical and non-trivial form and it is a priori not
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clear whether simple Redfield-like quantum master equations are an appropriate
tool to the describe the transfer dynamics. This is because such an approach is
by construction based on a weak-coupling assumption which goes along with
a Markovian approximation [13]. Such an assumption is valid only for a pure
and structureless Ohmic spectral distribution of the bath fluctuations. Below, we
will show by numerically exact path-integral simulations and by calculating the
appropriate quantum information theoretical measure of the non-Markovianity that
despite these issues, the full exciton dynamics follows a Markovian dynamics.

In addition, we show that the observed long quantum coherence times of the
electronic states cannot be explained by a non-trivial role of fluctuations coming
from a continuous frequency distribution of the fluctuations generated by the
pigment-protein-solvent environment. We show that, instead, discrete vibrational
modes of the molecular backbone may yield increased coherence times. Their effect,
however, depends on which molecular site the vibration couples to. In the same
way, we show that the presence of discrete vibrational states can also enhance the
efficiency of the exciton transfer through the FMO complex.

5.2 The Model of the FMO Complex

The FMO complex consists of three identical subunits, each of which contains eight
bacteriochlorophyll a (BChl a) molecular sites [14]. The recently discovered eighth
site [11] is irrelevant for our discussion below, since it is only weakly coupled
to the other sites. The seven sites can be reduced to its two lowest electronic
levels with their excited states electronically coupled along the complex. The
excitation dynamics can be described within the single exciton subspace due to the
different times scales of 	ps exciton transfer as compared to the 	ns recombination.
Eventually, the Hamiltonian [15]

HFMO D

0
BBBBBBBBB@

240 �87:7 5:5 �5:9 6:7 �13:7 �9:9
315 30:8 8:2 0:7 11:8 4:3

0 �53:5 �2:2 �9:6 6:0

130 �70:7 �17:0 �63:3
285 81:1 �1:3

435 39:7

245

1
CCCCCCCCCA

(5.1)

in units of cm�1 in site representation for Chlorobium tepidum is the basis for our
analysis below. Notice that the BChl 3 has been defined as the site with the lowest
energy [14].

The exciton energy eigenstates of the FMO complex are obtained by diagonaliz-
ing Eq. (5.1), with the squares of the eigenvector elements of the seven exciton states
schematically shown in Fig. 5.1. Experimental results [14] indicate that the BChls 1
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Fig. 5.1 Structural arrangement of the seven BChl molecules (black numbers) in FMO
(Chl. tepidum) [11] superposed with a schematic representation of the delocalization patterns of the
different excitons (coloured shading, italic red numbers). The exciton numeration is in ascending
energy order. Entrance and exit sites are indicated by red thick arrows

and 6 are oriented towards the baseplate protein. Therefore, it is believed that these
are the initially excited sites. As indicated in Fig. 5.1, exciton 1 is almost completely
localized at BChl 3 which is the energy sink towards the reaction center. The exciton
pairs 3 and 6 are mainly localized on the BChls 1 and 2. These two BChls are
the ones which are most strongly coupled in the FMO Hamiltonian (Eq. (5.1)).
Meanwhile, the pair of excitons 5 and 7 is mainly localized on the BChls 5 and 6,
which is the second most strongly coupled BChl pair.

5.3 The Spectral Distribution of the Environmental
Fluctuations

The vibrational pigment-protein-solvent environment induces fluctuations on the
exciton dynamics. These fluctuations are most efficiently described in terms of an
open quantum system approach [16], where the Gaussian fluctuations are described
by harmonic modes [17]. This gives rise to the total Hamiltonian

H D HFMO C
7X

jD1
jj ihj j

X

k

�
.j /

k qj;k C
7X

jD1

1

2

X

k

	
p2j;k C !2j;kq

2
j;k



; (5.2)

with momenta pj;k, displacement qj;k , frequency !j;k and coupling �.j /k of the
environmental vibrations at site j . The fluctuations acting on the FMO sites are

described by a spectral frequency distribution G.!/ D P
j;k

	
j�.j /k j2=2!j;k






5 Nonequilibrium Quantum Dynamics of Biomolecular Excitons 65

ı.! � !j;k/ [16], which contains two relevant features. On the one hand, a
continuous background refers to the broad frequency distribution of solvent modes
providing fluctuating electric fields. On the other hand, well localized vibrational
modes of the host protein are present as peaks in the frequency distribution G.!/.
Again two possibilities to capture the localized vibrations arise: (i) they can either
be taken as part of the environment or (ii) their quantum dynamics can explicitly be
followed as part of the “system”. We will follow both routes below. The difference
between both is that in (i), the fluctuations are always assumed to be thermal,
i.e., resulting from an equilibrated environment, while in (ii), the fluctuations are
effectively non-thermal.

Adolphs and Renger [15] have derived a spectral density function by parametriza-
tion of the experimental results in Ref. [12]. It contains both a broad low frequency
contribution S0g0.!/ by the protein and solvent vibrations with Huang-Rhys factor
S0 and a single effective high-energy vibrational mode of the pigments with Huang-
Rhys factor SH . It is determined as

G.!/ D S0g0.!/C SHı.! � !H/: (5.3)

The Huang-Rhys factor S0 D 0:5 was estimated from temperature-dependent
absorption spectra of FMO complexes and the low-frequency function g0.!/ has
the same form as the spectral density that was originally extracted from calculations
of fluorescence line narrowing spectra of B777-complexes [18]. It is given by

g0.!/ D 6:105 � 10�5 
 !5

!41
e

�p
!
!1 C 3:8156 � 10�5 
 !5

!42
e

�p
!
!2 ; (5.4)

with !1 D 0:575 cm�1 and !2 D 2 cm�1. In addition, a vibrational mode of
the individual pigments, with the Huang-Rhys factor SH D 0:22, is included at
frequency !H D 180 cm�1 [15]. For our analysis below, the artificial ı-peak will
be broadened with a Lorentzian line shape since the protein is embedded in water,
which, as a polar solvent, gives rise to an additional weak Ohmic damping of the
protein vibrations [19]. The form of a Lorentzian peak ensures that the Huang-Rhys
factor SH is kept constant when varying its width � . In Fig. 5.2, it is shown the
resulting spectral density function in Eq. (5.3) for several widths � .

5.4 The Tool of the Quasiadiabatic Path Integral

In order to determine the time evolution of the excitonic dynamics in the FMO
complex under the action of environmental fluctuations, we calculate the time-
dependence of the reduced density matrix 	.t/. It characterizes the system part and
is obtained after tracing out the bath degrees of freedom. It is calculated using the
QUAPI scheme [20,21], which is a numerically exact iteration scheme that has been
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Fig. 5.2 Spectral density G.!/, Eq. (5.3), as determined by Adolphs and Renger [15] for different
widths � of the Lorentzian peak associated to the vibrational mode. The latter is centered at
!H D 180 cm�1

successfully applied to many problems of open quantum systems, and it allows to
treat nearly arbitrary spectral functions at finite temperatures [19, 22–26].

In this numerical scheme, it is possible either (i) to include the localized
vibrational mode as part of the bath in the spectral density, or, (ii) associate it to
the system resulting in an increased dimension of the Hilbert space related to 	.t/.
In the latter case, an additional projection of the increased reduced density operator
on the excitonic states is necessary to obtain the exciton dynamics only.

5.5 The FMO Exciton Dynamics with Equilibrated
Vibrations

In the following, we present results for the time evolution of the population of the
FMO sites under different environmental conditions, in particular for different ways
of including the vibrational mode present in Eq. (5.3). We fix the width of the mode
to � D 29 cm�1 and notice that the results do only weakly depend on this parameter.
We find (not shown) similar results for smaller values of � , the reason being that the
large continuous background already provides the dominating broadening of the
corresponding excitonic level [27].

We start in this section by assuming that the vibrational mode equilibrates very
rapidly to its thermal state and only provides fluctuations around the latter which
act on the FMO excitonic states. In Fig. 5.3, we show the results for T D 77K
(right column) and T D 300K (left column) for the initial preparation 	11.0/ D 1

(upper row) and 	66.0/ D 1 (lower row). We observe no enhanced coherence times
in almost all cases apart from the case at low temperature T D 77K and for
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Fig. 5.3 Time-dependent occupation probabilities of all seven FMO sites for T D 300K
and T D 77K with 	11.0/ D 1 and 	66.0/ D 1 for the FMO spectrum in Eq. (5.3) [15]. The
equilibrated vibrational mode provides additional fluctuations around its thermal state

	11.0/ D 1 (upper right), where damped coherent oscillations arise up to � 500 fs.
This illustrates that the fluctuations of an equilibrated vibrational mode are not
“coherent” enough to be responsible for the observed long-lasting coherent signals
[5, 6] and other mechanisms have to be invoked to explain such a long-lasting non-
trivial quantum coherence.

5.6 The Effect of Nonequilibrium Vibrations on Coherence

In the previous section, we have assumed that the vibrational mode equilibrates
so rapidly that we can treat it as part of the fluctuational spectrum for a thermal
bath. In this section, we turn to the other possibility and consider the case when
the vibrational mode is not instantaneously in its equilibrium state but evolves as
part of the “system” in a quantum coherent manner. It approaches its equilibrium
state by a coupling with the environment characterized by Eq. (5.3). To determine
the population of the exciton states, we average the reduced density operator for the
FMO complex plus vibrational mode over the vibrational degrees of freedom in all
cases treated in this section.
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Fig. 5.4 Time evolution of the FMO site population when the vibrational mode is coupled to the
exit site 3 for T D 300K (left column) and T D 77K (right column) for 	11.0/ D 1 (upper row)
and 	66.0/ D 1 (lower row)

5.6.1 Vibrating Exit Site 3

We start by coupling the vibrational harmonic mode explicitly to site 3 which is the
exit site. We expect that an additional coherent vibration of this exit site could lead
to an increase of the energy or population transfer since it offers additional energies
to the complex by which transfer could happen. The results are shown in Fig. 5.4, for
the initial conditions 	11.0/ D 1 (upper row) and 	66.0/ D 1 (lower row) and for the
two temperaturesT D 300K (left column) and T D 77K (right column). No signif-
icant increase of the coherence times results: we find for T D 77K approximately
500 fs and for T D 300K a value around 200 fs. As expected, the population of site
3 increases faster since it offers more vibrational sublevels which all contribute to
the site population after tracing out the vibrational states. This eventually leads to a
faster transfer of the energy through the complex (see Sect. 5.7.2).

5.6.2 Vibrating Entrance Site 1

Alternatively, we can couple the vibrational mode to the site 1 which is the entrance
site. Since now the starting state provides already extended coherence, we can
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Fig. 5.5 Time evolution of the FMO site population when the vibrational mode is coupled to the
entrance site 1 for T D 300K (left column) and T D 77K (right column) for 	11.0/ D 1 (upper
row) and 	66.0/ D 1 (lower row)

expect that the coherence time of the site at the beginning of the cascade could
be increased. This is indeed what we find as shown in Fig. 5.5. Indeed, for both
values of the temperature, we observe an increased time window over which the
populations oscillate before they continue to evolve by an incoherent decay. This
effect is more relevant when the initial condition is 	11.0/ D 1 (upper row). A closer
inspection of the dynamics shows that the oscillations in the exciton population
indeed goes back to coherent transitions between the vibrational ground state and
the vibrational excited state at site 1. We can extract coherence times of 700 fs for
T D 77K and of 400 fs for T D 300K. Notice that these values coincide which
those reported in the experiments [5, 6].

5.7 The Effect of Nonequilibrium Vibrations
on the Transfer Efficiency

In addition to the increased coherence times due to the nonequilibrium vibrational
mode, we may expect an increased efficiency of the energy transfer through the
FMO complex which is boosted by the vibrational states. For this to be studied,
we have to mimick an energy sink at the exit site which removes the energy from
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Fig. 5.6 Time evolution of the FMO site populations and the trapping or sink state in absence of
any vibrational mode for the same parameters as above

the complex once it has arrived at site 3. As usual and since we are not interested
in the explicit details of the dumping process, we include a coupling term in the
Hamiltonian which is imaginary and which corresponds to a large and constant
decay rate of the exciton population at site 3. This also implies that no back transfer
is possible. In the following, we study the impact of the vibrational mode on the
total transfer efficiency.

5.7.1 Transfer Efficiency of the Static FMO Complex

To begin, we first set the stage by avoiding any vibrational mode and study
the pure excitonic dynamics. Figure 5.6 shows the results for the individual site
populations as above and in addition the population 	RC of the energy sink.
Notice that the time window on the horizontal axis has been increased. Clearly,
the populations of the FMO sites alone no longer add up to 1 since energy (and
thus site populations) is (are) constantly removed from the complex. Apart from
few oscillations of selected populations at very short times, no coherence in the
populations is found. The population of the energy sink increases in a monotonous
manner.
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Fig. 5.7 Time evolution of the FMO site populations, the vibrational mode and the trapping or
sink state in presence of the vibrational mode at the exit site 3 for the same parameters as above

5.7.2 Vibrational Exit Site 3

As a first case in this section, we couple the site 3, which is the exit site, to the
vibrational mode and study the site populations, the population of the vibrational
mode and of the sink. The results are depicted in Fig. 5.7. In comparison to the case
without the sink, see Sect. 5.6.1 (Fig. 5.4), the coherence times are not increased
which is clear since the sink only removes energy and thus could only deteriorate the
coherence properties. However, the population of the sink grows faster as compared
to the case where no vibrational mode is present (Fig. 5.6) and, consequently,
the transfer efficiency is increased. The physical picture for this effect is that the
presence of the vibration at site 3 simply offers more states which can become
populated during the exciton transfer in the complex and, consequently, more states
also can dump their energy in the sink. This then increases the sink population faster
and yields to an overall increased transfer efficiency.

5.7.3 Vibrational Entrance Site 1

Next, we add the explicit vibrational mode at the entrance site 1. The results are
shown in Fig. 5.8. As in the case without the sink (see Sect. 5.6.2, Fig. 5.5), the
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Fig. 5.8 Same as in Fig. 5.7, but with the vibrational mode coupled to the entrance site 1

coherent oscillations of the populations of the sites 1 last longer due to the presence
of the vibrational mode. Naturally, also the population of the vibrational mode
oscillates at short times, see light blue line in Fig. 5.8. Despite these features, the
transfer efficiency is not substantially altered in comparison to the case without the
vibrational mode, see Fig. 5.6.

5.7.4 Vibrational Modes at All Sites

Having elucidated the role played by the vibrational states at the relevant individual
sites 1 and 3, we can now turn to the case when all FMO sites are coupled
to different but equal vibrational modes. The limitations of the QUAPI method
consists in an exponential growth of the array sizes and the computational times for
growing system Hilbert space dimensions. We have thus to restrict the Hilbert space
dimensions to vibrational states with energies up to 450 cm�1 above the energy of
site 3. However, we have good reasons to believe that this technical restriction has
no severe implications: the relevant FMO system Hamiltonian shows that the FMO
BChl pairs which are strongly coupled typically have smaller energy gaps. Then, the
included vibrational states typically have comparable or larger energies so that the
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Fig. 5.9 Same as in Fig. 5.7, but when the vibrational mode is coupled to all sites. Notice that due
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Table 5.1 Comparison of energy transfer times with and without
nonequilibrium vibrational states at 300 K

Initial No vibrational With vibrational
excitation at mode (ps) modes (ps) Faster by (%)

Site 1 3.7 3.1 16.2
Site 6 3.3 2.9 12.1

relevant FMO excitonic energy ranges are covered. The results are shown in Fig. 5.9.
In this constellation, prolonged coherence times go along with an increased transfer
efficiency.

5.7.5 Transfer Times and Increase of Transfer Efficiency

To summarize the discussion on the impact of nonequilibrium vibrational states
on the efficiency of the energy transfer in the FMO complex, we quantify the
energy transfer times for the cases with and without vibrational states, see Table 5.1.
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The transfer time is thereby taken as the rise time of the exponential growth of
the population of the sink. At T D 300K for the initial excitation starting at site
1, we find a transfer time of 3:7 ps in absence of vibrational states. In contrast,
this value decreases to a transfer time of 3:1 ps when the vibrational states are
explicitly included. This decrease corresponds to a growth of the efficiency by
16:2%. Analogously, when the FMO dynamics is prepared to start at site 6, a
transfer time of 3:3 ps without the vibrational states result. Likewise, this value
decreases to a transfer time of 2:9 ps when the vibrations are present, which gives
rise to an increase of the transfer efficiency by 12:1%. To judge on the relevance of
the gain, we have to keep in mind that such values are very significant for systems
which have been optimized on evolutionary time scales of billions of years.

At this point, we can conclude that the presence of a nonequilibrium under-
damped vibrational mode at 180 cm�1 indeed improves quantum transfer efficiency.
Along with this, it can be responsible for the observed prolonged quantum coherence
times [5, 6]. However, as we have seen, an enhanced transfer efficiency also may
result in absence of an enhanced quantum coherence and could be simply due to
the fact that vibrational states simply offer more routes to the energy transfer and
thus increase the number of transport channels. This could happen with or without
prolonged quantum coherence times.

5.8 Non-Markovianity of the Exciton Dynamics
in the FMO Complex

Dissipative quantum dynamics only is purely Markovian for a strictly Ohmic
spectral density. The environmental fluctuation spectral function G.!/ of Adolphs
and Renger as given in Eq. (5.3) is highly non-Ohmic: it behaves super-Ohmically
at low-frequency, includes a turn-over at intermediate frequencies, and decays
algebraically at large frequencies. In addition, the vibrational mode is present so that
this non-standard and structured environment, in conjunction with the prolongated
coherent dynamics observed in experiments [5, 6] and simulations [28–30] could
generate non-Markovian effects. To quantify them, we use the non-Markovianity
measure developed in Ref. [31]. It is based on the physical features of the system-
bath interaction in terms of information backflow from the environment to the
system, which has been experimentally measured [32, 33].

In an open quantum system, any two initial states 	1;2.0/ evolve over time accord-
ing to a family of trace preserving and completely positive quantum dynamical
maps ˚.t; 0/ such that 	1;2.t/ D ˚.t; 0/	1;2.0/. Because of the different dynamical
evolution of these two quantum states, they can be distinguished in terms of the
trace distance, which is a metric in the space of physical states [34]. The dynamical
change of the trace distance can be interpreted as a changing distinguishability of the
states which is accompanied by an information exchange between the system and its
environment [34]. The very small – and in fact zero – correlation time between the
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system and environmental dynamics in a Markovian process leads to a monotonic
flow of information from the system to the environment. Conversely, temporal
correlations in a non-Markovian process may generate a backflow of information
from the environment to the system and can induce memory effects. This feature
can be quantified in terms of the time evolution of the trace distance between the
pair of quantum states 	1;2 of the open system which is defined as [35]

D .	1; 	2/ D 1

2
tr j	1 � 	2j ; (5.5)

where jOj D p
OO . It satisfies 0 � D � 1 [31]. For open quantum systems,

the trace distance of the states 	1;2.t/ (evolving under the dynamical map ˚.t/)
is a monotonically decreasing function of time D .˚	1; ˚	2/ � D .	1; 	2/, which
means that the distinguishability of two states always decreases. Therefore, it is
useful to define the rate of change of the trace distance as

�.t; 	1;2.0// D d

dt
D .	1.t/; 	2.t// ; (5.6)

which depends on the specific initial states 	1;2.0/. During a Markovian evolution
any two initial states become less and less distinguishable for growing times, then
� � 0 is always satisfied. Consequently, a non-Markovian process fulfills � > 0.
The non-Markovianity measure (of the quantum process ˚.t/) quantifies the total
increase of the distinguishability over the whole time evolution, i.e., the total amount
of information which flows from the environment back to the system, according to

N .˚/ D max
	1;2.0/

Z

�>0

�.t; 	1;2.0// dt: (5.7)

Here, the time integration extends over all time intervals .ai ; bi / in which � > 0,
and the maximum is taken over all pairs of initial states [31]. For this reason, N .˚/

represents a functional of the family of dynamical maps˚.t/ describing the physical
process [34].

In the following, we determine the trace distance D .	1; 	2/ of two quantum
states over their time evolution and search for the time intervals during which
this quantity increases. The initial states are 	1.0/ D 	11 and 	2.0/ D 	66,
corresponding to the BChl 1 and BChl 6 sites (see Fig. 5.1), which are the entrance
sites [14,15,19]. The results for the trace distance for the two different temperatures
T D 77K and T D 300K are shown in Fig. 5.10. The black dashed lines correspond
to the case of FMO exciton dynamics in presence of equilibrated vibrations, as
presented in Sect. 5.5 (Fig. 5.3). The red and dash-dotted blue lines correspond,
respectively, to the case of FMO transfer efficiency in presence of nonequilibrium
vibrations (as presented in Sect. 5.7) in the static FMO complex (Fig. 5.6) and when
vibrational modes at all sites are included (Fig. 5.9). As can be seen, the trace
distance monotonically decays from its starting value 1 for all relevant times. This
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Fig. 5.10 Time evolution of the trace distance Eq. (5.5) for the temperatures T D 300K (left) and
T D 77K (right). See text for details

happens so for both low and high temperature, with the decay been slower at lower
temperature. The faster decay of the trace distance when nonequilibrium vibrations
are included is a consequence of the higher amount of decoherence channels within
the system, which causes a faster distinguishability lost. Accordingly, no time
intervals exist for which a finite contribution to the non-Markovianity measure
arises and we can conclude that the exciton dynamics in the FMO complex is fully
Markovian. Similar results are obtained for different widths of the Loretzian peak,
and even when it is in resonance with excitonic transitions (not shown) [27].

5.9 Conclusion

We have shown that nonequilibrium localized vibrations improve quantum energy
efficiency and at the same time result in the observed prolongued quantum coherent
beatings. Both are a result of the modes being underdamped, i.e., they cannot
thermalize on faster time scales than compared to the electronic energy transfer
dynamics. This is precisely what is assumed when treating these modes as part of
the environmental fluctuation bath since a system-bath approach assumes the bath
in thermal equilibrium at all times. By evaluating the time evolution of the trace
distance, we found that these localized vibrational modes does not induce any non-
Markovian effects in the exciton dynamics of the FMO complex.

Our results prove that the transfer dynamics of the FMO complex entirely follows
a Markovian dynamics. However, the resulting Markovian dynamics is still not
describable by weak system-bath coupling approaches [13]. Our results indicate
the plausibility of using Markovian Redfield type equations to treat the exciton
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transfer dynamics only if the rates are introduced either as effective parameters
or are determined by higher order treatments. This will considerably simplify the
numerical effort in future investigations and, thus, larger light-harvesting complexes
will be treatable.
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Chapter 6
Fractal Dimensions and Entropies
of Meragi Songs

Adnan Aydemir and Güngör Gündüz

Abstract Melodies can be treated as time series systems with the pitches
(or frequencies of the notes) representing the values in subsequent intervals. The
pattern of a melody can be revealed in a scattering diagram where pitches represent
vertices, and the directed pathways which connect the former pitches to the next
ones signify the relations established during the performance. The pathways form
a pattern which is called animal diagram (or lattice animal) in the vocabulary of
graph theory. The slopes of pathways can be used to characterize an animal diagram
and thus to characterize a melody; and the scattering diagram can be used to find
out the fractal dimension. In addition, the entropy, the maximum entropy, and the
negentropy (or the order) of melodies can be determined. The analysis of Meragi
songs in terms of fractal dimension and entropy was carried out in this work. It
was found out that there is not a correlation between the fractal dimension and
the entropy; therefore, the fractal dimension and the entropy each characterizes
different aspects of Meragi songs.

6.1 Introduction

Melodies display a pattern, because they are constructed from entities (i.e. notes)
with finite frequencies which follow each other with a kind of order. The ratio of
notes can be expressed with rational fractions first expressed by the great philoso-
pher/mathematician Pythagoras, notably, 9=8; 5=4; 4=3; 3=2; 5=3; 15=8; and 2=1.
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The value of frequencies (i.e. pitches) can be mathematically expressed more or
less by 2n=12 with n D 1 � 12. For instance, the note ‘do’ (or ‘C’) with a
frequency of 261.6 Hz is followed by ‘do-sharp’ (i.e. do# or C#) with a frequency of
261:6 
 21=12 D 277:16Hz. The next note is ‘re’ which has a frequency of 261:6 

22=12 D 293:63Hz, but the ratio-tuned frequency is, 261:6 
 .9=8/ D 294:3Hz.
Since only certain frequencies are used while composing a melody the randomness
allowed is pretty much restricted by discarding other possible frequencies. Actually
musical instruments are a kind of harmonic oscillators which create sound waves
with frequencies limited to integer multiples or harmonics of lowest pitch. Another
important thing is that the frequencies usually follow an order and there are some
kinds of symmetries in the time series structure of melodies. Some notes or groups
of notes are repeatedly played at varying sequences, and sometimes the groups are
altered by changing one or two of the notes.

The analyses show that melodies have strong autocorrelation indicating that they
have memory. This is actually expected as the harmony and the repetitions of some
notes deliver memory to a system. In the overall melodies are not perfectly ordered
systems and order-disorder competition prevail in the entire melody. Music gives
enthusiasm which can be achieved only if the steady state behavior is broken and
some unsteadiness is introduced. In other words, each melody owns entropy as well
as order [1–3].

The repetition of some notes or groups of notes introduces similarity, and thus
nonlinearity. In other words not all notes are equally probable and the preferential
use of some of the notes introduces nonlinearity. Therefore each melody also has a
characteristic fractal dimension.

The pattern of a melody is determined by the extent of order and randomness
that it has, and its fractal dimension and entropy gives us a way of characterizing its
structure. Melodies have different properties and therefore different types of fractal
dimensions can be used in the characterization [4–10]. It is known that the frequency
(f ) spectrum of music exhibits 1=f behavior, and it belongs to what is called
‘pink noise’ [11, 12]. The ‘white noise’ is independent of frequency (i.e. 1=f 0) and
the ‘brown or red noise’ shows 1=f 2 dependence. The data point of red noise is
pretty stuck to the diagonal of the scattering diagram without much fluctuation.
The Gaussian noise shows a radial distribution around the central point of the
scattering diagram and the number density decreases as the radius increases. In a
scattering diagram, the white noise covers the entire area and the Gaussian spectrum
is highly gathered around the diagonal. However the pink spectrum spreads around
the diagonal. Therefore the scattering diagrams can be used to find out the fractal
dimension of melodies by box counting method [13].

Music as a complex system has rich number of variables and parameters and there
are very different approaches to characterize it either in terms of graph theoretical
methods [14], viscoelastic properties [15], or thermodynamics [16].

In this work the relation between fractal dimension and entropy were searched
for melodies. In order to reduce different psychological effects the songs composed
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by one single composer, namely, Meragi (1365–1435) was studied. He is one of
the earliest known composers and he influenced the music made in the Middle East
and in the Central Asia [17]. His music can be considered to have more basic and
fundamental structure than those produced then after. He is regarded as one of the
cornerstone in Turkish ‘art music’ also. The traditional Turkish music is broadly
categorized as ‘art music’ and ‘folk music’. The former evolved in İstanbul as
the ‘Ottoman Palace Music’, and it actually is an excellent synthesis of Central
Asian Turkish music with Byzantine, Balkan, Arabic, and Persian music. The
Empire’s music evolved with the cultural contribution of her all other members.
So to characterize the songs of Meragi can constitute a framework to analyze
the historical evolution of ‘Turkish art music’ till twenty-first century with further
studies in future. The current study covers only the characterization of his melodies
with fractal dimension and entropy.

6.2 Fractal Dimension

Although the fractal dimension of melodies can be found from the scattering
diagram by box counting method, it is crucial to determine the size of box, or the
stick size. The box size can be decided by considering the minimum and maximum
pitch values used in the songs. After a series of calculations it was found out that the
fractal dimensions can be determined using two scattering diagrams with 5 
 5 and
8
 8 grids. Other sizes used in the calculations did not give persistently dependable
and constant values. An example of scattering diagrams used in the calculations is
given in Fig. 6.1.

Fig. 6.1 Scattering diagrams (name of the song: Buti darem ki: : :)
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The fractal dimension is calculated from the following values as done in an earlier
work [3].

1st figure 2nd figure
.5 
 5/ .8 
 8/

# of boxes that enclose the points, n 22 40
# of total boxes, N 25 64

The fractal dimension ‘d’ is then simply found out as,

d D ln .n2=n1/

ln .N2=N1/
D ln .40=22/

ln .64=25/
D 0:636

6.3 Entropic Terms

The entropy ‘S’ of songs is simply calculated from the Boltzmann entropy equation
given by,

S.p/ D �
X

pi log2 pi

where entropy is defined on ‘log2’ basis so that it can be interpreted also in terms
of ‘information’ or ‘order’. The ‘pi ’ designates the probability of the occurrence of
certain pitch used in the song. The calculation of entropy is also given in the former
work [3]. The maximum entropy is given by,

Smax D log2 n

where ‘n’ denotes the number of notes. The total number of ‘n’ is equal to the total
number of notes used in the song, therefore Smax changes during the performance
of a song. In other words, both S and Smax change in time in the course of playing
the song.

The order or the negative entropy ‘Sneg’ is found from,

Sneg D Smax � S

The change of entropic terms (i.e. S , Smax, and Sneg) is given in Fig. 6.2 for the
song, of which scattering diagram is given in Fig. 6.1.

6.4 General Features of Meragi Songs

In this study 21 known songs of Meragi were studied, and the fractal and entropic
values were investigated. The change of fractal dimensions with the number of notes
is given in Fig. 6.3. It is seen that there is not a correlation between the fractal
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Fig. 6.2 The entropic values of the song

Fig. 6.3 Fractal dimensions of songs with respect to the total number of notes

dimension and the number of notes included in songs. The fractal dimension is a
measure of the extent of nonlinearity existing in a system, but it is not dependent
on the number of notes used. In other words the nonlinearity of the sequence of
notes does not depend on the number of notes. A melody has its own pattern which
does not change much with the number of notes it has. Some songs have fractal
dimensions around 0.35 and some around 0.9. The large fractal dimension is due to



84 A. Aydemir and G. Gündüz

Fig. 6.4 The change of fractal dimension with the number of distinct pitches

more number of filled boxes in the second picture of Fig. 6.1. The more filling means
the more distinct pathways occurring in the song. That means what comes after a
certain note is more uncertain if the fractal dimension comes out to be a large value.

The increase in the number of distinct notes (i.e. pitches) changes the way the
points are scattered in Fig. 6.1. Therefore it may be worth to investigate the change
of fractal dimension with the number of distinct notes. This is shown in Fig. 6.4.

It is again seen that the fractal dimension does not quite correlate with the number
of distinct notes, i.e. with the number of constituent elements of the songs. As the
number of distinct notes is small (i.e. between 10 and 12) the fractal dimension also
is relatively small, but very small and very large fractal dimensions occur when it is
between 13 and 15. The fractal dimensions are equal when the number of distinct
notes is 19 and 26, and they are not too big either.

The entropy of a song does not significantly change after some number of notes
played as seen from Fig. 6.2; it reaches a saturation value. In fact no matter how
long a song is its total entropy does not change as seen from Fig. 6.5.

The very long song with around 2,200 notes seen in Fig. 6.3 is excluded in
Fig. 6.5 for more precise view. The maximum entropy keeps always increasing
with the number of notes included in a song, and in the same may the negative
entropy also keeps increasing as seen from Fig. 6.5. Both the fractal dimension and
the overall entropy of a melody do not depend on the total number of notes.

In Fig. 6.6 the change of the overall entropy values with respect to the fractal
dimension is depicted. It is seen that the overall entropy does not depend on fractal
dimension, and all entropy values are around 3 while fractal dimension changes
between 0.35 and 0.95. However, the overall maximum entropy and the negative
entropy both fluctuate significantly.
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Fig. 6.5 Change of entropic values with total number of notes

Fig. 6.6 The change of overall entropic values with fractal dimensions for the songs

An important point to mention is that after a certain number of the notes the
number of points in the boxes seen in Fig. 6.1 does not change. That means, there
is no unexpected change in the order of consecutive notes. After certain number
of notes, the ‘present note – next note’ pattern follows one of the earlier patterns.
In other words, the pathways in the scattering diagram are repeatedly used and
no new pathway is generated after certain number of notes played. Therefore, it
may be meaningful to plot Fig. 6.6 in terms of the entropic values calculated at the
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Fig. 6.7 The change of entropic values at reduced number of notes

Fig. 6.8 The change of entropic values with fractal dimensions for the songs where the same
number of notes were used in both calculations

notes where no new point is introduced into the scattering diagram. The entropy
calculations done accordingly are shown in Fig. 6.7.

Compared to Fig. 6.5 the tendency of the change of entropic values is same, but
smaller Smax and Sneg values are achieved. The fractal dimension corresponding to
the entropic values given in Fig. 6.7 is given in Fig. 6.8.



6 Fractal Dimensions and Entropies of Meragi Songs 87

It is seen from Fig. 6.8 that the scatterings in Smax and Sneg values are pretty
much reduced compared to the case given in Fig. 6.6. So it is not only S but also
Smax and Sneg values also do not correlate with the fractal dimension in melodies.

6.5 Conclusion

The investigation done using 21 songs of Meragi showed that his songs do not
indicate the existence of a correlation between the fractal dimension and the entropy,
and also with the maximum and the negative entropies. Fractal dimension and
entropy characterize different aspects of melodies.
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Chapter 7
Large-Scale Connectivity vs. Spreading
Efficiency: Spectral Analysis on Explosive
Percolation

N.N. Chung, L.Y. Chew, and Choy Heng Lai

Abstract Some of the results of a spectral analysis of the process of explosive
percolation on complex networks (Chung et al., Europhys Lett 101:66003, 2013)
are presented here. More specifically, we explore how the maximum eigenvalues of
the adjacency matrix of a network, which governs the spreading efficiency, evolves
as the density of network connections are increased. We find that for networks
with connectivity that grow in an explosive way, information spreading and mass
transport are carried out inefficiently. When we looked into the conventional explo-
sive percolation models, the sudden emergency of large connectivity comes with
relatively lowered efficiency of spreading. Nevertheless, the spreading efficiency of
the explosive models can be improved by introducing heterogeneous structures into
the networks.

7.1 Introduction

The phenomenon of an abrupt development of large-scale connectivity in networks
is the subject of intensive research in recent years, after Achlioptas et al. [1]
introduced their percolation model that exhibits an unexpected sharp transition.
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The essential element in the model is that when one increases progressively the
number of connections between nodes in a network following a certain suppression
principle, a giant connected cluster emerges suddenly above a certain critical
threshold. The resulting transition was originally thought to be discontinuous, but
some models can be constructed where the transitions are continuous. Later works
show that the abrupt creation of several stable giant components is also a possible
outcome, and the study of explosive percolation has since been extended to complex
network with different characteristics: scale-free networks, real-world networks
with community structure, two- and higher-dimensional lattices, etc.

Some excitement is associated with applying the mechanism to explain the
growth process of several real networks, including the human protein homology
network and nanotube clustering. For real-world systems, such behavior can have
vital consequences when the additional of single links may drastically change
macroscopic connectivity and hence the dynamics and function of the networks.
For instance, in a neuronal circuit, this would mean that the growth of one or a few
additional synaptic connections might drastically alter the information processing
function in the brain. Similarly, the establishment of a small number of specific
social relations may significantly increase the possible spreading extent of infectious
diseases or rumor.

Here we present our study of the evolution of the spectral properties of the
network during the process of explosive percolation. In particular, we study how
the maximum eigenvalue of the adjacency matrix of the network evolves as the
density of connection increases. The reason for this focus is that the maximum
eigenvalue of the network is known to influence the efficiency in the spread of
information or disease on networks [2]. Specifically, the spreading threshold below
which the information or disease would not spread widely has been shown to be
inversely proportional to the largest eigenvalue of the network adjacency matrix.
So the question is: in a process that displays explosive percolation, how does the
maximum eigenvalue of the network adjacency matrix change when the system
evolves towards the critical threshold?

In this talk, we use a simple model to illustrate the ideas and present the results
of our investigation.

7.2 Building a Network

We can approach the building or growth of a network in different ways. We can start
with a set of N nodes and establish links/edges one at a time according to some
algorithm, or we can start with some finite set of nodes and links/edges, and have
some specific rules to add new nodes to the set. For the purpose of this talk, we shall
focus on what happens to the network when the number of connections between an
initial set of nodes is increased following a suppression principle: the growth of all
clusters are suppressed.
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The smallest cluster (SC) model is one of the simplest models that show
strongly discontinuous percolation transition. We start with an initial set of N D 2n

isolated nodes. At each step of the network growth, the two smallest clusters –
the suppression principle at work – are identified and merged into a larger cluster
through the creation of a link between them. In this case, N=2 clusters of size 2 are
created during the first stage, which involves the firstN=2 steps. In the second stage,
N=4 links are added, each connecting two clusters of size 2 into a cluster of size 4.
The process continues and by the end of the stage y D n� 1, only two components
remain, each with size N=2. Then the next step connects these two components,
resulting in a sudden jump in the largest cluster size from N=2 to N .

We can formulate the process more concretely. If the nodes to be connected in
each step are chosen randomly from the two smallest clusters, then at the end of
stage y, we would have N=2y edges are added to the network and the total degree
is increased by N=2.y�1/. From this we deduce that the evolution of the degree
distribution is described by (where k is the degree of a node)

@P.k; y/=@y D 1

2y�1 .�P.k; y/C P.k � 1; y//: (7.1)

With this we obtain the probability of nodes with degree k D y at stage y as

P.y; y/ D 1=2
Py�1
jD0 j : (7.2)

We can make several observations:

1. P.k; y/ D 0 for all k > y: we never have a node with a degree k larger than the
stage y. This is just the result of the suppression principle.

2. In the earlier stages, the maximum degree of the network, km, increases linearly
with the stage y. Nonetheless, since P.y; y/ drops rapidly as y increases, the
probability for km to increase becomes very small beyond a critical stage.

We proceed to define yc to be the critical stage whereP.yc; yc/D 1=N , the value
of which can be obtained by solving the equation:

yc.yc � 1/ D 2n: (7.3)

So, from the above discussion, the conclusion is that the probability for the
maximum degree km to increase is very small beyond the critical stage yc . This
observation already has an important implication for what we are looking for. We
know that the maximum eigenvalue �m of a network’s adjacency matrix is inversely
proportional to the square root of the network’s maximum degree! In other words,
�m is not expected to grow explosively at the percolation threshold. This is exactly
what we see in our numerical computations (Fig. 7.1).
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Fig. 7.1 The maximum eigenvalue at thend of each stage for the smallest cluster model (lower
curves) and the modified smallest cluster model (upper curve) of size (a) N D 213 and (b) N D
255. Note that the ensemble averages obtained by simulation of the SC model with 213 nodes are
shown as triangle whereas the approximations obtained through numeral iteration of the evolution
equations of the degree distributions are shown as circles

There is an obvious variation of the model that we can explore further: if the
nodes to be connected in each step are chosen to be the largest-degree nodes in the
smallest cluster, then we have the following evolution of the degree distribution:

@P.k; y/=@y D

8
ˆ̂<

ˆ̂:

�1=2y�1; for k D km;

1=2y�1; for k D km C 1;

0; for all other k:

(7.4)

In this modified SC model, the maximum degree increases linearly with the
stage. Thus, as shown in Fig. 7.1, larger maximum eigenvalues and more efficient
spreading are obtained at the percolation threshold for giant clusters that emerge
explosively, due to the heterogeneous or hub structure of the network introduced by
the modified algorithm.

7.3 Summary

The explosive percolation model has altered the traditional understanding on
percolation transitions. While the sudden emergence of a large-scale connectivity
may significantly change the dynamics and function of a network, this alone is not
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a sufficient condition for information and mass transport in real-world networks.
The fact that most of the real-world networks are small-world networks, in which
the average path length scales as log.N /, suggests that navigation efficiency in a
network is a critical consideration. However, as shown by our results, the sudden
emergence of a giant component in an explosive model comes at a cost of lowered
spreading efficiency, which is undesirable in communication networks. There are
however strategies that promote the formation and growth of network hubs in the
explosive models that can allow us to have both the efficiency in spreading and
large-scale connectivity in the network concurrently. Similarly, when spreading
efficiency and large-scale connectivity are not needed at the same time, one may
explore that possible trade-off between the size of the giant connected components
and the increase of the maximum eigenvalue (in other words, spreading efficiency)
at the percolation threshold.
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8.1 Introduction

Nowadays, one of the most pressing and interesting scientific challenges deals with
the analysis and the understanding of processes occurring on complex networks
[1–9]; one of the most important target for applying the results of such a field are
real infrastructural networks. Our society critically depends on the continuity of
functioning of Network Infrastructures like power, gas or water distribution; secur-
ing such critical infrastructures against accidental or intentional malfunctioning is a
key issue both in Europe and in the US [10, 11]. Among those infrastructures, the
electrical power grid is perhaps the most crucial one as many other facilities like
telecommunications, banking systems, oil and gas pumping, and even water depend
on the electric power system [12].

In Sect. 8.2 we give an overview of the electric power systems and of the effects
of the recent introduction of distributed renewable sources.

In Sect. 8.3 we study the effects of the allocation of distributed renewable
generation on the resilience of power grids.

In Sect. 8.4 we investigate the phenomenon of abrupt breakdown of an electric
power-system under two scenarios: load growth (mimicking the ever-increasing
customer demand) and power fluctuations (mimicking the effects of renewable
sources).

In Sect. 8.5 we introduce the concept of resilience by exploitation of redundant
links to recover the connectivity of the system. The introduced self-healing capa-
bilities through the application of distributed communication protocols grants the
“smartness” of the system.

Finally, we summarise our results in Sect. 8.6.

8.2 Power Networks and Distributed Generation

Historically, electric power systems have developed bottom-up by the integration
of local networks into regional and national ones. Such a trend is nowadays still
continuing via an integration on an international scale.

The three primary functions of the electric utility are Generation, Transmission,
and Distribution (Fig. 8.1). The Distribution system is the most readily perceived
part of the electric power system since it contributes most directly to providing elec-
tric power to the customers. It can be distinguished in Primary distribution operating
at Medium voltage (	103 V) and in secondary distribution operating at Low voltage
(	102 V). Industries are generally served by Medium voltage; residential customers
by Low voltage. Distribution networks are local networks and have mostly a radial
(tree-like) structure in order to optimize the economic costs and to calculate the
power consumption of each user on an simple basis. The Transmission system
dispatches large flows of electric power at long distances; in order to minimise
dissipation, it operates at High voltages (	104–105 V). As a network, it has a
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Fig. 8.1 The electric power system is separated in Transmission (High voltage lines, 	104–105 V)
and Distribution (Medium voltage 	103 V and Low voltage 	102 V, also referred to as Primary
and Secondary distribution). Transmission dispatches along long distances high quantities of power
generated by large generators; for the sake of robustness, it is a meshed network. Distribution
networks are local networks optimised for power dispatch and have mostly a radial (tree-like)
structure in order to optimize the economic costs and to calculate the power consumption of each
user on an simple basis. Industries are generally served by Medium voltage; residential customers
by Low voltage

meshed configuration that allows to increase its robustness through redundancy.
In the first years the electric power system was a collection of local, disconnected
networks and Generation was distributed. Subsequently, due to economy of scale,
Generation has concentrated in large facilities, requiring the creation of high-
voltage lines for long-distance dispatch (Transmission). Nevertheless, Distributed
Generation has never disappeared since it has an important ancillary role both in
ensuring backup power in case of malfunctioning and in sustaining the variations
in loads due to the customer demand dynamics. In fact, large facilities have long
reaction times (it can take a day or even more to start up or shut down a large fossil-
fuel power station) while smaller facilities can be as fast as fraction of hours.

Electric power systems are mostly designed to operate at a sinusoidal voltage of
a given frequency (typically 50 or 60Hz) and magnitude. Any significant deviation
in the waveform magnitude (˙5%) or frequency (˙1%) is a potential problem for
the quality of the dispatched power. To operate properly, a continuous and accurate
balance between power demand and generation has to be maintained in the system;
up to know, daily forecasts and the high-frequency electric power market have
allowed to keep the system mostly in a stable state.

Nowadays we are experiencing an increase of Distributed generation due to
the introduction of low cost green generators (mostly solar and wind). Such
“green” generators, while very advisable for the sake of emission decrease and
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Fig. 8.2 The erratic nature of renewable sources introduces fluctuations in the power production
that can push the power system away not only from its stable state, but even to the region of
parameters where the system has been designed to work safely. As an example, we sketch the
effects of the introduction of renewable generators on a isolated grid like the ones that can be
found on isolated islands like Guadalupe. On the left panel we show an hypothetical power flow
configuration along which the actual grid has been engineered: not only the possible amounts of
power flowing along the lines have been considered, but also their directions. On the right panel
we show the effect of the introduction of “green” generation: a weather instability can switch the
direction of the power flows, eventually causing automatic protections to trip the lines

of environmental sustainability, introduces several problems in the electric power
system. In fact, at difference with “classical” distributed generators that can be
controlled to enhance system’s stability, the erratic nature of renewable sources
introduces fluctuations in the power production that can push the power system
away not only from its stable state, but even to the region of parameters where the
system has been designed to work safely. As an example, consider the effects of the
introduction of renewable generators at the distribution level. Most distribution grids
have been engineered considering not only the possible amount of power flowing
along the lines, but also its direction. “Green” power can eventually switch the
direction of the power flows, eventually causing automatic protections to trip the
lines (Fig. 8.2).

The difficult task of integrating the stochastic and often volatile renewable
sources into a the grid designed with a power-on-demand paradigm could perhaps
solved leveraging on distributed storage [13]; nevertheless, massive and economic
power storage is not yet readily available.

As a consequence of the introduction of renewable sources, many studies have
concentrated on the dynamic behaviour of power grids to understand how to
ensure stability and avoid loss of synchronization during typical events like the
interconnection of distributed generation. The large number of elements present
into real grids calls for simplifications like the mapping among the classic swing
equations [14] and Kuramoto models [15–17] that allows to study numerically or
analytically the synchronization and the transient stability of large power networks.
Even simple models [18] akin to the DC power flow model [19] show that the
network topology can dynamically induce a complex size probability distributions
of blackouts (power-law distributed), both when the system is operated near its
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limits [20] or when the system is subject to erratic disturbances [21]. New realistic
metrics to assess the robustness of the electric power grid with respect to the
cascading failures [22] are therefore needed.

8.3 Voltage Control

In this section we will concentrate on the stability of the system respect to voltage
fluctuations. Deviations of the voltage amplitude on a power grid can cause system
operation problems; although voltage constraints are not as restrictive as frequency
constraints, it can be regulated or controlled by generation or other connected
equipment as long as it is in the range of the ˙5% allowed fluctuations around
its nominal value.

8.3.1 AC Power Flow

To model power grids, we use the more computational intensive AC power flow
algorithms since, although DC flows are on average wrong by a few percent [23,24],
error outliers could distort our analysis.

The AC power flow is described by a system of non-linear equations that allow
to obtain complete voltage angle and magnitude information for each bus in a power
system for specified loads [25]. A bus of the system is either classified as Load Bus
if there are no generators connected or as a Generator Bus if one or more generators
are connected. It is assumed that the real powerPi and the reactive powerQi at each
Load Bus i are given, while for Generator Buses the real generated power Pi and
the voltage magnitude jVi j are given. A particular Generator Bus, called the Slack
Bus, is assumed as a reference and its voltage magnitude jV j and voltage phase �
are fixed. The branches of the electrical system are described by the bus admittance
matrix Y with complex elements Yij s. Figure 8.3 sketches the complex network
associated with the AC power flow description of a grid.

8.3.2 Model for the Erratic Renewables

To model distributed renewable sources, we will introduced a skewed probability
distribution of load demands representing a crude model of reality that ignores
the effects like the correlations (due for examples to weather conditions) between
different consumers or distributed producers. Thus, the effects of “green generators”
on a power grid are considered to be stochastic variations in the power requested



102 A. Scala et al.

Fig. 8.3 Even in the simplified AC power flow description where the system is assumed to be
stationary (the signal is a stationary sinusoidal), the network corresponding to a power grid is
a weighted networks where both nodes (buses) and edges (lines) have multiple characteristics. In
particular, Pi is the net real power andQi is the net reactive power injected at the i th bus, Yij is the
complex impedance of the i � j line, Vi is the voltage amplitude and �i is the voltage angle at the
i th bus. Moreover, additional parameters like the maximum capacity of a line (i.e. the maximum
amount of power that can flow) must be considered when analysing system failures

by load buses. Load buses with a green generator will henceforth called green
buses. We will consider the location of green buses to be random; the fraction p
of green buses will characterize the penetration of the distributed generation in a
grid.

If the power dispatched by distributed generation is high enough, loads can
eventually become negative: this effect can be related to the efficiency of green
generators. We model such an effect by considering the load on green buses
described by the skew-normal distribution [26], a pseudo-normal distribution with
a non-zero skewness:

f .x; ˛/ D 2� .x/ ˚ .˛x/

where ˛ is a real parameter and

� .x/ D exp
��x2=2�=p2� ˚ .˛x/ D R ˛x

�1 � .t/ dt

Thus, the parameter ˛ will characterize the level of the distributed generation: to
positive ˛ correspond loads positive on average, while for negative ˛ green nodes
will tend to dispatch power.

8.3.3 Analysis

Our model grids will therefore consist of three kind of buses: NG generators (fixed
voltage), Nl pure loads (fixed power consumption) and Ng green buses (stochastic
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Fig. 8.4 Comparison between random placement (filled symbols) and page-rank placement (empty
symbols) of green generators in the Polish grid, both for surplus production of renewable energy
(left panel, ˛ D �1) and for levels of renewable energy production below the normal load request
(right panel, ˛ D 1). The page-rank placement of renewable sources allows to attain lower values
of the fraction F of buses operating near their nominal tension (and hence a higher resiliency)
at lower values of the penetration p. The best case is realized for levels of renewable energy
production below the normal load request, where a plateau to low values of F is quickly attained

power consumption) with NG C Nl C Ng D N the total number of buses and
Ng C Nl D NL the number of load nodes. The fraction p D Ng=NL measures the
penetration of renewable sources in the grid.

Hence, a steady state analysis has been carried out and the transient phenomena
connected to the power flow control have been neglected. Under this hypothesis the
frequency variation connected to power flow control has been considered stabilized
and the system has been considered characterized by a constant steady state supply
voltage frequency. Therefore, if all the nodes are near their nominal voltage, it
is much easier to control the system and to avoid reaching infeasible levels of
power flow. Consequently, to measure the effects of power quality of a power
grid under distributed generation we measure the fraction F of load buses whose
tension goes beyond ˙5% of its nominal voltage. Notice that real networks are
often operated with some of the buses beyond such parameters so that (especially
for large networks) it is expected to be F ¤ 0 under operating conditions. The
maximum of the resilience for a power grid (intended as the capability of restoring
full feasible flows) is expected to be for F D 0.

In Fig. 8.4 we show the effects on the voltage stability of the penetration of the
renewables on the Polish Grid. We model the penetration both in the case where the
locations of the renewables are chosen at random and in the case where the locations
are chosen according to a policy. In particular, we analyse the case in which new
renewables are introduced according to their Page-Rank metrics [27]. As already
shown in [24], we find that the Page-Rank policy makes the system less unstable
respect to voltage fluctuation both in the case of traditional distributed generation
(˛ > 0) and green distributed generation (˛ < 0). Notice that Page Rank is strictly
related to several invariants occurring in the study of random walks and electrical
networks [28].
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8.4 Cascading Failures

High standards for the reliability of interconnected Electric Power Systems (EPSs)
are being developed both in Europe and the US by councils and associations of EPS
operators [29, 30]. Nevertheless, not only do power outages occur, but also large
outages are more likely than what would be naively expected; in fact, the analysis of
historical data reveals that their occurrence is power-law distributed [31], implying a
significant risk of system-wide failures. Given the disruption and economic damages
caused by major outages, understanding the nature of such occurrences is a major
problem to be addressed.

An important general question is whether EPSs are subject to emergent behaviour
or not. In fact, EPSs are aggregations of large number of simple units; it therefore
makes sense to ask if EPSs, as a whole, exhibit additional complexity beyond what
is dictated by the simple sum of its parts. To this aim, we investigate if an abrupt
breakdown transition could emerge in a simple yet realistic model of power grids.

In the context of power systems, a cascading outage is a sequence of failures and
automatic disconnections consequent to an initiating event; a system-wide outage
is also called “black-out”. The rapid succession of automatic reactions in an EPS
happens in a time-scale that is typically too short to stop the process by human
intervention. Reactions following an initiating event or events include sequential
tripping (disconnection) of transmission lines and generators. Initiating events can
be due to natural causes (like a line sagging into vegetation, or high wind or lightning
shorting a line) but also to human actions (or inaction) or due to imbalances between
load and generation.

While no two cascading outages are the same [32], we will study a class of
possible outages and analyse their characteristics. In particular, we will consider the
fragility of EPSs with respect to outages due to cascades of line overloads causing
lines to trip. To this end, we will put under stress a realistic EPSs to understand
the nature of systemic outages. The nature of the stress will be twofold: first, we
will consider the case in which an increasing demand on a fixed infrastructure
leads to line overloads and subsequent outages. This would correspond to the
(hopefully) unrealistic case of EPS that are operated to the limit of their capacities
in order to maximize profits. Second, we will consider the important case of
fluctuations in demands and generation; this is a particularly relevant case as the
steady penetrations of renewable sources is introducing in the grids new erratic
sources whose effects and consequences on existing power grids have not yet been
fully understood.

We consider the model introduced by Pahwa et al. [33]. In such a model, the
initial distribution of loads and sources represents the stress imposed to the power
grid. The initial power flows on lines are calculated using the DC power flow
model (see Materials). If the load on a line goes beyond its capacity, the line trips
(disconnects) and power flows are recalculated on the new topology (i.e. the grid
minus the tripped lines). Such procedure is repeated until convergence; we will refer
to such a model as the Overload Cascade Model (OCM).
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Fig. 8.5 Left panel: Effects of a constant increase in loads. Notice the abruptness of the transition.
Right panel: Effects of fluctuations in loads. The points corresponds to 10 different realizations of
the noise. The transition is abrupt (the fraction of tripped lines is either 	0 or 	1), but whether a
cascading failure happens depends on the actual realization of the noise. Therefore, the transition
does not happen at a particular critical value of � but can occur in a region where fluctuations range
between 6 and 12% of the nominal loads (shaded area)

Our model does not account for the whole complexity of an EPS; in particular, it
disregards both transients and the dynamics of phase angles. Nevertheless, it allows
to sort out the role of a class of events always present in any blackout, i.e. line
overloads. Another important property of the OCM is that, due to the long-range
nature of the interaction, it is amenable to analytic approximations that lead to
predict the universal behaviour of the system [34].

For our scopes, we consider a network of 2,746 nodes, consisting of a snapshot
of the national high-voltage Polish power grid obtained from the data collected and
used by Polish transmission system operators.

We first stress the Polish network by considering a growth in the power demand
while keeping the network fixed. Such mechanism is not so far from reality, as in
recent years, the economic competition and deregulation has led the power systems
to be operating fairly close to their limits. We model such growth of the demand as
a simultaneous increase of all the loads by a factor ˛ and record the fraction f of
branches that fail at the end of a cascade.

We then stress the Polish network via are flow fluctuations mimicking both the
stochastic components in customers’ behaviour and the effects of erratic renewable
energy sources. We parametrize the size of fluctuation by allowing the initial loads
to fluctuate uniformly by a fraction � .

The left panel of Fig. 8.5 shows that by increasing all the loads the breakdown is
abrupt as in a first order transition. The situation is more complicated in the case of
random loads. The right panel of Fig. 8.5 shows the results for different realization
of the noise (fluctuations). We find that, for a given realization of the noise, the
system is either in a safe state (the fraction of tripped links is 	0) or in a systemic
failure state (the fraction of tripped links is 	1). At difference with the case of
uniform load increase, the transition does not happens at a given � , but can happen
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in a whole range of values. In particular, for the Polish grid we find that the grid
stays essentially intact when the loads are allowed to fluctuate less than 	6% and
that the system comes in a blackout state when loads are allowed to fluctuate more
than 12% of their nominal values. For intermediate values, the system can either be
in a safe state or in a black-out state depending on the realization of the disorder.
Such results are in accordance with mean field arguments indicating that black-outs
in the OCM should be a first order phenomenon.

8.5 Distributed Algorithms for Smart Grids

The continuous growth and development of technological networks has introduced
complex connectivity (as well as dependence) patterns within their constitutive
components that can often trigger systematic side effects like system-wide cascades
of failures. Hence, our current and future networks need healing mechanisms
that are able to cope with systemic effects and multiple failures in an automatic
and possibly distributed way. Such mechanisms are at the core of the process of
building up Smart Grids, i.e. networks that are able to self-sustain and optimise in a
distributed way to customers’ needs.

At the Transmission level, electric power networks are already “smart”, but in
a centralised way: Supervisory Control and Data Acquisition (SCADA) systems
allow operators to monitor, control, and dispatch generation. A failure either of the
SCADA or of the supporting telecommunications can cause control operators to
make incorrect system adjustments.

We consider instead the power system at the Distribution level, where the
structure is mostly tree-like. We introduce a healing strategy based on the activation
of fixed redundant resources (backup links) and study the resilience of the networks
to multiple failures. Since the presence of backup links is customary in technological
networks and our strategy can be implemented via routing protocols, our self-
healing procedure is within the reach of current technology. For sake of simplicity,
we will consider a single node to be the source of the quantity to be distributed
on the network. Moreover, at each instant of time, the topology of the links in
the network distributing the power is assumed to be a tree (the active tree). As a
further simplification we will not take into account the magnitudes of flows – i.e.,
all links and sources are assumed to have infinite capacity – but we will focus on
maximizing the connectedness of the system in order to serve as many nodes as
possible.

In order to implement our strategy and its self-healing capabilities, we consider
the presence of dormant backup links – i.e., a set of links that can be switched on.
Nodes are assumed to be able to communicate with their neighbours by means of a
suitable distributed interaction protocol with a limited amount of knowledge: the set
of neighbouring nodes connected either via active or via dormant links. Then, when
either a node or a link failure occurs, all the nodes below the failure will disconnect
from the active tree and become unserved. Such unserved nodes can now try to
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Fig. 8.6 Example of healing after single link failure. Notice that failure of a single node can be
modelled as the failure of all its links; hence, multiple links failure are the more general event to
be considered. (Left panel) In the initial state, the source node (filled square, upper left corner) is
able to serve all 16 nodes through the links of the active tree. The four dashed lines (green online)
represent dormant backup links that can be activated upon failure. The redundancy of the system is
p D 4=9 as only 4 of the 9 possible backup links are present. The link marked with an X is the one
that is going to fail. (Central panel) A single link failure disconnects all the nodes of a sub-tree;
in the example, a sub-tree of 6 nodes (red online) is left isolated from the source – i.e., the system
has a damage � D 6. (Right panel) By activating a single dormant backup link, the self-healing
protocol has been able to recover connectivity for the whole system, in this case bringing back the
number of served nodes at its maximum value 16. The link that has recovered the connectivity is
marked with an R

reconnect the active tree by waking up through the protocol some dormant backup
links. Such a process will reconstruct a new active-tree that can restore totally or
partially the flow, i.e. heal the system (Fig. 8.6).

By measuring the fraction FoS of served nodes after multiple random failures of
k links, we study the effects of the redundancy r (the fraction of backup links added
to the initial spanning tree). We investigate both the case which best resembles the
actual situation – i.e. nodes disposed over a grid – and the role of the networks’
connectivity patterns by generating different underlying topologies. In particular,
we generate small-world and scale free networks [35].

We use square grids as an example of planar grids topologies. Small-world
networks [36] are generated starting from planar square grids and rewiring with
a probability p a link with a randomly selected node. Scale-free networks are
generated through the Barabasi-Albert model [37]. In the case of technological
networks, small world networks are important as they can show the effects of
introducing long-range links in a planar topology.

To produce suitable initial configurations of our model distribution networks, we
generate random spanning trees [38] associated to each kind of network structures.
The links not belonging to the spanning trees form the set of the possible backup
links of our system; among such links, we choose a random fraction r of dormant
links that can be used to heal the system. We then simulate the occurrence of
uncorrelated multiple failures by deleting at random k links of the initial active tree.
Subsequently, we activate dormant links according to our self-healing procedure and
calculate the FoS.
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Fig. 8.7 (Color online)
Comparison among different
network structures. Here we
show the performances of our
self-healing algorithm with
respect to the quality of
service for increasing number
of removed links with the
redundancy r fixed to 0:3; for
SW networks, the rewiring
probability is p D 0:2. The
average fraction of
nodeshFoSi of served nodes is
plotted against the number of
failures k

Figure 8.7 shows that distribution grids based on the scale free topologies are the
more robust. Nevertheless, they should be disregarded when considering the case of
technological networks since economic and geometric constraints make scale free
networks unfeasible on planar topologies. Therefore, the most relevant results are
the ones on small-world networks, showing that introducing a small fraction of long-
range links can enhance robustness by orders of magnitudes respect to planar grids
with the same redundancies.

8.6 Conclusions

An unconstrained allocation and growth of the distributed generation can drive a
power grid beyond its design parameters. In order to overcome such a problem,
we propose in Sect. 8.3 a topological algorithm derived from the field of Complex
Networks to allocate distributed generation sources in an existing power grid.

Several trans-national projects aim to integrate national power-grids into “super-
grids”. The results of Sect. 8.4 indicate that increasing the system size causes
breakdowns to become more abrupt. Thus, the possible enhancement of the systemic
risk failures (blackouts) with increasing network size is an effect that should be
considered in the planning of “super-grids”.

While transmission systems can already be considered “smart” (although in a
centralised way), much less has been done at the level of distribution, especially
at the low voltage (residential customer) level. In Sect. 8.5 we have introduced a
simple distributed algorithm to keep the systems connected in the case of failures.
By studying various network topologies, we have found that the introduction of
some long-range connections in planar grids greatly enhances the resilience of local
distribution networks to multiple failures.
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Chapter 9
A Spectral Approach to Synchronizability
of Interdependent Networks

Gregorio D’Agostino

Abstract The quality of life in full developed countries depends on the cooperative
functioning of different infrastructures. One of the most striking problems is to
understand in simple terms to what extent this cooperation can be assured. The
complexity science provides a powerful means to analyze the interaction of such
critical infrastructures at pure topological level. The application of the paradigm of
complexity to the global system resulting from the interdependent infrastructures
leads to the concept of “Network of Networks”. The present work is devoted
to understand emergent (that is collective) synchronization behaviors through the
spectral analysis of the laplacian. We provide evidence that, upon increasing the
number of links between the different infrastructures, the behavior of the total
system experiences a drastic changes in its synchronization modes. When few
links are introduced, the synchronization inside the component networks is very
fast and the global synchronization takes place mainly at the boundaries; on the
other side, when the number of links exceeds a threshold, the bottlenecks for the
synchronization process localize mainly inside the component networks.

9.1 Introduction

The quality of life in the developed countries requires the coordinated functioning of
several infrastructures such as Electric System, Aqueducts, ICT Assets, Fresh Food
distribution chains, Gas-ducts, Oil Pipelines, air and overland Transports, Banks
and Financial assets etc. To emphasize their vital role in the technological society,
several of those infrastructures have been classified as critical.
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The awareness of the vulnerability of the Critical Infrastructures (CI) and thereby
the need to protect them, has been growing fast during last years. The USA has
been the first developed country to take an official financial commitment on the
protection of CI’s by emitting the celebrated American Presidential Directive PDD-
63 of May 1998 under the Clinton administration, even before the terrible events of
September 11. It took 10 years for the EU community to take a similar commitment
through the EUDIR Council Directive 2008/114/EC of the 8th of December, 2008.
Similar actions have also been taken by the other developed countries, such as
Canada and Japan and even by several fast developing countries. The protection
of the critical infrastructures represents one of the most significant concerns of any
modern country.

The functioning of Critical Infrastructures requires control and coordination of
both physical components and human actors. It is therefore important not only to
employ reliable components, but also to understand human behavior both at single
person and at collective level. Moreover, each infrastructure resorts to other CIs
(typically, but not only, energy and ICT) to accomplish its goals: in other words, CIs
are inter-dependent. Identifying, understanding and analyzing critical infrastructure
interdependencies represents a crucial task for the policy makers and the scientific
community both at the academic and at the applied level [1].

In the development of CIs, the ICT sector has played a crucial role in several
respects. ICT pervades any complex activity of modern societies based on commu-
nications and represents a fundamental part for the surveillance and the governance
of any complex infrastructure. The reliability and quantity of information-based
services employed by our modern society has been steadily increasing during last
decades (SCADA systems, web, electronic communications, e-commerce, social
networking, e-banking, entertainments etc.). In order to improve their performance
and to enhance their reliability, the CIs have been endowed with increasingly
complex connection networks and computerized systems, thus allowing their
governance optimization and reducing the humans allocated to that purpose. The
wise development and use of the CI’s represents the basis for the advent of the
Smart Society, a term that is inflected in different flavors such as: Smart Grids,
Smart Cities, Smart Roads, Smart Roads, Smart Light-stops etc. and it indicates
the intelligent coordinated management of the different CIs to provide the most
effective, secure and sustainable services.

All the modern infrastructure exhibit network structures and employ several net-
works to provide the services they are devised to. Therefore any real infrastructure
has to be modeled as, at least, two interdependent networks: the ICT network to
allow control and the physical network.

About a decade ago, thanks to the availability of large data and resorting to the
Statistical Physics and the graph theory, a new paradigm to study large networks
has been introduced: the Network Science [2, 3]. This discipline represents a
powerful and unifying tool to understand the basic mechanisms governing different
networked systems, ranging from biology, to sociology, power grids, Internet or
the World Wide Web. In spite of the intrinsic differences among such networks,
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they do exhibit shared or universal emergent behaviors related to systemic effects
due to the extended size. Due to such collective effects, the ordinary maintenance
on each component and even on each infrastructure may not suffice to prevent
malfunctioning.

The application of the paradigm of the Network Science to Interdependent
Critical Infrastructures leads to the concept of “Networks of Networks”: the
NetoNets (NoN). From the Theory of Graphs perspective a NoN is nothing but a
larger (inhomogeneous) network. However, keeping trace of the different networks
provides some specific results that are useful or even necessary. Real infrastructures
are governed and controlled by different operators and authorities and interaction
among them are only allowed at their boundaries according to predefined rules; so
that the whole system does not behave as a single entity.

To our knowledge, the first applications of the NoN approach to critical infras-
tructures was aimed at studying the propagation of failures in inter-dependent
infrastructures, modeled as either trees or planar lattices [4, 5]. However, the
largest impact on the scientific community came from the celebrated paper on
the percolation model of cascade failures in coupled ICT/power networks [14].
Moreover, another important step toward applications of NoN to real infrastructures
has been the analysis of the interdependent north-America electric grids [6] aimed
at reducing the global vulnerability of the system.

A lot of efforts are nowadays devoted to develop the mathematics of NoN. While
most of the current models are still devoted to percolation [7–10], the dynamics on
NoN can also be approached resorting to the spectral analysis [11–13]. The basic
idea is to model fundamental evolution processes on NoN. The largest eigenvalue
of the adjacency matrix represents a powerful estimate of the epidemic threshold,
while the Algebraic Connectivity rules several phenomena driven by an underlying
diffusion mechanism. Percolation on interdependent networks [14] has become one
of the most interesting and dwelling open issues in complexity science. On the
other hand the application of spectral techniques to network synchronization [15]
is an other long standing topic that may provide important suggestions for the
management of real infrastructures and hence on the quality of our life. Along both
this lines of research, this work deals with the synchronization of interdependent
networks.

9.2 Synchronizability as Asymptotic Stability

The synchronization of networks has been widely studied with a special emphasis to
coupled oscillators [16–19]. The following introduction is just to frame the problem
within the perspective of critical infrastructures synchronization.

Let us suppose we have a homogeneous network consisting of N components
and the state of each component is defined by a continuous “state variable” xi .
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Let us also suppose that, when left alone, any component experiences a dynamic
evolution according to an autonomous differential equation:

dxi

dt
D fi .xi /C �i I (9.1)

where �i represents some possible external forcing term due to a disturbance or
noise.

For the sake of simplicity, let us also suppose that the “spaces of the phases” of
the state variables are all isomorphic to an unitary “circle”, that is xi 2 Œ0; 1� with
periodic boundary conditions: xi 	 xi Cn for any integer n. This intrinsic cyclicity
implies the periodicity of the functions fi ’s:

fi .xi C n/ � fi .xi /: (9.2)

This means that the system is devised to perform cycles, but not necessarily
regularly or periodically. In other words we are assuming that the state variables
are similar to the phases of a system allowed to work cyclically, which is a common
condition for several real components. It is worth stressing that we are not assuming
a harmonic motion and not even a periodic one. However, depending on the nature
of the function f , on the initial conditions and the forcing term, the actual evolution
may happen to be periodic or even harmonic.

Let us also suppose that the components of the system may influence each other.
We further suppose that the evolution of the state variable si can be affected by the
others only if they differ from it. This means that for each condition of a component
there is at least one state of the rest of the system that does not induce any deviation
from the autonomous evolution; that is, the system is designed to work coherently.
From the mathematical point of view this means that the interaction depends on the
difference of the state variables only:

dxi

dt
D fi .xi /C gi .xi � xj /C �i I (9.3)

where the functions gi vanish when all state variables are synchronized (gi .0/ D 0).
If all the state variables evolve synchronously (possibly, but not necessarily

periodically) the system evolves as all components where independent. However
when one or more components lapse, the system may deplete its stability and stop
functioning properly. As an example, one may think at an internal combustion
engine, when all parts behave properly the four separate strokes (intake, compres-
sion, power, and exhaust) must take place at the appropriate moments, during two
revolutions of the engine’s crankshaft. In this case the mote is periodic, but not
harmonic (there are angular accelerations) and some component has a period twice
longer than the others. Moreover the synchronous values of the component relative
to the different cylinders do not correspond to the same physical state: xD 0 will
represent the intake for a cylinder, the compression for an other, the power for
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a third and the exhaust for the last. Moreover the absolute angular position of
the wheels is absolutely irrelevant for the engine. The same situation takes place
for the critical infrastructures, with the variation that there are several different
components. However the overall phase of the system is not specially important,
while the differences in the phases can be critical.

The stability of the Eq. (9.3) around a planned trajectory can be studied by means
of the Lyapunov exponents of the linearization around some stable trajectory. Again
this can be a periodic attractor or not. Introducing deviations from a stable trajectory
si D xi � x0 the equations can be linearized, thus leading to a “diffusion coupled”
system of equations:

dsi

dt
D ı!i C

X

jD1;N
wij Aij .si � sj /C �i I

that is:

dsi

dt
D ı!i �

X

j

OLij sj C �i I (9.4)

where we have introduced the weighted adjacency matrix OA (and its related laplacian
OL D OD � OA) and frequency deviation from the average ı!i :

8
<̂

:̂

OAij defD d
dsj
gi .si � sj / D wij Aij ;

OLij D PN
kD1 OAik � OAij ;

ı!i D fi .x0/ � 1
N

PN
jD1 fj .x0/:

(9.5)

The deviations from the average frequency can be further decomposed into a
static part representing the intrinsic spread of component frequencies and a linear
correction representing autonomous response to deviations:

ı!i 	 ı!0i C dfi .x
0/

dx0
.si / � 1

N

NX

jD1

dfj .x
0/

dx0
.sj / D ı!0i C

NX

jD1
Uij sj I (9.6)

therefore the stability of the system results from the equilibrium between the matrix
U and the matrix OL. The system is asymptotically stable when the eigenvalues of
the linearized equations are all negative. In this case what is relevant is the stability
of the relative phases since an overall phase in not defined. Both the matrix U and OL
exhibit a null eigenvalue that represents a common shift of phases and it is irrelevant.
There will always be a null mode representing a translation of all phases by the same
amount. Since the Laplacian is positive defined for vectors orthogonal to a uniform
one, the system is stable when the mismatch in the frequencies does not exceed the
first non trivial eigenvalue of the laplacian that is the “algebraic connectivity”.
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When the interaction between the different components of the system are
identical all weights are the same and one may assume OL D wL, thus separating the
topological dependence (L) from the functional one (w). In this case the asymptotic
stability of Eq. (9.4) read:

kı! C �k � w�2.L/ ksk I (9.7)

where �2.L/ represents the algebraic connectivity of the laplacian and the norm

is kvk defD maxi jvi j. The former equation provides information on how strong
the coupling w must be to synchronize several components given their structural
spread in the frequencies and the external disturbance. Conversely, given the
topological characteristics of the system, one can estimate the maximum endurable
disturbance.

To turn the general equations governing a complex system into the canonical
form of Eq. (9.3) may be a tremendous work, yet in several cases it can be done.
The present work, does not concern the origin of Eq. (9.3) or even their solutions,
the only relevant point here is that the Lyapunov criteria for stability can be written
in terms of pure topological quantities and, remarkably, on the first non trivial
eigenvalue (i.e. the algebraic connectivity) of the laplacian of the graph representing
the network.

The original motivation of the present work has been discussed above, however,
synchronization phenomena in large communities of interacting systems appear in
physical, biological, chemical, and social systems. Applying the paradigm of the
complexity science to the problem of synchronization consists in modeling the
different entities to be synchronized as “nodes” in a graph which topology only
describes the interdependence among them. The spectral analysis of the Laplacian
provides a means to estimate the synchronization time and its dependence on
net topology changes. The present study is framed in the context of “Networks
of Networks”; some general results are provided for a set of interacting net-
works, while some numerical results for the case of two interacting networks are
reported.

One of the most interesting outcomes of the study is the existence of a type
of “phase transition” for the synchronization time upon removals (or inclusions)
of interlinks between the interdependent network. There exists a critical number
of interlinks at which the typical time for synchronization (i.e. the algebraic
connectivity) equals that of the isolated networks. When the number of attacked
links reduces down to this critical value, the synchronization of the two networks
slows and more importantly it takes place along significantly different paths.

Depending on the strategy of the “attacks” (or connection inclusions), the
synchronization of the composite system of systems exhibits different behaviors.
Numerical simulations for interdependent systems of different sizes and compo-
nent model networks are coherently interpreted by both exact calculations and
perturbation theory.
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9.3 Modelling Critical Infrastructures as NetoNets

From the mere topological perspective, a complex system consisting of different
interdependent CI’s can be modeled as a Network of Networks (NetoNets or NoN).
The functioning of the whole system is achieved by means of the cooperation of
several “components” that may belong to the same subsystem or to different ones.
In the first case one says that there is “intradependence” among components of the
same subsystem; while in the other case, one says that there is “interdependence”
between the different subsystems. We will always apply the prefix “intra” to
characteristics involving features relative to the same subsystem, and the prefix
“inter” to those involving components or parts belonging to different subsystems.

The complexity science approach consists in disregarding the details of the
interaction between the different components and focus on their mutual dependence
and their number. From the mere topological perspective, a systems of systems,
can be abstracted to a “Network of Networks” (NetoNets or NoN); that is the whole
system can be modeled as a graph ideally partitioned into homogeneous sub-graphs,
while containing also links between nodes of different sub-graphs. A homogeneous
sub-graph will be referred to as a “Component Network” or simply a cnet. The
links inside the component networks will be referred to as “intralinks”, while those
connecting nodes belonging to different cnets will be referred to as “interlinks”. If
the Network of Networks (NoN) consists ofM cnet’s, from the topological point of
view, it can be formally represented as:

PG
defD .N1; : : : ;NM IL1; : : : ;LM IL12; : : : ;LM�1;M / (9.8)

where Gi D .Ni ;Li / represents the i -th component network and each Li;j con-
tains the interlinks between the i -th and the j -th networks. The graph representing
the entire network will be referred to as G D .N ;L / where:

(
N D S

iD1;M Ni

L D �S
iD1;M Li

�S	S
ij Li;j


 (9.9)

Figure 9.1 provides a pictorial representation of the former definitions. The cardi-
nality of the different sets provide a simple measure of the interaction between the

networks: Ni
defD jNi j, Li defD jLi j and Lij

defD ˇ̌
Li;j

ˇ̌
. The larger the Lij =Ni ratio,

the higher the dependence.

9.3.1 Some Topological Notation

The NoN is just a graph (possibly a weighted one) were each node is labeled by two
different indices identifying the component it represents and the CI it belongs to.
This means that the Adjacency matrix can be rewritten as tensor depending on four
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Fig. 9.1 This picture illustrates an example of three interdependent Networks in a simple complete
macrotopology. The links between nodes in the same component network (cnet) are named
“intralinks”, while those connecting cnets belonging to different networks are named interlinks.
The macrotopology results collapsing each cnet to a macro-node and linking any pair of macro-
nodes if an interlink among their relative cnets exists

indices: AJjI i . The capital index will be referred to as “network index” and it labels
the cnet, while the italic one will be referred to as “internal index” and it labels
each component. One may provide a global index to nodes ordering the networks:
.I; i/ ! .

P
JD1;I�1 NJ /C i ; where NJ is the size of the J -th network.

Two nodes belonging to two different networks and sharing the internal index
will be named “homologous”. This definition is evidently not univocal as one may
perform any reordering (permutation) of the nodes; however once the choice is takes
no ambiguity arises.

0

BBBBBBBBBBBBBBBBBBBB@

A1111 : : : A1N11 A2111 : : : A2N11 : : : AM111 : : : AMN11
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

A111N : : : A1N1N A211N : : : A2N1N : : : AM11N : : : AMN1N
A1121 : : : A1N21 A2121 : : : A2N21 : : : AM121 : : : AMN21
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

A112N : : : A1N2N A212N : : : A2N2N : : : AM12N : : : AMN2N
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
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1N
M1 A

21
M1 : : : A

2N
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M1
M1 : : : A

MN
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MN : : : A

2N
MN : : : A

M1
MN : : : A

MN
MN I
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(9.10)
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In matrix format, the adjacency matrix for the NoN can be written as:

A D

0

BB@

A1 B12 : : : B1M

B21 A2 : : : B2M
: : : : : : : : : : : :

BM1 : : : BM�1M AM

1

CCA I (9.11)

where the diagonal matrices represent the intralinks .AI /
j
i D A

Ij
I i and the off-

diagonal matrices represent the interlinks .BIJ /
j
i D A

Jj
I i . In the following we

will focus on undirected networks only and hence all adjacency matrices will be
supposed to be symmetric; therefore we will assume ATI D AI and BIJ D BT

IJ .
Let us suppose we can ideally switch off the interaction between the cnets. In this

case the adjacency matrix becomes block-diagonal; we will refer to such a matrix as
the “unperturbed” adjacency matrix A.0/. When the interaction is switched on, the
total adjacency matrix will be the sum of the unperturbed one plus an interaction
matrix B:

A D A.0/ C B D

0

BB@

A1 0 : : : 0
0 A2 : : : 0
: : : : : : : : : : : :

0 : : : 0 AM

1

CCAC

0

BB@

0 B12 : : : B1M
B21 0 : : : B2M
: : : : : : : : : : : :

BM1 : : : BM�1M 0

1

CCA : (9.12)

9.4 Mean-Field Approximation

Let us suppose that we have a set of networks with similar properties, that is which
topology belongs to a given model network. Let we assume that we have a rule (or a
strategy) for linking nodes belonging to the different networks. We will refer to the
former system (a NoN) as a “network of interacting homogeneous networks”.

There exist two basic strategies that can be easily treated. The first linking
strategy will be referred to as “Homologous Linkage Strategy” (HLS) and it
corresponds to distribute links uniformly on homologous (i.e. sharing the internal
index) nodes only. The second strategy will be referred to as “Random Linkage
Strategy” (RLS) and it corresponds to a uniform selection of all possible node
pairing (yet limited to the interdependent cnets).

The mean-field approximation of the HLS consists in replacing the ensemble
of all possible L’s with their average. This leads to a NoN where all diagonal and
interacting matrices (those defining the interlinks) are the same and proportional to
the unit matrix:A.0/ D I �fA1g andB D Amacro �˛I .Amacro is the adjacency matrix
of the macrotopology, while the coefficient ˛ represents the average number of links
per interdependent pair. In this special case the matrix L0 and the LB commute and
hence they admit a common set of eigenvectors. These can be obtained by:

vKk D �K � �k W (9.13)
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or in components:

uKkI i
defD �K

I � �ki I (9.14)

where �K represents the K-th eigenvalue of the matrix Amacro and �K represents
the k-th eigenvalue of the matrix B (if they exist). The eigenvalues relative to
vKk will be referred to as �Kk . When the interaction is switched off (˛ D 0), all
eigenvalues are M times degenerate and coincide with the free ones: �Kk D �i for
all I . When the interaction is switched on, the eigenvalues change

�Kk D �k C ˛ ��K I (9.15)

where�K is theK-th eigenvalue of the interdependence matrixAmacro representing
the macrotopology. It is worth stressing that the �Ii form a “partially ordered lattice”
as for fixed i they are ranked according to the index I and vice-versa. However, the
global ranking of the eigenvalues for the NoN depends on the value of ˛. For low
enough ˛ (that corresponds to weak interdependence) � D �21 D ˛�1, while for
larger ˛’s the former value may exceed �12 D �2. The �1k eigenvalues do not depend
on ˛ while �21 increases linearly. Therefore there will be a “critical value” of ˛ at
which the two eigenvalues swap:

˛th D �2

�2

: (9.16)

The fundamental case of two interacting networks (M D 2) has been extensively
treated by Martin-Hernandez et al. [13]. Moreover very important results have been
recently obtained by Gómez et al. [12] and Cardillo et al. [20].

Suppose we have a set of networks characterized by their laplacians
(L1; : : : ; LM ) and a sequential rule to add links among them. Given the sequence
of links, the algebraic connectivity (i.e. the inverse of the synchronization time) for
the total interacting system is a function of the number of interlinks l . Each system
will exhibit its own linkage profile depending on the type of component networks
(cnets) and the linkage rule. If the linkage rules are stochastic there will be a set
of possible links sequences that can be analyzed statistically. The simplest of such
analysis consists in evaluating the average among all possible linkage sequences as
a function of l . One expects this average to converge to a limit when the number
of nodes per network N diverges while keeping the average linking ˛ D l=N

fixed. The average of the algebraic connectivity over the different networks (falling
in a model network class) and the different linkage sequences (according to a
given linkage strategy) do not coincide with the algebraic connectivity of the
average laplacian, that represents a very rough approximation of it (as it disregards
fluctuations). We will refer to such an approximation as the “mean-field” approach.
Actually one may define different types of mean-field depending on which average
is performed before the algebraic cut evaluation:
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H
defD ELi ;Bi Œ�� (9.17)

Hl
defD ELi Œ� .EBi ŒL�/� (9.18)

Hintra
defD EBi Œ�.ELi ;Bi ŒL�/� (9.19)

H0
defD � .ELi ;Bi Œ��/ I (9.20)

the potential H corresponds to the real statistical average; Hl corresponds to the
“fixed nets, average linkage” case; Hintra corresponds to the “fixed linkage, average
nets” case and H0 is the global mean-field case. If the interacting networks belong
to the same class of model networks theH0 case is equivalent to the case of identical
networks interacting by a common matrix B:

A D	 A0 � I C ˛B � AmacroI (9.21)

where Amacro is the macroscopic adjacency matrix being null or unitary depending
whether two component networks are interdependent or not. There are two exactly
solvable cases that is worth treating: B D ˛ � I and B D BT D ˛ � J where J
is the all unitary matrix (Jij D 18ij ). The first solvable case will be referred to as
“Homologous Linkage Strategy” and corresponds to distribute links uniformly on
homologous nodes only. The second solvable case will be referred to as “Random
Linkage Strategy” and corresponds to a uniform selection of all possible node
pairing.

The phase transition occurs when the algebraic cut changes its localization from
the interlinks to the intralinks. In other words when the number of interlinks is
kept below a certain threshold, it is easier to disconnect the NoN cutting (mainly)
interlinks; on the other side when the number of links exceeds the threshold
the optimal cut (i.e. the Fielder cut) implies cutting mainly intralinks. From
the synchronization perspective, below the threshold the cnets synchronize first
internally and adiabatically they synchronize each other. Conversely beyond the
threshold there are two sets of nodes belonging to different cnets that synchronize
first while approaching the global synchronization on a longer scale even within
the same cnet. In other words beyond the threshold the system approaches the
equilibrium globally with a common time scale. In terms of the spectral properties
this corresponds to compare the two lowest eigenvalues of the total laplacian:

�inter D �˛

�intra D �2I (9.22)

corresponding to the eigenvectors

vinter D v10 D �2�1
vintra D v01 D �1�2:

(9.23)
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The transition point corresponds to the value where �intra D �inter that defines the
transition threshold:

˛th D �2

�2

: (9.24)

In the mean field approach ˛ represents the number of interlinks per nodes ˛ D
l=N , therefore the interpretation of the former result is that there exist a critical
fraction of interlinks beyond which any further addition does not reduce the proper
time of the NoN. Typically the number of interacting networks M is small and the
corresponding �2 of the macronet is larger than �2; however when the size of the
macronet increases, �2

�2
can be larger than one. For theHLS case, since ˛ represents

the fraction of available links and it is always smaller than one, the global system
will never be able to synchronize with the same promptness of the single cnets
whichever is the number of interlinks. The critical number of links in the mean-
field approach for the diagonal strategy is proportional to the ratio of the algebraic
connectivity of the component nets and that of the macronet:

lHLSth D N˛th D N
�2

�2

: (9.25)

Same reasoning applies to the random linkage strategy:

�inter D N�ˇ

�intra D �2 CKminNˇI (9.26)

where Kmin is the minimum of macro degrees (Kmin
defD min.J / .KJ /) and �intra

is localized at the networks exhibiting such minimum macro-degree. Please note
that �intra can be degenerate when more than one component network depends on
Kmin networks. The resulting critical value corresponds to the point where the two
eigenvalues cross: ˇth D �2

N.�2�Kmin/ D �2
N.�2�Kmin/˛th. It is worth noting that when

�2 is smaller than Kmin, the intra-mode is always slower than the inter-mode and
hence synchronization proceeds first intranet and afterwords internet. In the mean-
field approach ˇ represents the probability for any interlink to occur in a pair of
dependent networks (ˇ D l=N 2) and hence the critical number of links is again
proportional to the component net size:

lRLSth D ˇthN
2 D N�2

�2 �Kmin

D �2

�2 �Kmin

lHLSth : (9.27)

Given the number of intralinks, the Homologous Link Strategy (HLS) always
exhibits its phase transition earlier (lRLSth > lHLSth ) than the Random Link Strategy
(RLS). Moreover while in the HLS case the phase transition corresponds to a
saturation of the algebraic connectivity, in the RLS case it corresponds to a change
in slope of growth.
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The exact solution can be explicitly written in all cases when the LB commutes
with LA; in these cases the set of eigenvalues of the unperturbed network of
Eq. (9.14) can be extended to the total interacting system.

9.5 General Results

In the general case an exact solution cannot be provided. However for small ˛ one
may resort to the perturbation theory to estimate the algebraic cut.

9.5.1 Perturbation Theory

Let us study the case of all identical interacting networks. Our merit function is the
average algebraic cut:

H
defD EBi Œ�.L/� : (9.28)

One can inspect some of the properties of such “thermodynamic” potential
employing the perturbation theory. The problem consists in finding the minimum
of the quadratic form associated with the laplacian in the unitary sphere (u2 D 1),

with the constraint .�; u/
defD P

iD1;N ui D 0:

� D inf
u2D1;�
uD0

.u; Lu/ D inf
u2D1;�
uD0

.u; .L0 C ˛LI /u/ I (9.29)

due to the min-max theorem, the problem is equivalent to solve the characteristic
equations for the first (i.e. lowest) non trivial eigenvalue �:

8
<

:

.L0 C ˛LI � �I/x D 0;

u2 D .u; u/ D D 1;

.�; u/ D 0:

(9.30)

When the solution is analytic in ˛, one may express � and u by Taylor expansion as
� D P1

kD0 �.k/˛k and u D P1
kD0 u.k/˛k .

Substituting the expansion in the eigenvalue equation (9.30) gives the hierarchy
of equations:

8
<

:

L0u.k/ C LIu.k�1/ D Pk
iD0 �.k�i /u.i/ for all k;Pk

iD0 u.k�i /u.i/ D 0 for k � 1;

.�; u.k// D 0 for all k:

(9.31)
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The zero-th order of the hierarchy correspond to the kernel of the L0 operator:

L0u
.0/ D 0 (9.32)

.u.0/; u.0// D 1 (9.33)

.�; u.0// D 0 (9.34)

They admits a set ofM � 1 independent solutions corresponding to eigenvectors vI0
(for I D 1; 2; : : : ;M � 1); the v00 eigenvector is excluded since it coincides with �.
u.0/ can be also written as a linear combination of the vectors .�I /i D ıIJ that are
unitary on the nodes belonging to the I -th component network and null elsewhere.
u.0/ D P

I CI �I
1p
N

. The first order correction to the algebraic cut can be easily
evaluated employing the first order hierarchy:

�.1/ D inf
.u.0//2D1;�
uD0

.u.0/; LI u.0//: (9.35)

The best first order approximation is hence the first non trivial eigenvector of the
laplacian of a weighted adjacency matrix OV defined as follows:

OV IJ defD V IJ 1

N

X

ij

BIJ
ij D V IJ l

IJ

N
D V IJ ˛IJ I (9.36)

where ˛IJ is the number of interlinks per node between the networks I and J .
When the number of nodes tends to infinite and there is a stochastic rule for each
link to exist, the arithmetic average 1

N

P
ij B

IJ
ij tends with probability one to the

average number of links per node:

lim
N!1

1

N

X

iD1;N

X

jD1;N
BIJ
ij D E

�
lIJ

N

�
I (9.37)

when the rule is the same for each pair of interdependent networks all the number
of links per node reach a common value EŒ l

IJ

N
� D ˛ and the matrix OV factorizes:

OV D ˛ � V .
Therefore the first order correction in the perturbation theory corresponds to the

mean-field approximation described earlier.

9.5.2 Intermodes

When few links exists among the cnets the synchronization is expected to take place
first inside the cnets and afterwords between them. From the mathematical point
of view this corresponds to a Fielder cut [21] cutting interlinks only, that is to
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an eigenvector constant over all the cnets. Let us first define the “inter” heuristic
solution uinter or the “inter” mode as the optimal (smallest �) eigenvector cutting
interlinks only:

.uinter /
I
i

defD CI
1p
N

I (9.38)

as can be seen, it depends on the cnet index only while being constant on internal
components. The optimal estimate of the algebraic connectivity for an “intermode”
is achieved minimizing the quadratic form given the form of the solution of
Eq. (9.38):

�inter
defD min

fCI WPID1;M CID0g
.uinter ; Luinter /I (9.39)

or treating the C ’s as a vector:

�inter D minP
ID1;M CID0

.C;LinterC / D �2.L
inter /I (9.40)

where we have introduced the effective laplacian Linter collapsing the internal
indices:

.Linter /
IJ defD 1

N

X

i;j

LIJij : (9.41)

When the number of nodes is large and the linking strategy is the same for all
interdependent pairs, the effective inter-laplacian Linter can be defined in terms of
the macroscopic Adjacency matrix Amacro:

.Ainter /
IJ defD

X

i;j

AIJij D AIJmacro
�lIJ
N

PD1! AIJmacro � ˛IJ : (9.42)

In fact, the fraction of interlinks between each pairs of cnets converges with
probability one to its expectation value for large N . When the linkage rules are
the same for all pairs of interdependent cnets,Ainter is proportional to a Amacro and
all ˛IJ are the same:

.Ainter /
IJ D AIJmacro � ˛: (9.43)

In this case �inter depends only on the macrotopology and on the fraction of links
included:

�inter D ˛ ��2.Lmacro/I (9.44)

where Lmacro D Dmacro � Amacro is the laplacian of the macroscopic topology.
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9.5.3 Intra Modes

When there exist a lot of links between the different cnets, one expects the total
system to behave collectively. The extreme case when this takes place is when the
deviation from equilibrium are the same for all cnets. That is there exist a common
mode that does not depend on the index of the component network. We will refer to
such collective modes, involving all cnets symmetrically, as “intramodes”:

.uintra/
I
i

defD �i

M
I (9.45)

where the cnet (capital) index is mute. The optimal “intramode” uintra provides an
other estimate

�intra
defD min

.�;�/D0.uintra; Luintra/ D min
.�;�/D0.�;

L

M
�/: (9.46)

In this case one may distinguish between the contribute of the cnet and the contribute
due to the interlinks:

�intra D .�; Lave�/C �2 D .�; Lintra�/I (9.47)

where we have introduced the average laplacian of the cnets:

Lave
defD 1

M

X

ID1;M
LI I (9.48)

and the interactive matrix V :

.Vintra/
defD 1

M

X

ID1;M IJD1;M
AIJmacroB

IJ
ij ; (9.49)

together with its relative laplacian counterpart: .LV /ij
defD ıij .

P
k Vik/ � Vij . It is

worth stressing that the matrix V is positive and symmetric and henceLV is positive
semi-definite:

�2
defD .�; LV �/ � 0: (9.50)

It is worth noting that �2 depends on the linkage strategy and it vanishes when
the HLS is employed. This means that in some sense the HLS is optimal as it
minimizes the algebraic connectivity of the intramode:

�intra D min
�
�D0.�; .Lave C LV /�/ � .�; Lave�/ � �2.Lave/: (9.51)
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9.6 Discussion

The phase transition from the “inter-synchronization” to the “intra-synchronization”
is very general and it may generate a wide range of phenomenological behaviors
depending on the different model cnets involved, on their number, size and on
the linkage strategy. This will allow to design future complex systems taking into
account both the vulnerability against fault propagation cascades (by epidemic
threshold) and their global synchronizability. This work provides a general view
on what can be inspected by a pure topological approach based on the algebraic
connectivity, a similar analysis can be also performed for the maximum eigenvalue
of the adjacency matrix. A lot of work should be devoted in the future to provide
the decision makers with a tool to plan the developing and the protection of the
interdependent critical infrastructures and, especially, their systemic behavior.

The fundamental case when two infrastructures mutually interact has been
extensively studied by Wang et al. [11] and Hernández et al. [13]. Authors of [11]
have provided upper and lower bounds for the epidemic threshold in a system of
two interacting networks; while authors of [13] have dealt with the problem of
synchronization, which we are mainly focused on. Same results from the latter
paper are reported here to provide evidence of the applicability and consistency of
the theory. In [13] four model cnets with different topological properties have been
compared: Random Regular (RR) [22], Barabási-Albert (BA) [3]; Watts-Strogatz
(WS) [23], and a 3D Lattice (LA): a deterministic three-dimensional grid. The input
parameters for all models are set constraining the graphs to share the same average
degree (i.e. 6), thus preventing spurious effects due to the total number of links.

From the spectral point of view the problem reduces to the study of the Laplacian
associated with the Adjacency matrix of two coupled cnets: A D A0 CB . Question
is how the Fiedler eigenvalue does change upon topology (i.e. B) variation. Both
the HLS and the RLS have been investigated. Results for the HLS simple case
are reported here; however similar results hold for the general strategy.

Among several available, we have selected four main quantities (or metrics) to
probe the system change upon progressive inclusion of intralinks. The “Fiedler cut”
represents the number of links between the two partitions as resulting from the signs
of the Fiedler eigenvector (i.e. the first non trivial eigenvector of the Laplacian). The
interdependence angle (or “opening angle”) represents the angle between the Fiedler
eigenvector of the interdependent networks and that with the isolated ones (which
eigenvalue vanishes) (acos

�
x � x.0/= kxk ��x.0/���). The entropy is just the Shannon

entropy calculated considering the squares of the Fiedler eigenvector components
as occupation probabilities (h D �Pi .xi /

2log..xi /
2/). The numerical results

obtained averaging over 1,000 different configurations are shown in Figs. 9.2–9.5,
respectively.

The drastic changes observed in all the “metrics” suggests that a “phase transi-
tion” emerges upon adding (or attacking) intralinks. Moreover the parameter profiles
provide insights on the different modes of synchronization. Exact calculations
in a mean field approximation and the perturbation theory provide a significant
understanding of the “phase transition” origin. When a critical value of interlinks
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Fig. 9.2 The algebraic connectivity of different Model Interdependent Networks as a function of
the number of interlinks following the homologous strategy. The flat lines (pointed by the arrows
in the top left plot) refer to the average algebraic connectivity of the N D 1;000 respective single
networks
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Fig. 9.3 The Fiedler cut for different Models of Interdependent Networks as a function of the
fraction of homologous interlinks
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Fig. 9.4 The interdependence angle of different Model Interdependent Networks as a function of
the number of interlinks following the homologous strategy. The flat lines (pointed by the arrows
in the top left plot) refer to the average algebraic connectivity of the N D 1;000 respective single
networks
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Fig. 9.5 The entropy of different Model Interdependent Networks as a function of the number
of interlinks following the homologous strategy. Metrics experience a sharp transition. BA and
RR graphs transitions fall around 20% removed interlinks, whereas WS and LA graphs transition
around 80%. The flat lines (pointed by the arrows in the top left plot) refer to the average algebraic
connectivity of the N D 1;000 respective single networks
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is included, the algebraic connectivity (i.e. the typical time for synchronization)
equals that of the isolated networks. This value depends on the inclusion strategy,
but it is always significantly lower than the number of nodes in a single net. This
means that to synchronize the networks, preserving the promptness of the isolated
ones, a given value of links is required; beyond that critical value, further inclusions
do not improve the performance, but just improve robustness against interlink
attacks (removals). The interdependence angle provides a clear-cut indication that
the observed transition corresponds to a drastic change of mode from “intra” to
“inter”. Similarly the drastic damp in the entropy reflects the localization of the
Fiedler cut related to the “intra” mode.

The numerical experiments also confirm that the HLS provides an optimal
allocation of interlinks to increase the synchronizability of the whole system.
Consistently with the mean-field approach, the phase transition for the RLS takes
place at about twice the number of links as theRLS ; this means that the fluctuations
do not compromise the average behavior.

9.7 Conclusions

This paper represents an initial step to approach the problem of infrastructure
synchronization by a mere topological approach. Resorting to the spectral analysis
of the laplacian, we have provided evidence that upon increasing the number
of links between the different infrastructures, the synchronization mechanism of
the total system experiences a drastic change. When few links are introduced,
the synchronization inside the single infrastructure is very fast and the global
synchronization takes place mainly at the boundaries. On the other side, there exist
a threshold beyond which the bottlenecks for the synchronization process, localize
mainly inside the component infrastructures.
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Chapter 10
Theoretical Approaches to the
Susceptible-Infected-Susceptible Dynamics
on Complex Networks: Mean-Field Theories
and Beyond

Claudio Castellano

Abstract Models for epidemic spreading are a paradigmatic example of the
nontrivial effect of a topologically complex substrate on simple dynamics. The
Susceptible-Infected-Susceptible (SIS) model has been recently the subject of
considerable activity, which has uncovered that subtle effects of the quenched
network structure and of dynamical correlations play a relevant role in the model
behavior. Starting from the simplest mean-field theory we review the theoretical
approaches which have been applied to SIS dynamics on networks, including the
very recent results taking into account long-range dynamical correlations. The
findings illustrate the highly nontrivial interplay between complex topology and
dynamics and the need to include additional ingredients beyond the usual mean-
field assumptions.

10.1 Introduction

Epidemic diseases have been a constant threat to humans throughout history.
Examples such as the black death contagion during the fourteenth century, the
spanish influenza pandemics in 1918, or the more recent outbreaks of AIDS, SARS
and swine flu indicate that infectious diseases are one of the most important global
problems that our world has to deal with. The goal of understanding how diseases
spread is thus a major challenge, with huge potential implications for predicting,
controlling and defeating this kind of threats.
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The spreading of infections is a complex collective phenomenon: the appearance
of an epidemic at a global level is the macroscopic manifestation of the spreading
of the disease among a large number of individuals at the microscopic level. In
this respect, the study of epidemics is a natural playground for the application of
concepts and methods of statistical physics, applied mathematics and probability
theory, aimed at understanding emergent collective phenomena.

Mathematical epidemiology has been developed over many decades, leading to
a detailed comprehension of models describing, at increasing levels of realism,
the crucial features of infectious spreading [1]. However, essentially all classical
results have been derived considering individuals occupying the sites of a regular
lattice or assuming all to all interactions (homogeneous mixing hypothesis). The
last 15 years have made clear that many social or technological networks, which
constitute the contact pattern mediating most spreading phenomena, are very
different from the idealized topologies considered previously [2–4]. The focus has
then shifted towards the understanding of the interplay between complex network
topologies and simple epidemic models, giving rise to novel, highly nontrivial
phenomena.

In this paper we discuss the effects of heterogeneous topologies on the behavior
of one of the simplest models for disease epidemics, with particular emphasis on
the theoretical approaches used to attack the problem, their relationship and their
accuracy. It turns out that subtle effects beyond the mean-field assumptions must be
taken into account to have a complete understanding of the global phenomenology.
This indicates that in general the validity of mean-field approaches for dynamical
processes on networks should not be taken for granted and must be carefully
checked.

10.2 The Susceptible-Infected-Susceptible (SIS) Model
and the Classical Mean-Field Approach

The Susceptible-Infected-Susceptible (SIS) model is the simplest model describing
the spreading of a disease with no acquired immunity, so that an individual can
become infected many times, even immediately after recovery. In this model,
individuals can be in one of two states: S = Susceptible or I = Infected. When an
individual is infected, two events are possible (Fig. 10.1):

• The infected node recovers spontaneously (transition I ! S ), with a rate �,
which is taken to be 1 with no loss of generality;

• The infected node transmits the infection to one of its contacts. This happens
with a rate � for each of the neighbors.

Depending on the single parameter of the dynamics, the spreading rate �, the
iteration of this dynamics may lead (in a system of infinite size) to two possible
outcomes, characterized by the value of the order parameter, the prevalence 	,
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Fig. 10.1 Representation of
the possible events for SIS
dynamics. White nodes are in
the S state, red nodes are in
the I state

defined as the fraction of individuals which are infective in the stationary state. For �
smaller than a critical value �c (epidemic threshold) contagions are insufficient
to counterbalance the recoveries and in the long-time limit no infective (active)
individual remains (	 D 0). Once this absorbing state is reached, no further
evolution can take place. For � > �c instead, the system reaches a stationary
active state with a finite fraction of the whole population in the infected state
(see Fig. 10.2).

This picture is reproduced by a simple mean-field approach to the problem.
Under the assumption that each individual is in contact with k other individuals
chosen randomly at each time, the temporal evolution of the density of infected
individuals is

P	 D �	C �k	.1� 	/: (10.1)

The stationary solution gives 	 D 0 for � < �MFc D 1=k, while there is a finite
activity 	 > 0 for � > �MFc .

10.3 Heterogeneous Networks and the Heterogeneous
Mean-Field Theory

One of the most relevant features which distinguish many techno-social systems is
the heterogeneity of connectivity patterns, i.e. the wide variation in the number of
connections individuals may have. If we denote with k the number of neighbors
of a node (i.e. the degree of the node), in many networks the distribution of the
degrees decays as a power-law P.k/ 	 k�� for large values of k. This is in stark
contrast with standard (Erdös-Rényi) models for random networks where the degree
distribution has an exponential tail. In many real-world examples the exponent � is
in the range between 2 and 3, hence there are few nodes (the hubs) which have a
disproportionately large number of connections. It is natural to ask how this affects
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Fig. 10.2 Phase diagram of
the SIS model. In black the
value of the stationary density
of infected nodes for regular
lattices and the classical
mean-field case, with a finite
epidemic threshold separating
the absorbing phase from the
active phase. In red the same
quantity for a scale-free
network for � < 3 within the
HMF approach: the threshold
vanishes and there is a finite
prevalence for any � > 0

the behavior of the SIS dynamics taking place on these networks. In order to take
into account the effect of the heterogeneity, in a seminal paper [5] Pastor-Satorras
and Vespignani proposed a modification of the mean-field approach based on the
idea that the behavior of a node depends explicitly on its degree k (and on no
other property of the node). According to this hypothesis the fundamental quantity
describing the state of the system is 	k , defined as the fraction of nodes of degree
k which are infected. The evolution of the 	k variables is given by a set of rate
equations easily derived

P	k D �	k C �kŒ1 � 	k�
X

k0

k0P.k0/
hki 	k0 ; (10.2)

where k0P.k0/=hki is the conditional probability that the neighbor of a node of
degree k has degree k0, assuming the absence of topological correlations in the
network. By solving self-consistently this set of equations the epidemic threshold is
found to be

�HMFc D hki
hk2i : (10.3)

This expression implies very different outcomes depending on the value of the
exponent � for the degree distribution. For � < 3 the second moment of the
degree distribution diverges in the limit of infinite network size N ! 1. As a
consequence the threshold tends to 0 as the network size grows: for these scale-free
networks there is asymptotically no epidemic threshold and no matter how small the
spreading rate is, there is a stationary state with a finite fraction of active nodes (see
Fig. 10.2). This is in clear contradiction with all results of classical epidemiology,
which always predict the existence of a finite threshold. For � > 3 (scale-rich
networks) instead we recover also within HMF theory the existence of a finite
threshold.
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10.4 The Quenched Mean-Field Theory

HMF theory predicts that the scale-free property of a network has a critical effect
on the dynamics of the SIS model on top of it. This result had a tremendous impact
and spurred a wealth of investigations looking for similar effects for other types of
dynamics on complex topologies.

Over the years, some activity has also been devoted to the identification of
possible ways to improve the HMF approach. Interestingly, this has occurred soon
within the community of computer scientists [6], while the same approach has been
independently reintroduced only much later by physicists [7, 8]. In the Quenched
Mean-Field (QMF) approach, the idea is to derive an equation of motion for the
probability 	i that a specific node i is active. This means that one has to take into
account not only the degree of node i but in detail the precise position of i in the
network structure. The evolution of 	i is given then by

P	i D �	i C �.1 � 	i /

NX

jD1
Aij 	j ; (10.4)

where Aij is the adjacency matrix, with entries Aij equal to 1 if vertices i and j
are directly connected and 0 otherwise. The SIS epidemic threshold is derived from
Eq. (10.4) by performing a linear stability analysis of the absorbing state 	 D 0,
yielding

�QMFc D 1

�N

; (10.5)

where�N is the largest eigenvalue of the adjacency matrix.
The connection between the QMF and HMF approaches is easy to understand.

The Heterogeneous Mean-Field theory is equivalent to the assumption [9] that
the dynamics takes place on an annealed network, i.e. a network such that all
connections are rewired at a rate much faster than any dynamical process occurring
on it, preserving only the number of connections k of each node. This implies that
the adjacency matrix of the quenched network is effectively replaced by an annealed
adjacency matrix which, for uncorrelated networks, is

NA.ki ; kj / D kikj

hkiN : (10.6)

The largest eigenvalue of the annealed adjacency matrix is hk2i=hki and inserting
this expression into Eq. (10.5) the HMF threshold Eq. (10.3) is recovered. Thus
HMF theory corresponds to QMF theory with the additional approximation that
the adjacency matrix of the network is replaced by its annealed counterpart. Hence
the results of the QMF approach are expected to be more correct than those derived
using HMF.
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It is important to stress, however, that QMF theory is not exact. Equation (10.4)
contains indeed an approximation, the disregard of dynamical correlations among
the state of connected nodes. In the right hand side of Eq. (10.4), the rate of infection
of node i by its neighbor j should depend on the probability (h.1 � Xi/Xj i) that
i is not active and j is active, where Xi D 0 if the node is not active and Xi D 1

if it is active. Equation (10.4) is obtained by factorizing the product hXiXj i D
hXiihXj i D 	i	j , which is an approximation neglecting dynamical correlations.

The relevance of the QMF expression for the threshold becomes clear when one
uses the explicit expression for �N derived by Chung et al. [10] for power-law
degree distributed networks

�N D
(
c1

p
kmax

p
kmax >

hk2i
hki ln2.N /

c2
hk2i
hki

hk2i
hki >

p
kmax ln.N /:

(10.7)

Here kmax is the largest degree in the network, i.e. the number of connections of the
largest hub. Inserting the expression (10.7) into Eq. (10.5) and recalling that for a
power-law degree distribution hk2i 	 k

3��
max one finds [11]

�c '
(
1=

p
kmax � > 5=2

hki
hk2i 2 < � < 5=2:

(10.8)

The formula is in striking contrast with HMF theory: the QMF approach predicts
that the SIS epidemic threshold vanishes in the thermodynamic limit for any
value of the degree exponent � . In this framework, the fact that the threshold is
asymptotically zero has nothing to do with the presence or absence of the scale-free
property of the network.

The difference between the theoretical predictions of different approximations
calls for a numerical investigation of their accuracy. The problem turns out to be
difficult to tackle. The traditional way used to determine with precision the position
of an absorbing-state phase-transition is the Finite-Size-Scaling method: the density
	s.�;N / of active nodes is computed by restricting the average only to runs which
are still surviving and is plotted for fixed � as a function of the system size N . In
normal cases where the threshold goes asymptotically to a finite value, the critical
point is determined as the value of � such that 	S decays as a nontrivial power-
law of N , separating the supercritical regime where 	s goes to a constant and the
subcritical regime where it decays as N�1. In the case of SIS, however, things are
made complicated by the fact that the threshold position changes with N . It is only
possible to derive indirect evidence that �c is much smaller than the prediction of
HMF theory [11].

A more successful way to determine the position of the threshold in simula-
tions [12] considers the peak of the susceptibility


 D h	2i � h	i2
h	i : (10.9)
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The use of the quasi-stationary simulation method [13] allows a very precise
calculation of the susceptibility and hence of its peak. It turns out that for � < 5=2

both QMF and HMF theories (which give essentially the same prediction for
the position of the threshold) are in very good agreement with numerical results
and in the thermodynamic limit the two approaches tend to be exact. For larger
values of � results are less clear. In particular, for � > 3 (where HMF and QMF
give qualitatively different predictions) the susceptivity displays for large values
of the system size N two peaks. In such a case it is not clear which of the two
corresponds to the epidemic transition and should be compared with theoretical
approaches.

Some insight into the meaning of the two peaks is provided by analyzing
the physical origin of the different expressions for the epidemic threshold in
Eq. (10.5) [14]. To understand why the threshold scales as 1=

p
kmax for � > 5=2 it is

instructive to consider the star graph centered around the largest hub in the network,
composed by the hub and kmax leaves. The largest eigenvalue for such a subgraph
is

p
kmax, implying that the threshold for the star is �c D 1=

p
kmax D �QMF

c . When
one considers the star subgraph merged with the whole network it is clear that if
the isolated star is active it will remain active when its leaves are joined with other
nodes in the network. Hence the hub and its neighbors constitute a core of infected
nodes able to self-sustain the activity in the network. When the hub is active also the
whole network is active and this explains why the global threshold coincides with
the threshold for the star graph centered around the hub. In this sense the largest
hub triggers the activity in the network. For � < 5=2 it turns out that the role of
the trigger for the activity in the network is played by another subgraph, the set
of most densely interconnected nodes as identified by the core with largest index
in the k-core decomposition [14]. The two triggering mechanisms are present and
competing for any value of � . What changes above or below � D 5=2 is which of the
two dominates asymptotically. The presence of two distinct peaks in the numerical
evaluation of the susceptibility for � > 3 [12] is the reflection of the existence of two
competing mechanisms that may lead to the active state. While QMF theory predicts
that the decay 1=

p
kmax dominates asymptotically, the numerical evidence [12] is

not sufficient to firmly validate this conclusion.

10.5 Localized or Endemic Activity?

The investigation about the behavior of the epidemic threshold for the SIS model
was further enriched by a recent contribution by Glotsev et al. [15], considering not
only the value of the largest eigenvalue in power-law degree-distributed networks,
but also the associated Principal Eigenvector (PEV). It turns out that for � < 5=2 the
PEV is delocalized and this means that for � > �

QMF
c the active state is endemic,

i.e. a finite fraction 	 of the total number nodes is infected. For � < 5=2 instead,
the PEV is localized around the hub and its components decay exponentially with
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the topological distance from it. In such a case activity is concentrated around the
hub and involves only a finite number of nodes: the global prevalence vanishes for
large N . Finite prevalence is guaranteed only by delocalized eigenvectors, which
are associated to smaller eigenvalues, so that the effective threshold for endemic
activity occurs for higher values of �, in particular for � > �HMFc . In this picture
there are two transitions and three regimes, depending on the spreading rate �.
For � < �

QMF
c the system reaches asymptotically the absorbing state, with no

persisting activity whatsoever. For �QMFc < � < �HMFc the system is in an active
state, but activity remains localized around the largest hubs in the network. For
� > �HMFc the active state is endemic, involving a finite fraction of the whole
population.

This picture somehow reinstates the validity of HMF theory: the vanishing
threshold predicted by QMF theory for � > 5=2 only marks the presence of
some nonendemic activity in the system. The real transition to a veritable endemic
state occurs only for higher values of �, which do not vanish as N diverges. It is
however crucial to stress that this picture is derived within the QMF framework,
thus completely disregarding dynamical correlations.

Pushing further the argument by Goltsev et al., in their recent work Lee and
collaborators [16] pointed out the fact that activity in a star graph around an hub of
degree ki persists only over times scales ea�ki (with a a numerical constant), which
do not grow with the system size. Hence, for � > �c the activity around any hub
will be brought to zero by a fluctuation after a finite time. Thus, if hubs are isolated
and do not interfere with each other there will be rare active clusters surviving over
long but finite timescales. The resulting global activity will then slowly decay over
time like in a Griffiths phase [17]. One possible way out of this Griffiths-like phase
is the possibility that hubs are neighbors and reinfect each other, so that activity can
globally persist. By means of an argument based on a degree-ordered-percolation
process, Lee et al. show that while for � < 3 hubs do form connected clusters, this
is not the case for � > 3, so that the Griffiths-like decay to zero of the global activity
is to be expected.

10.6 A New Theoretical Approach

The QMF approach used by Goltsev et al. [15] completely neglects dynamical
correlations, which are instead partially taken into account by the approach of Lee
et al. [16], which considers the possibility of reinfection among nearest neighbors.
The recent work of Boguñá et al. [18] goes further and considers long-range
dynamical correlations, by including also the possibility of reinfection among
distant hubs in the network.

The basic idea of the approach is to consider the evolution over a coarse-grained
time scale. During this long temporal interval it is possible that even hubs which are
far apart in the network may infect each other, via a chain of intermediate infection
events of vertices along the path joining the hubs. The original evolution is thus
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replaced by an effective dynamics where all nodes are in contact with each other,
i.e. they are on a complete graph

d	i.t/

dt
D �Nı.ki ; �/	i .t/C

X

j¤i
N�.dij ; �/	j .t/Œ1 � 	i .t/�: (10.10)

where Nı.ki ; �/ and N�.dij ; �/ are, respectively, the recovery and the spreading rates
for this effective dynamics. The first can be straighforwardly estimated as

Nı.ki ; �/ D e�a.�/ki (10.11)

with a.�/ 	 �2 [18]. The estimate of the spreading rate is more complicated.
However it is possible to derive an expression for it

N�.dij ; �/ D �e�b.�/.dij�1/ (10.12)

where dij is the topological distance between vertices i and j and b.�/ D
ln.1 C 1=�/. This expression is derived under the simplifying assumption that i
and j are connected only via a linear chain of nodes of degree 2, thus neglecting
the possible presence of multiple paths and the fact that intermediate nodes may
have degree larger than 2. For this reason Eq. (10.12) is an underestimate of the true
effective spreading rate and the threshold obtained using it is an upper bound of
the true epidemic threshold. For random small-world graphs the average distance
between node i and j is [19]

dij D 1C
ln
	
N hki
kikj




ln �
(10.13)

where � D hk2i=hki � 1. Performing as usual a linear stability analysis one obtains
the condition setting the threshold [18]

a.�c/kmax ' O.ln.N // (10.14)

This condition implies that, for any finite � (for which kmax diverges faster than
ln.N /) a.�c/ must vanish in the thermodynamic limit and hence �c must vanish
as well. If one inserts the expression a.�/ 	 �2 the prediction for the scaling
of the threshold is, apart from logarithmic corrections, the same of QMF theory.
Notice that, since the effective dynamics takes place on a complete graph, this
threshold corresponds to a transition to an endemic active state. It is also important
to remark that if the network has no small-world property and the average distance
between two nodes grows as Nˇ the same argument gives a finite or a vanishing
threshold depending on the value of ˇ [18], in agreement with the simulations of
Lee et al. [16].
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10.7 A New Numerical Approach

In order to validate the new theoretical results, we have devised a new way
to measure the threshold in numerical simulations, overcoming the problems
encountered considering finite-size-scaling or the peak of the susceptibility.

The new approach is aimed in particular at discriminating the case of an active
state localized around the hubs of the network from the case of a truly endemic state
which involves (although with a very small prevalence) the whole system. The idea
is to perform spreading experiments, i.e. start with only one infected node (for sim-
plicity we will consider the largest hub, but no qualitative difference occurs for other
choices) and compute the lifetime of the outbreak [18]. In an infinite system, for
� < �c all runs reach the absorbing state after a finite lifetime. Above the epidemic
transition instead a fractionPend .�/ of them will have an infinite lifetime, reaching a
stationary endemic state with a finite fraction of nodes infected. Pend .�/ is an order
parameter for the transition, while the average lifetime NT .�/ of finite realizations
plays the role of a susceptibility, being small far from the transition and having a
peak at �c . However, in finite systems no realization has a truly infinite lifetime,
since rare fluctuations lead to the absorbing state even well above the transition.
Therefore, in order to identify endemic realizations in computer simulations we
compute the coverage (the fraction of nodes which have been infected at least once
during an outbreak) and declare the realization endemic if the coverage exceeds a
predefined threshold C [18]. For computational convenience we took C D 0:5 but
we tested that larger values of C do not significantly change the results.

We performed numerical simulations of the SIS dynamics on uncorrelated
random small-world networks, built according to the uncorrelated configuration
model [20]. For � D 2:25 < 5=2 we find (Fig. 10.3) perfect agreement with
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Fig. 10.3 Comparison between the numerical evaluation of the threshold using the coverage
method for � D 2:25 (left panel) and � D 2:75 (right panel) with the results of HMF and QMF
theories. The minimum value of k is kmin D 3
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Fig. 10.4 Comparison between the numerical evaluation of the threshold using the coverage
method for � D 3:5 (left panel) and � D 4 (right panel) with the results of HMF and QMF
theories. The minimum value of k is kmin D 3 for � D 3:5 and kmin D 2 for � D 4

previous results obtained using the susceptibility method [12]. The same occurs for
� D 2:75, where the numerical threshold scales to zero like the QMF prediction,
faster than the HMF prediction. For larger values of � HMF and QMF theories
diverge, since the former predicts a finite threshold in the limit of largeN , while the
latter predicts a vanishing threshold. Numerical simulations (Fig. 10.4) indicate that
�c actually goes to zero in the thermodynamic limit. Equation (10.14) provides as
expected an upper bound to the true position of the threshold and the difference is
rather small. It is also worth to mention that QMF theory predicts the correct scaling
for �c but largely underestimates the prefactor.

10.8 Conclusions

The behavior of the susceptible-infected-susceptible dynamics on networks turns
out to be highly nontrivial and difficult to tackle both theoretically and numerically.
Starting from the simplest mean-field theory, many approaches, of increasing
level of complexity, have been applied to calculate the position of the epidemic
threshold and its scaling in the thermodynamic limit. The heterogeneity of the
degree distribution, the quenched structure of the network, localization of activity,
short and long range dynamical correlations are the ingredients that had to be
taken into account. It turns out that all of them are needed in order to reach a
satisfactory understanding of the intricate SIS dynamics. The final conclusion is
that the epidemic threshold vanishes in the limit of infinite network size N , for any
value of � .
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Concerning more in general the problem of dynamics on complex networks, a
naive expectation would be that, since networks are infinite-dimensional substrates,
simple mean-field approaches should be able to correctly describe dynamical
processes taking place on them. The example of SIS clearly indicates that subtle
effects may occur, leading to a picture considerably more complex than the naive
mean-field expectation. This example calls for a general reconsideration of the
behavior of dynamical processes on complex networks and of the validity of mean-
field approaches for these problems.
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Chapter 11
Physics on Graphs

Robert Schrader

Abstract This is an extended version of the talk given at the Nato Advanced
Research Workshop: New Challenges in Complex System Physics, May 20–24, 2013
in Samarkand (Uzbekistan). We report on results on three topics in joint work with
V. Kostrykin (Mainz, Germany) and J. Potthoff (Mannheim, Germany):

• Propagation of waves on graphs,
• Brownian motion on graphs,
• One particle quantum dynamics on graphs.

11.1 Basic Concepts

In this talk we will use the following notion of a metric graph G . It is a finite
collection of half lines D external edges and finite intervals D internal edges of
given lengths with an identification of some of their endpoints (D vertices). The
figure below shows a connected graph with 8 vertices, 7 external and 17 internal
edges and 1 tadpole.
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When the graph is connected, then it makes sense to speak of the distance between
two points.

The main mathematical object appearing in this talk is the Laplace operator,
which as a first definition is the second derivative of functions on the graph away
from the vertices. At the vertices ambiguities arise.

Indeed, metric graphs are singular spaces, the singularities being just the vertices.
And this makes such spaces interesting, as we will see both from the mathematical
and the physical point of view. For the Laplace operator it turns out that things
become interesting when certain boundary conditions at the vertices are introduced.
As a consequence there are many Laplace operators, according to the particular
choice of such boundary conditions. Here are two first examples:

The first graph is just the half-line RC with a vertex at the origin.

The Robin boundary condition for a suitable square integrable function f on R
C

cos� f .0/C sin � f 0.0/ D 0

is parametrized by �.
The second graph is the real axis R, again with a vertex at the origin. The

boundary conditions for suitable functions g on R

g.0�/ D g.0C/; g0.0C/� g0.0�/ D �g.0/

describe a so-called delta-potential of strength � (real) at the origin.
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A single vertex graph is given by an arbitrary finite set E of external edges, each
Š Œ0;1/. with one common vertex.

Boundary conditions, which define self-adjoint Laplace operators on the Hilbert
space of all square integrable functions f on this single vertex graph are given as
follows. Let fe denote the restriction to the external edge e of a function f and
set f .0/ D ffe.0/ge2E ; f 0.0/ D ff 0

e .0/ge2E , viewed as columns vectors of length
n D jE j, the number of edges. Let A and B be two complex n 
 n matrices, also
labeled by the edges e, Provided the n 
 2n matrix .A;B/ has maximal rank D n,
and provided AB is hermitian, then the boundary conditions

Af .0/C Bf 0.0/ D 0

define a self-adjoint Laplace operator. The two examples given above are of this
type. On any other graph boundary conditions of this form at each vertex also give
rise to self-adjoint Laplace operators. Moreover, all self-adjoint Laplace operators
are obtained in this way.

References: [1]. For additional references, see also the talk given by P. Exner
at this conference as well as those given in the articles [1–12] (Kostrykin et al.,
2008, Brownian motion on metric graphs: Feller Brownian motions on intervals
revisited, unpublished, arXiv: 1008.3761; Kostrykin and Schrader, 2004, Generating
functions of random walks on graphs, unpublished, arXiv: math.CO/0404467;
Kostrykin and Schrader, 2006 The inverse scattering problem for metric graphs
and the traveling salesman problem, with V. Kostrykin, unpublished, arXiv: math-
ph/0603010).
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11.2 Finite Propagation Speed for Solutions
of the Wave Equation on Graphs

Light can be described as a solution of equations carrying the name of James Clerk
Maxwell (1831–1879). These equations were published in 1864. The experimental
verification was done by Heinrich Hertz (1857–1894) in the year 1886. Special
solutions for the electric and magnetic fields in the vacuum, that is in the absence of
charges and currents, are of the form

E.x; t/ D E0 ei.!tCk
x/;

B.x; t/ D B0 ei.!tCk
x/:

The three vectors E0; B0 and k are pairwise orthogonal and E0 and B0 have equal
length. Also k and ! are related by ! D ˙jkjc, where c is the speed of light. As a
consequence of being solutions of the Maxwell equations they also are solutions of
the wave equation

�E.x; t/ D 0;

�B.x; t/ D 0:

� is the d’Alembert operator:

� D 1

c2
@2

@t2
��;

and� is the Laplace operator:

� D @2

@x21
C @2

@x22
C @2

@x23
:

An important consequence is the property of finite propagation speed: Any (light)
signal sent out at time t D 0 at the point x0 can arrive at the point x at time t > 0

only when the distance between x0 and x is exactly ct (and not earlier). Instead
of ordinary euclidean space R

3 one may also consider a Riemannian manifold M .
In particular on M the notion of a distance between two points is well defined.
On such a space there exists a canonical Laplace operator �, called the Laplace-
Beltrami operator operating on functions on M . So the d’Alembert operator is well
defined. It operates on functions of x 2 M and time t . Again one can prove finite
propagation speed.

In the context of metric graphs one can find a class of boundary conditions,
such that the associated Laplace operators � are non-positive, that is �� � 0.
The associated wave kernel

W.t/ D sin
p��tp��
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allows one to solve the initial value problem: For given functions  0 and P 0 on the
graph

 .t/ D @tW.t/ 0 CW.t/ P 0
satisfies  .t D 0/ D  0 and @t .t D 0/ D P 0 and is a solution of the wave
equation

� .t/ D 0:

More importantly, finite propagation speed has the following formulation:
For t � 0 the support of  .t/ is contained in the set of points, that have distance

at most ct from the support of  0 and the support of P 0.
We recall: The support of a function f is the smallest closed set outside of which

the function vanishes identically.
References: [2, 3].

11.3 Brownian Motion on Graphs

In 1829 Robert Brown published an article in the Philosophical Magazine, where
he described “rapid oscillatory motion” of pollen in water. This phenomenon
now carries his name: Brownian motion. He made many observations on different
materials, organic and inorganic.

The first to provide a full fledged theory explaining this phenomenon were Albert
Einstein (1905) and Marian Smoluchowski (1906), though there were precursors
like Louis Bachelier (1900) in his thesis “The theory of speculation”.

Making some probabilistic assumptions Einstein derived the diffusion equation

@	.x; t/
@t

D D�	.x; t/:

D is called the coefficient of diffusion. Thus if a Brownian particle starts (in three
dimensional space) at time t D 0 at the point y, that is 	.x; t D 0/ D ı.x � y/, then

	.x; t/ D 1

.4�Dt/3=2
e� jx�yj

2

4Dt

gives the probability of finding the particle at x at time t . For the choice D D 1

the right hand side is called the heat kernel, that is the integral kernel of exp t�.
Starting from this, it is possible to construct what is now called a Wiener process,
the mathematical description of a Brownian motion. Also in this context the Laplace
operator is called the infinitesimal generator of the process.
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Motivated by this we have found all self-adjoint Laplace operators � on any
given graph, whose heat kernel exp t�.p; q/, with p and q being points on the
graph, is positive. This is the essential ingredient, which allows one to construct
a Wiener process on the graph having such a Laplace operator as its infinitesimal
generator.

However, there exist additional processes on any given graph, whose infinitesi-
mal generators are non-self-adjoint Laplace operators. They satisfy another set of
boundary conditions, which, however, again are local: At any such vertex v of the
graph the Wentzell’s boundary conditions are of the form

f .ve/ D f .v/ for all e 2 E

f 00.ve/ D f 00.v/ for all e 2 E

af .v/ �
X

e

bef
0.ve/C 1

2
c f 00.v/ D 0

with a; be; c � 0 and a CP
e be C c D 1.

f is a function on the graph, e labels an edge and f 0.ve/ denotes the outward
derivative of f at v along the edge e. Also f is such all its second outward
derivatives along each edge exist and are equal. They are written as f 00.v/.

Interpretation of the parameters in these boundary conditions:

• ˇ D a=.1� a � c/ describes the probability on an exponential scale of the local
time at the vertex that the Brownian particle will die, that is move to a cemetery,
when it arrives at the vertex v.

• � D c=.1 � a � c/ measures a certain stickiness of the vertex, given by a slow
down of the Brownian motion near the vertex.

•
0 � we D 1

1 � a � c
be;

is the probability, that the Brownian particle, upon arrival at the vertex and unless
it has died, will move from v continuously into the edge e.

• Any set of such boundary conditions at each vertex gives a so called Feller
process.

• Conversely the infinitesimal generator of each Feller process on the graph is a
Laplace operator with boundary conditions of this form.

We have constructed these processes explicitly, first by constructing them on star
graphs and then by gluing them together.

Open problem (work in progress) :
The study of processes, where the Brownian particle can jump from a vertex

into an edge or to another vertex, that is, processes subject to non-local boundary
conditions.

References: [4–6] (Kostrykin et al., 2008, Brownian motion on metric graphs:
Feller Brownian motions on intervals revisited, unpublished, arXiv: 1008.3761).
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11.4 One Particle Quantum Dynamics on Graphs

In the year 1925 Erwin Schrödinger (1987–1961) wrote down the equation

i„ @
@t
 .t/ D H .t/;

which now carries his name. It is the time evolution equation for a quantum
mechanical state  .t/. „  .t/ is an element of a complex Hilbert space and H
is the Hamilton operator, a self-adjoint linear operator acting in this space. This is a
very general feature:

A dynamical quantum system is given by the specification of the Hilbert space
and of H .

An important example is the Hilbert space L2.R3/ of all square integrable
functions  .x/ on R

3 and

H D � „2
2m

�C V.x/:

It provides the quantum mechanical description of a particle of mass m moving
under the influence of a potential V.x/. For vanishing potential, one speaks of free
motion.

Letting V be the Coulomb potential, Schrödinger was able to solve (with the help
of Hermann Weyl) the stationary Schrödinger equation

H D E 

for all energy eigenvalues of the hydrogen atom.
Model on the graph G :
The Hilbert space is L2.G /, the set of all square integrable functions on G (D

wave packets on G ) and the Hamiltonian is

H D � „2
2m

�

where � is any self-adjoint Laplace operator. So this describes free motion of the
quantum particle away from the vertices.

Consequence of self-adjointness:
For a given state  .x/ define the quantum current

j.x/ D i

2m

�
 .x/

d

dx
 .x/ �

�
d

dx
 .x/

�
 .x/

�
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Then at any vertex v the following quantum version of the local Kirchhoff law holds:

X

eWv2@.e/
j.ve/ D 0;

that is the sum of the currents at each “node” (Dvertex) v vanishes.
So again the boundary conditions specify, how a wave-packet is split up, when it

reaches a vertex.
One may discuss scattering theory: Imagine a wave-packet under the time

evolution entering the graph through one of its external edges.
Question: What happens asymptotically for large times?
The answer is given in form of the so called on-shell S-matrix at energy E , in

this case it is a matrix

S.E/e e0 ;

where e and e0 label the external edges of the graph G . Using linear algebra, it
can be calculated explicitly in terms of the boundary conditions, which define the
Laplacian.

This matrix is unitary:

X

e

S.E/ee0S.E/ee00 D ıe0e00 :

In particular when e0 D e00: The total probability for a quantum particle of energyE
entering the graph at any external edge e0 and leaving through any edge e equals 1.
In analogy to Kirchhoff’s law for currents in electrical circuits, for this we coined
the name

Kirchhoff’s rule for quantum wires.

Given the on-shell scattering matrix for all energies, the graph and the Laplace
operator (that is its boundary conditions) can be recovered. This also provides a
quantum approach to solving the traveling salesman problem. The presence of
magnetic fields can also be mimicked through so-called quantum fluxes.

References: [1, 7–12] (Kostrykin and Schrader, 2004, Generating functions
of random walks on graphs, unpublished, arXiv: math.CO/0404467; Kostrykin
and Schrader, 2006 The inverse scattering problem for metric graphs and
the traveling salesman problem, with V. Kostrykin, unpublished, arXiv: math-
ph/0603010).
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Chapter 12
Resonances in Quantum Networks and Their
Generalizations

Pavel Exner

Abstract We discuss resonances in quantum graphs and their more general analogs
having ‘edges’ of different dimensions. Since the notion of resonance may mean
different things, we show that the two most common definitions, scattering and
resolvent resonances, are equivalent in this case. We analyze the high-energy
behavior of resonances in quantum graphs and show that it may deviate from the
standard Weyl law prediction; we derive a criterion which shows when such a thing
happens. We also investigate influence of magnetic fields on graph resonances and
show that they are field configurations which remove all ‘true’ resonances from such
systems.

12.1 Introduction

Quantum graphs are in fact an old invention. The idea of a quantum particle the
motion of which is confined to a graphs was first spelled out by Linus Pauling in the
1930s and two decades later worked out as a model of aromatic hydrocarbons [29].
After that, however, it was happily forgotten and rediscovered only in the second
half of the 1980s when it found new use as a model of numerous experimentalist-
made microstructures created from semiconductor or metal, later also from carbon
nanotubes and other materials. Apart from its practical importance the concept
appeared to be fruitful as a tool to understand properties of quantum systems with a
complicated geometry and topology.
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One of the dominant attractive features of the model is in its simplicity. The
motion on graph edges is described typically by a one-dimensional Schrödinger
equation and the nontrivial part is the coupling of the wave function at the graph
vertices. It is easy to derive how such couplings should look like, using the
requirement of the probability current conservation, however, it is much more
complicated to understand the meaning of these couplings. A natural idea is to start
with ‘fat graphs’ which have only few free parameters and to look what we obtain
if such a network shrinks to its graph ‘skeleton’. The founding paper [29] offered
a heuristic argument that such a limit would lead to the simplest coupling, usually
dubbed Kirchhoff.

From the mathematical point of view the problem appeared to be rather difficult.
After many efforts the heuristic argument was turned into a sound mathematical
proof [28] which works for tubes with ‘soft’, or Neumann-type boundary, yielding
indeed the Kirchhoff coupling. On the other hand, for tubes with ‘hard’, of Dirichlet
boundary, the shrinking limit is completely different and its mechanism has been
clarified only recently—see, e.g., [20]. Moreover, one asks whether by shrinking
Neumann networks one can obtain other—or in fact all—coupling consistent with
probability current conservation. An affirmative answer to this question is very
fresh: it requires addition of local properly scaled potentials and magnetic fields
as well as a local modification of the graph topology [16].

Since it rebirth 25 years ago the theory of quantum graphs attracted a lot of
attention and a literature about the subject is vast indeed; we can refer the reader to
the fresh monograph [3] for a rather exhaustive bibliography. The list of problems
studied in this field is also very wide; let us mention just a few items:

• There is a spectral duality between this differential equation problem and a class
of difference equations, originally by found by Alexander and de Gennes in the
early 1980s, and mathematically established in [7, 12, 27]

• Very useful are trace formulæ expressing spectral properties a compact graph
Hamiltonian in terms of closed orbits on the graph [4, 24]

• Attention has been paid to inverse problems characterized by the question ‘Can
one hear the shape of a graph?’—[21] and numerous subsequent papers

• Randomness on a graph can cause Anderson localization but some absolutely
continuous spectrum may survive—see, e.g., [2, 19, 22]

• One can create gaps in a quantum graph spectrum by decoration [25, 30]

There are many more interesting results; for a survey we refer to the monograph [3].
The topic of this talk are resonances on quantum graphs and there is probably

no need in explaining how important effect it is. Quantum graphs represent an
environment where resonances are often observed; the reason is that they can be
generated here in a purely geometric way [13]. We are going to address several
questions, in the first place the meaning of a resonance and their behavior in the
high-energy asymptotics, motivated by a recent surprising observation of Davies
and Pushnitski [9]. Furthermore, we will investigate the influence of a magnetic
field on graph resonances; we shall show that such a field can change the effective
size of the graph.
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In the second part of the talk we shall look into a generalization of the quantum
graph model. We are going to examine a class of systems the configuration space of
which is a complex, or a ‘graph’ whose edges may have different dimensions. We
shall again show that the concept of a resonance is well defined in this context and
examine the influence of a magnetic field, in particular, we will give an example of
a systems in which a singular magnetic field destroys the resonances.

12.2 Resonances: Some General Observations

Quantum mechanical resonances come typically from perturbations of eigenvalues
embedded in the continuum. Quantum graphs offer may examples; the reason is
that for their Hamiltonians the unique continuation principle is often not valid and
they can have compactly supported eigenfunction; this typically happens if zeros
of an eigenfunction coincide with the vertices where external leads are attached.
A caution is needed, however, since resonances are defined in different ways, in
particular, as

• Poles of the analytically continued resolvent
• Singularities of the analytically continued on-shell S matrix

Consider a graph � consisting of families od vertices V D fXj W j 2 I g, finite
edges L D fLjn W .Xj ;Xn/ 2 IL � I 
 I g and infinite ones L1 D fLj1 W
Xj 2 IC g. The corresponding state Hilbert space is

H D
M

Lj2L
L2.Œ0; lj �/˚

M

Lj12L1

L2.Œ0;1// I

its elements are columns � D .fj W Lj 2 L ; gj W Lj1 2 L1/T . The

Hamiltonian acts as � d2

dx2 on each link being defined on H2
loc functions satisfying

the boundary conditions .U � I /�n C i.U C I /� 0 D 0 at the n-th vertex, where
�n; �

0
n are subcolumns of boundary values at the vertex and Un is a unitary matrix.

For more complicated graphs it might be cumbersome to write them; a useful trick
is to replace � by the ‘flower-like’ graph putting all the vertices to a single point.
Its degree is 2N CM , where N WD cardL and M WD cardL1, and the coupling
is described by a ‘big’, .2N CM/
 .2N CM/ unitary block diagonal matrix U ,

.U � I /� C i.U C I /� 0 D 0 I (12.1)

the blocks Uj correspond to the vertices of � and in this way the structure of U
encodes the original topology of the graph—cf. Fig. 12.1.

Poles of the analytically continued resolvent .H � �/�1 can be find by exterior
complex scaling which turns H into a non-selfadjoint operator; resonances are its
complex eigenvalues. Looking for them we leave the compact part of the graph
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l1

l2l3

l4

lN

Fig. 12.1 A way to encode
the graph topology into the
coupling description

without change and set fj .x/ D aj sin kxCbj cos kx on the j -th internal edge. On
the other hand, functions on the external leads are scaled by gj� .x/ D e�=2gj .xe� /
with an imaginary � rotating the essential spectrum into the lower complex
halfplane; the ‘exterior’ boundary values at energy k2 are thus to gj .0/ D e��=2gj�
and g0

j .0/ D ike��=2gj� . Substituting them into (12.1) we get the condition

det Œ.U � I / C1.k/C ik.U C I / C2.k/� D 0 ; (12.2)

where Cj WD diag .C .1/
j .k/; C

.2/
j .k/; : : : ; C

.N/
j .k/; i j�1IM�M / with

C
.j /
1 .k/ D

�
0 1

sin klj cosklj

�
; C

.j /
2 .k/ D

�
1 0

� cosklj sin klj

�
I

complex values of k that solve this condition indicate the resonance pole positions.
To deal with scattering resonances, on the other hand, we choose a combination

of two planar waves, gj D cj e�ikxCdj eikx, as an Ansatz on the external edges; we
ask about poles of the matrix S D S.k/ which maps the amplitudes of the incoming
waves c D fcng into amplitudes of the outgoing waves d D fdng by the relation
d D Sc. The boundary conditions then yield

.U � I /C1.k/

0
BBBBBBBBBBBBB@

a1
b1

a2
:::

bN

c1 C d1
:::

cM C dM

1
CCCCCCCCCCCCCA

C ik.U C I /C2.k/

0
BBBBBBBBBBBBB@

a1
b1

a2
:::

bN

d1 � c1
:::

dM � cM

1
CCCCCCCCCCCCCA

D 0

Since we are interested in zeros of detS�1, we regard the above relation as an
equation for variables aj , bj and dj while cj are just parameters. Eliminating the
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variables aj , bj one derives from here a system ofM equations expressing the map
S�1d D c. It is not solvable, detS�1 D 0, provided

det Œ.U � I / C1.k/C ik.U C I / C2.k/� D 0 :

This is the same solvability condition as for the previous system of equations, hence
we are able to make the following conclusion [13]:

Theorem 12.1. The two above resonance notions, the resolvent and scattering one,
are equivalent for quantum graphs.

Before proceeding further let us show how the task can be reduced to inves-
tigation of the compact subgraph only by replacing the coupling at the vertex
where external semi-infinite edges are attached by an effective one obtained by
eliminating the external variables. We suppose that the matrix in (12.2) is of the

form U D
�
U1 U2
U3 U4

�
, where U1 is the 2N 
 2N square matrix referring to the

compact subgraph, U4 is the M 
M square matrix related to the exterior part, and
U2 and U3 are rectangular matrices of the size M 
 2N and 2N 
M , respectively,
connecting the two. If the matrix Œ.1� k/U4 � .k C 1/� is regular, one obtains from
here

. QU .k/� I /.f1; : : : ; f2N /
T C i. QU.k/C I /.f 0

1 ; : : : ; f
0
2N /

T D 0 ;

where the effective coupling matrix

QU .k/ D U1 � .1 � k/U2Œ.1 � k/U4 � .k C 1/I ��1U3 (12.3)

is obviously energy-dependent and, in general, may not be unitary.

12.3 High-Energy Asymptotics

The following considerations are motivated by a serendipitous observation of Davies
and Pushnitski [9] concerning the high-energy asymptotics of graph resonances.
To describe it, we employ the counting function N.R;F / defined as the number
of zeros of F.k/ in the circle fk W jkj < Rg of given radius R > 0, algebraic
multiplicities taken into account. If the function F comes from resonance secular
equation we count in this way number of resonances within the given circle; let us
stress that by resonances we mean here both the ‘true’ resonances and embedded
eigenvalues corresponding to resolvent poles at the real axis.

Davies and Pushnitski noted that if the coupling is Kirchhoff and some external
vertices are balanced, i.e. connecting the same number of internal and external
edges, then the leading term in the asymptotics may be smaller than the standard
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Weyl formula prediction. Let us look how the situation looks like for graphs in which
Kirchhoff is replaced by a more general vertex coupling. To this aim we first rewrite
the secular equation; denoting ej̇ WD e˙iklj and e˙ WD ˘N

jD1ej̇ , one can cast it
into the form

0 D det

�
1

2
Œ.U �I /C k.UCI /�E1.k/C 1

2
Œ.U�I /C k.UCI /�E2Ck.UCI /E3

C .U�I /E4 C Œ.U �I / � k.UCI /� diag .0; : : : ; 0; IM�M/

;

where Ei.k/ D diag
	
E
.1/
i ; E

.2/
i ; : : : ; E

.N/
i ; 0; : : : ; 0



, i D 1; 2; 3; 4, consists of N

nontrivial 2 
 2 blocks

E
.j /
1 D

 
0 0

�ieC
j eC

j

!
; E

.j /
2 D

 
0 0

ie�
j e

�
j

!
; E

.j /
3 D

�
i 0

0 0

�
; E

.j /
4 D

�
0 1

0 0

�

and the trivial M 
M part.
Beauty of mathematics comes from the fact it is æternal, often you can take

advantage of results obtained before any of the conference participants was born.
In the present case, looking for zeros of the right-hand side we can employ a
modification of a classical result on zeros of exponential sums [26]:

Theorem 12.2. Let F.k/ D Pn
rD0 ar .k/ eik�r , where ar.k/ are rational functions

of the complex variable k with complex coefficients, and the numbers �r 2 R satisfy
�0 < �1 < � � � < �n. Suppose that limk!1 a0.k/ 6D 0 and limk!1 an.k/ 6D 0.
Then there are a compact˝ � C, real numbersmr and positive Kr , r D 1; : : : ; n,
such that the zeros of F.k/ outside ˝ lie in the logarithmic strips bounded by the
curves �Im k C mr log jkj D ˙Kr and the counting function behaves in the limit
R ! 1 as

N.R;F / D �n � �0

�
RC O.1/

Applying this result to our situation, where �n D L and �0 D �L it might seem we
get the Weyl asymptotics, however, this happens only if the coefficients of e˙ in the
resonance condition do not vanish. In order to find them, we pass to the effective
boundary conditions described above,

0 D det

�
1

2
Œ. QU .k/ � I /C k. QU .k/C I /� QE1.k/

C 1

2
Œ. QU .k/� I /� k. QU .k/C I /� QE2.k/C k. QU .k/C I / QE3

C . QU .k/ � I / QE4

;
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where QEj are the nontrivial 2N 
 2N parts of the matrices Ej and I denotes the
2N 
2N unit matrix. By a direct computation we find the sought coefficient values.

Lemma 12.1. The coefficients of senior and junior term, e˙ respectively, in the
above equation are

�
i
2

�N
det Œ. QU .k/ � I /˙ k. QU .k/C I /�.

This leads us to the following conclusion [10]:

Theorem 12.3. Consider a quantum graph .�;HU / corresponding to � with
finitely many edges and the coupling at vertices Xj given by unitary matrices Uj .
The asymptotics of the resonance counting function as R ! 1 is of the form

N.R;F / D 2W

�
RC O.1/ ;

where W is the effective size of the graph. One always has

0 � W � V WD
NX

jD1
lj :

MoreoverW < V—that is, graph is non-Weyl in the terminology of [9]—if and only
if there exists a vertex where the corresponding energy dependent coupling matrix
QUj .k/ has an eigenvalue .1 � k/=.1C k/ or .1C k/=.1 � k/.

Let us apply this result first to graphs with the coupling which is invariant w.r.t.
edge permutations. Any such coupling in the j -th vertex is described a matrix of the
form Uj D aj J C bj I , where the coefficients aj ; bj 2 C are such that jbj j D 1

and jbj C aj degXj j D 1; matrix J has all the entries equal to one; note that both
the ı and ı0

s [11] are particular cases of such a coupling. We need a couple of simple
auxiliary statements:

Lemma 12.2. (a) The matrix U D aJn�n CbIn�n has eigenvalue b of multiplicity
n�1 and simple eigenvalue naCb. Its inverse is U�1 D � a

b.anCb/Jn�nC 1
b
In�n.

(b) Let p internal and q external edges be coupled with boundary conditions given
by U D aJ.pCq/�.pCq/ C bI.pCq/�.pCq/. Then the energy-dependent effective
matrix of the compact part is QU .k/ D ab.1�k/�a.1Ck/

.aqCb/.1�k/�.kC1/Jp�p C bIp�p .

Combining them with the above theorem we find easily that within the permutation-
invariant class there are only two cases which exhibit non-Weyl asymptotics [10]:

Theorem 12.4. Let .�;HU / be a quantum graph with the coupling described by
the matrices Uj D aj J C bj I . Then it has non-Weyl asymptotics if and only if
at least one of its vertices is balanced, p D q, and the coupling at this vertex is
either

(a) fj D fn; 8j; n � 2p,
P2p

jD1 f 0
j D 0, i.e. U D 1

p
J2p�2p � I2p�2p , or

(b) f 0
j D f 0

n ; 8j; n � 2p,
P2p

jD1 fj D 0, i.e. U D � 1
p
J2p�2p C I2p�2p .
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Γ0

U(2) U(1)

l0

Fig. 12.2 A graph with a balanced vertex

In other words, there are only two possibilities of non-Weyl behavior in the
permutation-invariant class, one of them being the one noticed in [9].

One asks naturally where the effect comes from. We are going to show that,
roughly speaking, the (anti)Kirchhoff conditions at balanced vertices are ‘too easy
to decouple’ which leads to diminishing the size of the graph. Consider graph
sketched in Fig. 12.2 which has a balanced vertex X1 which connects p internal
edges, supposed to be of the same length l0, and p external edges with the coupling
given by a unitary U .1/ D aJ2p�2p CbI2p�2p . The coupling to the rest of the graph,
denoted as �0, is described by a q 
 q matrix U .2/, where q � p holds necessarily;
needless to say such a matrix can hide different topologies of this part of the graph.
Note that the assumption about the same edge length is made here for convenience
only; we can always satisfy it by adding ‘dummy’ Kirchhoff vertices.

Lemma 12.3. Consider � be the coupling given by arbitrary U .1/ and U .2/. Let V
be any unitary p
p matrix, V .1/ WD diag .V; V / and V .2/ WD diag .I.q�p/�.q�p/; V /
be 2p
2p and q
q block diagonal matrices, respectively. ThenH on � is unitarily
equivalent to the HamiltonianHV on topologically the same graph with the coupling
given by the matrices ŒV .1/��1U .1/V .1/ and ŒV .2/��1U .2/V .2/.

In application to our system we choose U .1/ D aJ2p�2p C bI2p�2p at X1,
while the columns of W will be an orthonormal set of eigenvectors of the p 
 p

block aJp�p CbIp�p , the first one being 1p
p
.1; 1; : : : ; 1/T. The transformed matrix

ŒV .1/��1U .1/V .1/ decouples into blocks connecting only pairs .vj ; gj /. The first one
corresponding to a symmetrization of all the uj ’s and fj ’s, leads to the 2
 2 matrix
U2�2 D apJ2�2 C bI2�2, while the other lead to separation of the corresponding
internal and external edges described by the Robin conditions, .b�1/vj .0/Ci.bC
1/v0

j .0/ D 0 and .b�1/gj .0/C i.bC1/g0
j .0/ D 0 for j D 2; : : : ; p. The ‘overall’

Kirchhoff/anti-Kirchhoff condition atX1 is transformed to the ‘line’ Kirchhoff/anti-
Kirchhoff condition in the subspace of permutation-symmetric functions, reducing
the graph size by l0. In all the other cases the point interaction corresponding to the
matrix apJ2�2 C bI2�2 is nontrivial, and consequently, the graph size is preserved.

Remark 12.1. Before proceeding further, let us note that the situation is different if
we leave the class of permutation symmetric couplings. Using again the trick with
unitary equivalence of the involved matrices, one show that in the general case the
graph can have a non-Weyl asymptotics even if none of its vertices is balanced; a
simple example of� consisting of a line with a segment attached is analyzed in [10].
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l

l

l

l

l

Fig. 12.3 A graph with a discrete rotational symmetry

One might have the feeling that the effect is related to the coupling in each vertex
separately, but we are going to show that this is not the case—the effective size is
a global property. To this aim, let us analyze the following simple example with
� of the form sketched above. We fix n � 3 and consider a regular n-gon, each
edge having length `, and attach two semi-infinite leads to each vertex, assuming
Kirchhoff coupling there. Hence each vertex is balanced and we know that the
effective size Wn is strictly less than Vn D n`. We have, however, the following
result [10] (Fig. 12.3).

Proposition 12.1. The effective size of the graph �n is given by

Wn D
�
n`=2 if n 6D 0 mod 4;
.n� 2/`=2 if n D 0 mod 4:

Let us sketch the proof. We employ Bloch-Floquet decomposition of H w.r.t. the
cyclic rotation group Zn. It leads to analysis of one segment with ‘quasimomentum’
! satisfying !n D 1; after a short computation we find that H! has a resonance iff

�2.!2 C 1/C 4!e�ik` D 0:

Hence the effective sizeW! of the system of resonances ofH! is `=2 if !2C1 6D 0

but it is zero if !2 C 1 D 0. Now !2 C 1 D 0 is not soluble if !n D 1 and
n 6D 0 mod 4, but it has two solutions if n D 0 mod 4. �



168 P. Exner

Let us next look what happens if we add a magnetic field. In that case the
Hamiltonian acts as �d2=dx2 at the infinite leads and as �.d=dx C iAj .x//

2 at
the internal edges, where Aj is the tangent component of the vector potential. Its
domain consists of functions in W 2;2.� / satisfying

.Uj � I /�j C i.Uj C I /.� 0
j C iAj�j / D 0 :

Using the local gauge transformation  j .x/ 7!  j .x/e�i
j .x/ with 
j .x/0 D
Aj .x/ one gets unitary equivalence to free Hamiltonian with the coupling

.UA � I /� C i.UA C I /� 0 D 0 ; UA WD FUF�1 ;

where F D diag .1; exp .i˚1/; : : : ; 1; exp .i˚N /; 1; : : : ; 1/ containing magnetic

fluxes ˚j D R lj
0 Aj .x/ dx. Using the effective coupling matrix QU .k/ as in the non-

magnetic case [14] we infer that

Theorem 12.5. Let � be a quantum graph with N internal and M external edges
and coupling given by a .2N C M/ 
 .2N C M/ unitary matrix U . Let �V be
obtained from � by replacing U by V �1UV where

�
V1 0
0 V2

�
is unitary block-diagonal

matrix consisting of a 2N 
 2N block V1 and an M 
M block V2. Then �V has a
non-Weyl resonance asymptotics iff � does.

Corollary 12.1. Let � be a quantum graph with Weyl resonance asymptotics. Then
�A has also the Weyl asymptotics for any profile of the magnetic field.

The magnetic field can change, though, the effective size of the graph. To illustrate
this claim, consider the example of the graph sketched below, assuming again the
Kirchhoff coupling at the vertex. Since the latter is balanced, the graph is non-Weyl
for A D 0, and thus for any A. The resonance condition is easily found to be

�2 cos˚ C e�ikl D 0 ;

0

l
B

Fig. 12.4 A magnetic loop
with two leads



12 Resonances in Quantum Networks and Their Generalizations 169

where ˚ D Al is the loop flux. The non-Weyl character is associated with the
absence of the factor eikl at the left-hand side. For ˚ D ˙�=2 .mod�/, i.e. for
odd multiples of a quarter of the flux quantum 2� , the l-independent term also
disappears. The effective size of the graph is then zero; it is straightforward to see
that in such a case there are no resonances at all (Fig. 12.4).

12.4 Generalized Graphs

Let us turn next to a generalization of quantum graphs to complexes with ‘edges’ of
different dimensions. To be illustrative we shall use for configuration space of such
system the term hedgehog manifold. An example is sketched here; for the sake of
simplicity we consider the case with a single (two-dimensional) manifold part only
(Fig. 12.5).

First we have to describe the formalism. The basic idea how to couple manifolds
of different dimensions is old [17] and it was applied to the problem considered here,
e.g., in [5, 6, 18]. Comparing to those paper we use here a slightly general approach
allowing more than one lead to be attached to a given manifold point. Let thus˝ be
a compact Riemannian manifold of dimension d D 2; 3 with metric g from which
we make � by attaching M D P

j nj halflines at points xj 2 ˝ . Consequently,
the state Hilbert space is

H D L2.˝; dg/
MM

iD1
L2.R

.i/
C / :

In the manifold part, let H0 be Laplace-Beltrami operator acting on C1
0 .˝/ as

�g�1=2@r .g1=2@r / with suitable boundary conditions if ˝ has a boundary; by H 0
0

we denote it restriction to functions ff 2 C1
0 W f .xj / D 0g which is a symmetric

operator with deficiency indices .n; n/.

Fig. 12.5 A hedgehog
manifold
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Let further H 0
i be restriction of the Laplacian on i -th halfline to functions from

C1
0 .R

.i/
C /. The operator

H 0 D H 0
0 ˚H 0

1 ˚ � � � ˚H 0
M

has obviously deficiency indices .n C M;n C M/. To construct self-adjoint
extensions of the operator H 0 we need (generalized) boundary values. A function
f 2 D..H 0

0/
�/ can be expanded near xj as f .x/ D cj .f /F0.x; xj / C dj .f / C

O.r.x; xj //, where

F0.x; xj / D
(

� q2.x;xj /

2�
ln r.x; xj / d D 2

q3.x;xj /

4�
.r.x; xj //

�1 d D 3

Here q2; q3 are continuous functions of x with qi .xj ; xj / D 1 and r.x; xj / denotes
the geodesic distance between x and xj . Using the described expansion we write
the boundary values as

� D .d1.f /; : : : ; dn.f /; f1.0/; : : : ; fM .0//
T ;

� 0 D .c1.f /; : : : ; cn.f /; f
0
1 .0/; : : : ; f

0
M.0//

T ;

and describe any self-adjoint extension of H 0 by the conditions

.U � I /� C i.U C I /� 0 D 0 ;

where U is an .nC M/ 
 .n CM/ unitary matrix. This covers all the self-adjoint
extensions of H 0 including those allowing ‘hopping’ between vertices. We are
interested, however, in local ones only; they are characterized by block-diagonal
matrices U which does not couple different points xi and xj:

As in the ordinary quantum-graph case we can investigate resonances on
hedgehog manifolds replacing external leads by an effective energy-dependent
coupling at the points xj 2 ˝ in the following way,

. QUj .k/ � 1/dj .f /C i. QUj .k/C 1/cj .f / D 0 ;

where QUj .k/ 2 C is easily seen to be given by

QUj .k/ D U1j � .1 � k/U2j Œ.1 � k/U4j � .k C 1/I ��1U3j (12.4)

and U1j denotes the top-left entry of Uj , U2j the rest of the first row, U3j the rest of
the first column and U4j is nj 
 nj part corresponding to the coupling between the
halflines attached to the manifold. In a sense we have replaced again the leads by
k-dependent point interactions on the manifold˝ itself, in analogy with (12.3).
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The first question to address concerns again the meaning of resonances. From the
scattering point of view, it is natural to regard˝ as a geometric scatterer. To find the
on-shell scattering matrix we take for solution of Schrödinger equation of energy
k2 on the j -th lead the Ansatz aj .k/e�ikx C bj .k/eikx and look for the matrix that
relates the coefficient columns a.k/ and b.k/. If we want to compare the case of
two leads with scattering on the line, there is a caveat: in our formalism all the leads
are positive halflines, our S-matrix satisfies S.k/�1 D S.�k/ D S�. Nk/, where star
and bar denote the Hermitian and complex conjugation, respectively.

By scattering resonance we mean a pole of the scattering matrix, more precisely,
the (complex) energy at which some of its entries has a pole. On the other hand,
by resolvent resonance we mean a pole in analytical continuation of .H � k2/�1;
to determine it one can employ as before a exterior complex scaling on the
edges turning resonances into eigenvalues of the non-selfadjoint operator H� WD
U�HU

�1
� . We need an auxiliary result which can be obtained, e.g., by the method

used in [23].

Lemma 12.4. Let H
ˇ̌
˝
f .x; k/ D kf .x; k/ hold for k2 62 �.H0/, then f is as a

linear combination of Green’s functions ofH˝ ,

f .x; k/ D
nX

jD1
cjG.x; xj I k/ :

This allows us to establish again equivalence of the two resonance notions [15].

Theorem 12.6. Consider the open lower complex halfplane of momentum, Im k <
0 and k2 62 R. There is a scattering resonance in k0 iff there is a resolvent resonance
in k0, and the algebraic multiplicities of resonances defined in both ways coincide.

Let us sketch the proof. Using the above lemma in combination with the Ansatz
aj .k/e�ikx C bj .k/eikx on the leads one arrives at the condition

A.k0/a C B.k0/b C C.k0/c D 0 ;

whereA;B are .P CM/
M matrices, C is .P CM/
P matrix,P is the number
of internal parameters of the geometric scatterer and M is the number of halflines.
Since k20 62 R the columns of C.k0/ are linearly independent, otherwise k0 would
have to be an eigenvalue. A rearrangement allows us to express c; substituting it to
the remaining conditions we get

QA.k0/a C QB.k0/b D 0

with QA.k0/ and QB.k0/ being M 
M matrices. If det QA.k0/ D 0 holds than there is
a solution with b D 0 and k0 is an eigenvalue of H with Imk0 < 0, however, this
contradicts the assumed self-adjointness of H. Hence by Cramer’s rule the scattering
resonances are given by the condition det QB.k/ D 0.



172 P. Exner

The solution aj .k/e�ikx on the j -th halfline is taken by U� into an exponentially
growing one if Im k0 < 0 and Im � > 0, while bj .k/eikx becomes square integrable.
Hence solving the eigenvalue problem for H� one needs to find solutions with a D 0.
This leads again to the condition det QB.k/ D 0 proving thus the claim. �

After clarifying the meaning of resonances we can proceed to analyzing their
behavior. The above lemma allows us to express the boundary values using
expansion of deficiency subspace elements,

f .xi ; k/ D ciF0.xi ; xi /C
nX

j 6Di
cj F0.xi ; xj /C

nX

jD1
cjF1.xi ; xj I k/

C
nX

jD1
cjR.xi ; xj I k/ ;

where R.xi ; xj I k/ is O.r.xi ; xj //. Let QU.k/ D diag . QU1.k/; : : : ; QUn.k/; /; the
definition (12.4) of QUj .k/ shows that QU .k/ diverges at most M values of k. We
define

Q0.k/ D
�
G.xi ; xj I k/ i ¤ j

F1.xi ; xi I k/ i D j

The resonance condition then reads as follows,

det
�
. QU .k/ � I /Q0.k/C i. QU.k/C I /

� D 0 ;

reducing again a complicated differential equation problem to an algebraic one. We
could use it to analyze, for instance, the high-energy behavior of resonances. It is
very interesting, though, because the manifold part will dominate the asymptotics
in view of it higher dimension and no ‘surprises’ analogous to Theorem 12.3 are
expected.

Instead we are going to present an example illustrating a behavior similar to
that of magnetic quantum graphs mentioned at the end of the previous section: we
shall demonstrate that an appropriately chosen magnetic field can remove all ‘true
resonances’ on a hedgehog manifold, i.e. those corresponding to poles in the open
lower complex halfplane. If the reader wonders whether this does not contradict to
the previous paragraph, we recall that embedded eigenvalues have been included
among resonances in Theorem 12.3; in the present case the embedded eigenvalues
of the system corresponding to higher partial waves with eigenfunctions vanishing
at the junction will persist being just shifted. The manifold to be considered consists
of a disc of radius R with a halfline lead attached at its centre, for definiteness we
assume that it to be perpendicular to the disc plane, as sketched below. In the disc
we use the polar coordinates r; ', and Dirichlet boundary conditions are imposed
at the boundary, r D R. We suppose that the system is under the influence of a
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R

Fig. 12.6 A disc with a lead
in the field of an AB flux

magnetic field in the form of an Aharonov-Bohm string which coincides in the
‘upper’ halfspace with the lead. The effect of an Aharonov-Bohm field piercing
a surface was studied in numerous papers—see, e.g., [1, 8]—the idea is that the
‘true’ resonances will disappear if we manage to choose such a coupling in which
the radial part of the disc wave function will match the halfline wave function in a
trivial way (Fig. 12.6).

The Hilbert space of the model is H D L2..0;R/; rdr/˝L2.S1/˚L2.RC/ and
admissible Hamiltonians are self-adjoint extensions of the operator PH˛ acting as

PH˛

 
u

f

!
D
 

� @2u
@r2

� 1
r
@u
@r

C 1
r2

	
i @
@'

� ˛

2

u

�f 00

!

on function columns
�u
f

�
with u 2 H2

loc.BR.0// satisfying u.0; '/ D u.R; '/ D 0

and f 2 H2
loc.R

C/ satisfying f .0/ D f 0.0/ D 0. The parameter ˛ denotes
the magnetic flux of the Aharonov-Bohm string measured in the units of the flux
quantum; since the entire part of the flux can be easily removed by a gauge
transformation we may restrict our attention to the values ˛ 2 .0; 1/.

Using the partial-wave decomposition together with the standard unitary trans-
formation .V u/.r/ D r1=2u.r/ describing the pass to the reduced radial functions
we get

PH˛ D
1M

mD�1
V �1 Ph˛;mV ˝ I
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where the component Ph˛;m act on the upper component of  D �
�
f

�
as

Ph˛;m� D �d2�

dr2
C .mC ˛/2 � 1=4

r2
� : (12.5)

To construct the self-adjoint extensions of PH˛ which describe the coupling between
the disc and the lead the following functionals are needed,

˚�1
1 . / D p

� lim
r!0

r1�˛

2�

Z 2�

0

u.r; '/ei'd' ;

˚�1
2 . / D p

� lim
r!0

r�1C˛

2�

� Z 2�

0

u.r; '/ei'd'

�2p�r�1C˛˚1�1. /
�
;

˚0
1 . / D p

� lim
r!0

r˛

2�

Z 2�

0

u.r; '/d' ;

˚0
2 . / D p

� lim
r!0

r�˛

2�

� Z 2�

0

u.r; '/d'

�2p�r�˛˚0
1 . /

�
;

˚h
1 . / D f .0/ ; ˚h

2 . / D f 0.0/ :

The first two of them are, in analogy with [8], multiples of the coefficients of the two
leading terms of asymptotics as r ! 0 of the wave functions from PH �̨ belonging to
the subspace with m D �1, the second two correspond to the analogous quantities
in the subspace with m D 0, and finally, the last two are the standard boundary
values for the Laplacian on a halfline.

It is obvious that if the s-wave resonances should be absent, one has to get rid of
the second term in the expression (12.5) for the m D 0 function, with this fact in
mind we focus our attention on the case ˛ D 1=2. In analogy with the Aharonov-
Bohm flux piercing a plane treated in [8] one obtains

. 1;H 2/ D �
Z 2�

0

Z R

0

u1 r
�1=2 d2

dr2
r1=2u2 r dr d' �

Z 1

0

f1f2
00 dx

D �
Z 2�

0

Z R

0

Qu1 Qu200 dr d' �
Z 1

0

f1f2
00 dx

D �
Z 2�

0

Qu1 Qu20 d' C
Z 2�

0

Z R

0

Qu10 Qu20 dr d' � f1.0C/f 0
2 .0C/

C
Z 1

0

f1
0
f2

0 dx ;
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where Qu� D r1=2u�, � D 1; 2, corresponds of the disc function component u�,
prime denotes the derivative with respect to r , and f� is the corresponding halfline
component. This allows us to express . 1;H 2/�.H 1;  2/, and using asymptotic
expansion of u near r D 0, namely

p
�u.r; �/ D .˚�1

1 . /r�1=2 C˚�1
2 . /r1=2/e�i�

C ˚0
1 . /r

�1=2 C ˚0
2 . /r

1=2 ;

�2rp�u0.r; �/ D .˚�1
1 . /r�1=2 �˚�1

2 . /r1=2/e�i�

C ˚0
1 . /r

�1=2 � ˚0
2 . /r

1=2 ;

one is able to write the boundary form as

. 1;H 2/ � .H 1;  2/ D ˚1. 1/
�˚2. 2/� ˚1. 2/

�˚2. 1/ ;

where ˚�. / D .˚h
� ; ˚

0
� ; ˚

�1
� /T for � D 1; 2. Consequently, to get a self-adjoint

operator one has to impose coupling conditions similar to (12.1), namely

.U � I /˚1. /C i.U C I /˚2. / D 0 (12.6)

with a unitary matrix U . For the purpose of our example, we choose the latter in the
form

U D
0

@
0 1 0

1 0 0

0 0 ei	

1

A ; (12.7)

in other words, the nonradial part, m D �1, of the disc wave function is coupled
to neither one of the other two, while the radial part, m D 0, is coupled to the
halfline representing the lead by means of Kirchhoff conditions. To see that this
choice removes indeed all the ‘true’ resonances, we choose the Ansatz

f .x/ D a sin kx C b coskx ; u.r/ D r�1=2.c sin k.R � r//

which yields the boundary values

˚1. / D .b; c
p
� sin kR; 0/T ; ˚2. / D k.a;�cp� coskR; 0/T :

It follows now from the coupling conditions that b D c
p
� sin kR and a D

c
p
� coskR which yields f .x/ D c

p
� sin k.R C x/. Hence for any k 62 R

and c ¤ 0 the function f contains necessarily a nontrivial part of the wave
e�ikx, however, as we have argued above, a resolvent resonance can must have the
asymptotics eikx only. In this way we come to the indicated conclusion [15]:
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Proposition 12.2. The disc-and-lead system has no true resonances for the cou-
pling described by the matrix (12.7) and the magnetic flux equal to ˛ D 1

2
.

Since the effect occurs for a Aharonov-Bohm string, it is also interesting to
inquire what happens if the field changes, in other words, if ˛ runs from 0 to 1

2
.

The symmetry of the problem allows us to use the Ansatz u.r; '/ D R.r/ eim'; it
shows that one has to solve the equation

�@
2R.r/

@r2
� 1

r

@R.r/

@r
C 1

r2
.mC ˛/2R.r/ D k2R.r/ ;

which can be easily transformed into Bessel equation in the variable kr with the
constant .mC ˛/. Hence the radial part of the wavefunction on the disc is given as
a combination of Bessel functions and

u.r; '/ D
X

m

.a1mJmC˛.kr/C a2mYmC˛.kr// eim' :

We employ the behaviour of Bessel functions in the vicinity of zero,

J˛.x/ � 1

� .˛ C 1/

	x
2


˛
; Y˛.x/ � �� .˛/

�

�
2

x

�˛
;

which yields the values of the above functionals,

˚0
1 D p

� lim
r!0

r˛

2�
2�

�� .˛/
�

a20

�
2

kr

�˛
D �� .˛/p

�

�
2

k

�˛
a20 ;

˚0
2 D p

� lim
r!0

r�˛

2�
2�a10

1

� .˛ C 1/

�
kr

2

�˛
D

p
�

� .˛ C 1/

�
k

2

�˛
a10 ;

˚�1
1 D p

� lim
r!0

r1�˛

2�
2�

1

� .˛/

�
kr

2

��1C˛
a1;�1 D

p
�

� .˛/

�
2

k

�1�˛
a1;�1 ;

˚�1
2 D �p

� lim
r!0

r�1C˛

2�
2�
� .˛ � 1/

�

�
2

kr

��1C˛

a2;�1 D �� .˛ � 1/p
�

�
k

2

�1�˛
a2;�1 :

The resonances are given by Eq. (12.6) in combination with Dirichlet condition
at the disc boundary, a10J˛.kR/ C a20Y˛.kR/ D 0 and a1;�1J˛�1.kR/ C
a2;�1Y˛�1.kR/ D 0. In the particular case of the coupling described by matrix
(12.7) this yields the equation
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Fig. 12.7 Trajectory of a resonance for ˛ running from 0 to 1
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!
C i

�
1 1

1 1

�

 
ik 0

0
p
�

� .˛C1/
�
k
2

�˛
Y˛.kR/

!#
D 0 ;

which can be rewritten as

i
p
�

� .˛ C 1/

�
k

2

�˛
Y˛.kR/C k

� .˛/p
�

�
2

k

�˛
J˛.kR/ D 0 :

In the flux has a half-integer value, ˛ D 1=2, we get 1p
�R
.sin kR � i cos kR/ D 0

which shows one more time the absence of resonances.
For other values of ˛ the condition can be solved numerically. In Fig. 12.7 we

plot the trajectory of one of the resonances as the value of ˛ increases from 0 to 1
2
.

The step is taken to be 0.01 for values until ˛ D 0:49, which corresponds roughly
to the sharp bend of the curve, from this point on the linear step is replaced by a
sequence of exponentially increasing density accumulating at ˛ D 1

2
.
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Chapter 13
Quantum Graph and Quantum Filter

Taksu Cheon

Abstract We show that the quantum star graphs, with added potentials on some of
graph lines and with suitable choice of the connection condition at the graph node,
can be made into spectral branching filters whose properties is controllable through
the tuning of the strength of the potentials.

13.1 Introduction

The quantum graphs can be regarded as mathematical models of quantum single-
electron devices [1,2]. The quantum star graph, which is the “atoms” of all quantum
graphs, serve particularly well for the purpose. They allow to design devices, that
are both simple and rich enough thanks to their large parameter spaces. One of the
first applications of quantum star graphs emerged in the spectral filtering. An n D 2

star graph with the ı-interaction in its center is already usable as a high-pass filter,
and similarly, a graph with the ı0-interaction works as a low-pass filter. Besides of
these two simple designs, the existence of an n D 3 branching filter, functioning as
a high-pass/low-pass junction, has been proved [3]. Such a system, in principle, can
be controlled by a variation of the vertex parameters. However such realisation is
difficult in practice since it requires real-time adjustments of a nanoscale object. It
would be highly desirable if the control is achieved through an external field applied
onto one of the lines, preferably on lines other than those along which we want the
quantum particles to propagate.

In this article, we show that a quantum filter controllable by an external potential
can be indeed designed. Besides the filter, we construct one more similar device,
namely a quantum “sluice-gate” which allows to increase and decrease the quantum
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flux from one line to another by adjusting the external potential applied to another
line. Our constructions are based on very simple star graphs with n D 3 and n D 4,
respectively. The presented result may serve also as a starting point in a search for
other controllable quantum device models based on quantum graphs.

13.2 Scattering Matrix for Quantum Graph
with Potentials on Lines

Let us consider a quantum particle with energy E residing on a star graph. When it
comes in the vertex from the j -th line, it is scattered at the vertex into all the lines.
The i -th component of the final-state wave function equals

 ij .x/ D

8
<̂

:̂

1p
kj

e�ikj x C Sjj
1p
kj

eikj x for i D j ;

Sij
1p
ki

eiki x for i ¤ j ;

(13.1)

where Sij are scattering amplitudes, ki are momenta on the corresponding lines,
and coefficients 1=

p
ki are involved for proper normalization. For any i , the

momentum ki is equal to ki D p
E � Ui , where Ui is the potential on the i -th line.

The matrix S D fSij g is the scattering matrix of the graph. For a normalized wave
function coming in from the j -th line, Sij is interpreted as the complex amplitude
of transmission into the i -th line (for i ¤ j ), whereas Sjj represents the complex
amplitude of reflection. The matrix S depends, besides the internal properties of
the vertex, on E and U1; U2; : : : ; Un.

Define two matricesM and M 0 by

M D f ij .0/g; M 0 D f 0
ij .0/g: (13.2)

With regard to (13.1), it holds

M D K�1 CK�1S ; M 0 D iK.�K�1 CK�1S /; (13.3)

where K D fpki ıij g. Any wave function �.x/ D . 1.x/; : : : ;  n.x//
T (the

superscript T denotes the transposition) on the graph obeys the boundary condition
determining the vertex, which is usually written in the form A�.0/C B� 0.0/ D 0

for certain fixedA;B 2 Cn;n, cf. [4]. In particular, b. c. must be satisfied by the final-
state wave function �j .x/ D . 1j .x/; : : : ;  nj .x//

T determined in (13.1) for all j ,
hence AM C BM 0 D 0, which together with (13.3) leads to the sought expression
for S :

S D �.AK�1 C iBK/�1.AK�1 � iBK/ : (13.4)
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Squared moduli of the elements of S have the following interpretation: jSij j2 for
j ¤ i represents the probability of transmission from the i -th to the j -th line, jSjj j2
is the probability of reflection on the j -th line.

13.3 Threshold Resonance in Star Graph
with External Potential

We now consider an n D 3 star graph with a Fülöp-Tsutsui (also called “scale
invariant”) singular coupling (cf. [5–7]) in its vertex. For the sake of convenience,
the coupling will be described by a boundary condition written in the so-called ST -
form (B� 0 D �A� with specially structured A;B , see [8] and [9]) with explicit
notation

0

@
1 a b

0 0 0

0 0 0

1

A

0

@
 0
1.0/

 0
2.0/

 0
3.0/

1

A D
0

@
0 0 0

�a 1 0

�b 0 1

1

A

0

@
 1.0/

 2.0/

 3.0/

1

A : (13.5)

The graph is schematically illustrated in Fig. 13.1. The roles of individual lines are
the following:

• Line 1 is input. Particles of various energies are coming in the vertex along this
line.

• Line 2 is output. Particles passed through the vertex are gathered on this line.
• Line 3 is controling line. We assume that this line is subjected to a constant (but

adjustable) external potential U .

A quantum particle with energyE D k2 coming in the vertex from the input line 1 is
scattered at the vertex into all the lines. The scattering amplitudes can be calculated
by substituting the matrices A;B from the b. c. (13.5) together with

k1 D k2 D k; k3 D
p
k2 � U (13.6)

into Eq. (13.4). We obtain:

S21.kIU / D 2a

1C a2 C b2
q
1 � U

k2

; (13.7)

1 2

3
U

e−ikx1 S 21 e ikx2

FT: ( )

Fig. 13.1 Schematic
depiction of the n D 3 star
graph with an external
potential U on the line 3
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S11.kIU / D
1 � a2 � b2

q
1 � U

k2

1C a2 C b2
q
1 � U

k2

; (13.8)

S31.kIU / D 2b
�
1 � U

k2

� 1
4 �.k � p

U /

1C a2 C b2
q
1 � U

k2

: (13.9)

The Heaviside step function �.k � p
U / is added in Eq. (13.9) to make the

expression valid for all energies k2, including k2 < U . It represents asymptotically
no transmission to the line 3 below the threshold momentum kth D p

U .
We are interested in the probability of transmission into the output line 2, which

we denote by P.kIU /, and particularly in its k-dependence. Since P.kIU / D
jS21.kIU /j2, we have from (13.7)

P.kIU / D

8
ˆ̂<

ˆ̂:

4a2	
1Ca2Cb2

p
1�U=k2


2 for k � p
U ;

4a2

.1Ca2/2Cb4.U=k2�1/ for k � p
U :

(13.10)

We observe that for a given constant potential on the line 3, P.kIU / as a function
of k grows in the interval .0;

p
U /, attains its maximum at k D p

U , and decreases
in the interval .

p
U ;1/. In particular, it holds:

lim
k!0

P.kIU / D 0 ; (13.11)

P.
p
U IU / D

�
2a

1C a2

�2
; (13.12)

lim
k!1P.kIU / D

�
2a

1C a2 C b2

�2
: (13.13)

If the parameters a; b satisfy b � a � 1, the function P.kIU / has a sharp peak at
k D p

U . Equation (13.12) implies that the peak is highest possible (attaining 1) for
a D 1. We conclude: If b � a D 1, the system has high input!output transmission
probability for particles having momenta k � p

U and the transmission is perfect
for k D p

U , whereas there is just a very small transmission probability for other
values of k. The situation is numerically illustrated in Fig. 13.2. The quantum graph
schematically depicted in Fig. 13.1 can be therefore used as an adjustable spectral
filter, controllable by the potential put on the controlling line 3. The bandwidth W
of the filter, i.e., the width of the interval of energies k2 for which P.kIU / > 1=2,
depends on U and b, and for b � 1 it is approximately given as W � 4:7U=b4.
Let us remark that the resonance at the threshold momentum kth D p

U is related
to the pole of the scattering matrix which is located on the positive real axis at
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Fig. 13.2 Scattering characteristics of the graph from Fig. 13.1 with parameters a D 1, b D 3.
The transmission probability P.kIU/ as a function of k with the value of the potential set to
U D 1 is plotted in the top figure. The lower figure shows reflection probability jS11.kIU/j2 and
the probability of transmission to the controlling line jS31.kIU/j2

kpol D b2p
b4�.1Ca2/2

p
U on the unphysical Riemann surface which is connected to

the physical Riemann surface at the cut that runs between k D ˙p
U .

13.4 Flux Control and Quantum Sluice-Gate

Let us now consider an n D 4 star graph as schematically illustrated in Fig. 13.3.
The meaning of the first three lines will be the same as in the previous model:
1 = input, 2 = output, 3 = controlling line subjected to a constant external potential
U . The line No. 4 is a drain and is included in the model for technical reasons:
our considerations showed that the device we wish to construct is mathematically
infeasible using a vertex of degree n D 3. The vertex coupling is again assumed
to be of the Fülöp-Tsutsui type, and its properties are determined by the boundary
condition written for convenience in the ST -form

0
BB@

1 0 a a

0 1 a �a
0 0 0 0

0 0 0 0

1
CCA

0
BB@

 0
1.0/

 0
2.0/

 0
3.0/

 0
4.0/

1
CCAD

0
BB@

0 0 0 0

0 0 0 0

�a �a 1 0

�a a 0 1

1
CCA

0
BB@

 1.0/

 2.0/

 3.0/

 4.0/

1
CCA (13.14)
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1

4

2

3
U

e−ikx1 S21 e ikx2

FT:

Fig. 13.3 Schematic
depiction of the n D 4 star
graph with an external
potential U on the line No. 3

with a 2 R. The block

�
a a

a �a
�

is a special choice that ensued from our analysis;

generally, the ST -form admits

�
a b

c d

�
for any a; b; c; d 2 C, cf. [8] or [9].

For a particle with energy E D k2 coming in the vertex from the input line 1, we
have

k1 D k2 D k; k3 D
p
k2 � U ; k4 D k; (13.15)

and the scattering amplitudes can be calculated as

S21.kIU / D
2a2

	
1 �

q
1 � U

k2




.1C 2a2/C 2a2.1C 2a2/
q
1 � U

k2

(13.16)

and

S11.kIU / D
1 � 4a4

q
1 � U

k2

.1C 2a2/C 2a2.1C 2a2/
q
1 � U

k2

; (13.17)

S31.kIU / D 2a.1C 2a2/
�
1 � U

k2

� 1
4 �.k � p

U /

.1C 2a2/C 2a2.1C 2a2/
q
1 � U

k2

; (13.18)

S41.kIU / D
2a C 4a3

q
1 � U

k2

.1C 2a2/C 2a2.1C 2a2/
q
1 � U

k2

: (13.19)

We again denote the transmission probability input!output by P.kIU / D
jS21.kIU /j2. It holds

P.kIU / D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

4a4U=k2

.1C2a2/2.1�4a4C4a4U=k2/ for k � p
U ;

4a4
	
1�

p
1�U=k2


2

.1C2a2/2
	
1C2a2

p
1�U=k2


2 for k � p
U ;

(13.20)
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Fig. 13.4 Scattering characteristics of the graph from Fig. 13.3 with parameter a D 1. The
transmission probability P.kIU/ as a function of k with the value of the potential set to U D 1

is plotted in the top figure. The lower figure shows the reflection probability jS11.kIU/j2 and the
probabilities of transmission to the controlling line jS31.kIU/j2 and to the drain line jS41.kIU/j2

hence

lim
k!0

P.kIU / D 1

.1C 2a2/2
; (13.21)

P.
p
U IU / D 4a4

.1C 2a2/2
; (13.22)

lim
k!1P.kIU / D 0 : (13.23)

If U is fixed, P.kIU / as a function of k quickly falls off to zero at k >
p
U . A

typical behaviour is illustrated in a numerical example in Fig. 13.4. The peak at the
threshold momentum kth D p

U , appearing for a > 1=
p
2, is again related to the

pole in the unphysical Riemann plane at kpol D 2a2p
.4a4�1/

p
U .

There is a value of the parameter a that deserves a particular attention, namely
a D 1=

p
2. For this choice of a the peak disappears and the function P.kIU /

becomes constant in the whole interval .0;
p
U /:
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√

Fig. 13.5 Characteristics of the flat spectral filter obtained from the graph on Fig. 13.3 for
a D 1=

p
2. The transmission probability P.kIU/ as a function of k with the value of the

potential set to U D 1 is plotted in the top figure. The lower figure shows the reflection probability
jS11.kIU/j2 and the probabilities of transmission to the controlling line jS31.kIU/j2 and to the
drain line jS41.kIU/j2

P.kIU / D

8
ˆ̂<

ˆ̂:

1
4

for k � p
U ;

1
4

�
�
1�

p
1�U=k2

1C
p
1�U=k2

�2
for k >

p
U ;

(13.24)

see Fig. 13.5. The device then behaves as a spectral filter with a flat passband
that transmits (with the probability of 1=4) quantum particles with momenta k 2
Œ0;

p
U � to the output, whereas particles with higher momenta are diverted to other

lines, mainly to 3 and 4. The process is directly controlled by the external potential
U . Since increasing U opens the channel 1!2 for more particles, the device can
be regarded as a quantum sluice-gate, applicable as a quantum flux controller.
When there are many particles described by the momentum distribution 	.k/ on
the line 1, the flux J to the line 2 is given by J.U / D R

dk	.k/kP.kIU /.
Assuming the Fermi distribution with Fermi momentum kF larger than our range
of operation of

p
U , we can set 	.k/ D 	 D const. With the approximation

P.kIU / � 1
4
�.

p
U � k/, we obtain J.U / D 1

8
	U , which indicates the linear

flux control.
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The sluice-gate built from an n D 4 star graph has one more operation mode.
If the line No. 4 (the drain) is subjected to another external field V , 0 < V < U ,
the channel 1!2 opens for particles with k 2 Œ

p
V ;

p
U � and mostly closes for

particles with k outside this interval. The gate then works as a fully tunable band
spectral filter. However, in contrast to the standard V D 0 operation mode, the filter
with V > 0 does not have a flat passband.

13.5 Realization of Exotic Node with Delta Graphs

We have to emphasize that the studied controllable filter devices using the threshold
resonance became possible only with “exotic” Fülöp-Tsutsui-type couplings in the
vertices. Standard vertex couplings (the free and the ı-coupling) would not work this
way. It is therefore essential, for the proposed designs to be viable, that the required
Fülöp-Tsutsui vertices can be created using standard couplings, which themselves
have a simple physical interpretation [10]. This problem has been addressed in [8]
and [9], where it was proved that any Fülöp-Tsutsui coupling given by b. c. with real
matrices A;B can be approximately constructed by assembling a few ı-couplings.
The solution for our case is shown in Fig. 13.6.

This research has been supported by the Japan Ministry of Education, Culture,
Sports, Science and Technology under the Grant number 24540412.

FT: ( ) v1 v2

v2

v4

v1

v3

v3

FT:

Fig. 13.6 Finite constructions of the Fülöp-Tsutsui couplings used. The design, based on [9],
utilizes the ı-couplings connected by short lines. The small size limit d ! 0 with the ı-coupling
strengths scaled with d effectively produces the required F-T vertex coupling. For the n D 3 case
(top), the ı-coupling strengths are given by v1 D Œa.a � 1/ C b.b � 1/�=d , v2 D .1 � a/=d

and v3 D .1 � b/=d . For the n D 4 case (bottom), the strengths are v1 D v2 D 2a.a � 1/=d ,
v3 D v4 D .1 � 2a/=d . The double line represents a line with a “magnetic” vector potential,
which can be alternatively replaced by a line carrying the ı-coupling of strength v5 D �8a=d in
its center, together with changing v2 and v4 to v2 D 2a.a � 2/=d , v4 D .1� 4a/=d
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Chapter 14
From Continuous-Time Random Walks to
Continuous-Time Quantum Walks: Disordered
Networks

Oliver Mülken and Alexander Blumen

Abstract Recent years have seen a growing interest in dynamical quantum pro-
cesses; thus it was found that the electronic energy transfer through photosynthetic
antennae displays quantum features, aspects also known from the dynamics of
charge carriers along polymer backbones. Hence, in modeling energy transfer
one has to extend the classical, master-equation-type formalism and incorporate
quantum-mechanical aspects, while still aiming to describe complex networks of
molecules over which the transport takes place. The continuous time random walk
(CTRW) scheme is widely employed in modeling transport in random environments
(Sokolov et al, Phys Today 55:48, 2002) and is mathematically akin to quantum-
mechanical Hamiltonians of tight-binding type (Mülken and Blumen, Phys Rep
502:37, 2011; Mülken and Blumen, Phys Rev E 73:066117, 2006); a simple way
to see it is to focus on the time-evolution operators in statistical and in quantum
mechanics: The transition to the quantal domain leads then to continuous-time
quantum walks (CTQW). In this way the CTQW problem stays linear, and thus
many results obtained in solving CTRW (such as eigenvalues and eigenfunctions)
can be readily reutilized for CTQW. However, the physically relevant properties
of the two models differ vastly: In the absence of traps CTQW are time-inversion
symmetric and no energy equipartition takes place at long times. Also, the quantum
system keeps memory of the initial conditions, a fact exemplified by the occurrence
of quasi-revivals (Mülken and Blumen, Phys Rep 502:37, 2011). Here we will
exemplify the vastly different behaviors of CTQW and CTRW on disordered
networks, namely on small-world networks (Mülken et al, Phys Rev E 76:051125,
2007) and on star-graphs with randomly added bonds (Anishchenko et al, Quantum
Inf Process 11:1273, 2012).
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14.1 Introduction

The recent, growing interest in quantum mechanical problems ranging from quan-
tum computation [18] and ultra-cold atomic assemblies [24] up to the very efficient
energy transfer in biological systems at room temperature [6,8] calls for appropriate
theoretical models. Now, quantum transport over regular lattices [7, 17, 23], over
branched [12], and over fractal structures [1,2] differs from its classical counterpart.
Accounting for quantum aspects of the transport can be based on several schemes
that start from a classical picture. Here, one distinguishes between discrete-time
quantum walks which require coin operators [11] and continuous-time quantum
walks (CTQW) which do not need additional operators [11, 15]. Recently, we
have presented for several types of graphs an overview of CTQW under different
conditions [15]. In the present contribution, we will follow Ref. [15] and will recall
the basic features of continuous-time random walks (CTRW) and of the related
CTQW. As applications we choose to focus on disordered graphs. Now, many
investigations in solid state physics start from regular networks, such as lattices.
In these, even for finite structures, the majority of the nodes of the network have the
same number of outgoing bonds, i.e., the same functionality. However, there exist
also other types of networks such as star graphs or complete graphs in which the
majority of their nodes has the same functionality. Star graphs and complete graphs
are of great interest for quantum computation [15, 19, 20].

We will study now disordered systems built from regular structures, by adding in
a random fashion bonds to the original graph, but allowing any pair of nodes to be
connected by a single bond at most. Starting from a ring one first obtains random,
so-called small-world networks (SWN); starting from a star one is led to other types
of random structures. In both cases, for an extremely high density of additional
bonds one gets close to having complete graphs. The insertion of additional bonds
changes the topology of the original network and thus the spectrum of eigenvalues
of the corresponding Hamiltonian. Now, one may envisage that the spreading of
the excitations over the network may get enhanced by the additional bonds. We
observe indeed that for stars additional bonds may lead – depending on the number
of additional bonds – to an increase of the spreading of CTQW, see [4]. This is in
contrast to the case of small-world networks (SWN), where starting to randomly
add bonds to a ring of nodes slows down the CTQW, as shown in Ref. [16].

14.2 CTRW and CTQW on Networks

In general terms, we study the transport of excitations over networks; these are built
from N nodes connected by bonds. The information about a network’s topological
structure is reflected in the N 
N connectivity matrix A, whose elements Akj are:
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Akj D
8
<

:

fj if k D j

�1 if k and j are connected by one bond
0 otherwise:

(14.1)

Here fj is the functionality of node j . If the network is simply connected, A has a
single vanishing eigenvalue Emin D 0 [15]. We model the dynamics of the purely
coherent and of the purely incoherent (diffusive) transport through CTQW and
through CTRW, respectively [15]. In both cases, the dynamics is strongly influenced
by A. An excitation localized at node j is associated with the state jj i; the jj i states
form an orthonormal basis set fjj ig with j D 1; : : : ; N .

For CTRW, the spreading is governed by a master equation in which the transfer
matrix T is in the simplest case given by A, see [9,15,21,22]. For CTQW, the states
jj i span the whole accessible Hilbert space and the time evolution of an excitation
initially placed at node jj i is determined by the system’s Hamiltonian H which can
be identified with A [9, 15].

The classical and the quantum probabilities to be in state jki at time t when
starting at t D 0 from state jj i are then [15]:

pk;j .t/ D hkj exp .Tt/jj i for CTRW (14.2)

and �k;j .t/ D jh kj exp .�iHt/j j ij2 for CTQW; (14.3)

respectively. Here, we set „ D 1 and take as initial condition at t D 0 that
pk;j .0/ D �k;j .0/ D ık;j , where ık;j is Kronecker’s delta. Given that both T
and H are identified with A, yields that the eigenvalues and eigenvectors of both T
and H are the same, while the difference in the dynamics of CTQW and of CTRW
originates from the different functional forms of Eqs. (14.2) and (14.3), see Refs. [9]
and [15].

14.2.1 Efficiency of CTRW and CTQW

While the eigenvectors are needed for calculating the exact transition probabilities
pk;j .t/ and �k;j .t/, there are quantities (such as the lower bounds for �k;j .t/, see
Ref. [15]) which only depend on the eigenvalues. This allows to analyse several
features which depend on the network’s topology. For CTRW one such aspect is the
probability to be (return or remain) at the initially excited node j , averaged over all
j [3, 5]:

Np.t/ D 1

N

X

j

pj;j .t/ D 1

N

NX

nD1
e�Ent : (14.4)

Therefore, Np.t/ depends only on the eigenvalues En of A, but not on the eigenvec-
tors j�ni.
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For CTQW N�.t/ � 1
N

PN
nD1 �j;j .t/ still depends on the j�ni. Nevertheless, it is

possible to define the quantity

N̨ .t/ � 1

N

NX

jD1
˛j;j .t/ D 1

N

NX

nD1
e�iEnt ; (14.5)

which also depends only on the eigenvaluesEn and which is a lower bound to N�.t/,
see Refs. [12] and [15]:

N�.t/ D 1

N

X

j

???˛j;j .t/
???
2 �

??? N̨ .t/
???
2

: (14.6)

Equations (14.4) and (14.5) allow to assess the spreading [14]: A quick decrease
of Np.t/ reflects a quick increase in the probability of finding the excitation anywhere
but at the initial node. Thus, the spreading is faster when Np.t/ decreases more
quickly. For CTQW the unitary time evolution leads to N�.t/ and j N̨ .t/j2 showing
oscillations, but the overall decay of Np.t/ and of j N̨ .t/j2 can be used to make
statements about the spreading, say, by considering the decay of the envelope of
j N̨ .t/j2 [14].

For regular d -dimensional networks, quantum walks appear to be faster than the
classical ones [14]: the envelope of j N̨ .t/j2 decays as t�d , while Np.t/ decays as
t�d=2. For other networks, which may behave differently, it is convenient to use the
long-time averages [4]

PRW � lim
T!1

1

T

TZ

0

dt Np.t/ and PQW � lim
T!1

1

T

TZ

0

dt j N̨ .t/j2; (14.7)

in order to extract a global measure for the spreading.
For CTRW, due to the eigenvalue E1 D Emin D 0, Np.t/ will eventually drop to

the equipartition value 1=N . Thus limT!1 Np.t/ D 1=N and also PRW D 1=N .
This means that in the incoherent case at long times both quantities do not depend
on the topology of the considered network [4]. For CTQW, j N̨ .t/j2 oscillates and
one obtains [4]:

PQW D lim
T!1

1

T

TZ

0

dt
1

N 2

X

n;n0

e�i.En�En0 /t D 1

N 2

X

n;n0

ı.En �En0/;

where ı.En�En0/ is unity ifEn D En0 and vanishes otherwise. Thus, the DOS fully
determines the long-time average of j N̨ .t/j2. For highly degenerate eigenvalues,
j N̨ .t/j2 will not decay to zero, but it will oscillate around a finite value [4]. Thus, for
CTQW there is a large probability to remain at or to return to the initially excited
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node. Consequently, this slows down the average spreading for CTQW on networks
with highly degenerate eigenvalues.

We now turn to the special disordered lattices which we want to consider here.
Let us focus on situations which follow from randomly adding bonds to a regular
lattice and calculate ensemble averaged quantities. Formally we set:

h: : :iR � 1

R

RX

rD1
Œ: : :�r ; (14.8)

where r runs over the particular realizations. In this way we can determine the
ensemble-averaged probabilities h Np.t/iR and hj N̨ .t/j2iR, along with the long-time
average hPQWiR. For the long-time average of h�.t/iR we obtain (see also Eq. (17)
of Ref. [17])

h
iR �
D

lim
T!1

1

T

Z T

0

dt �.t/
E

R
D 1

RN

X

r;j;n;n0

ı.En;r �En0;r /
ˇ̌hj j˚n;rihj j˚n0;ri

ˇ̌2
:

(14.9)

For the long-time average of hj˛.t/j2iR one finds [4]:

hPQWiR �
D

lim
T!1

1

T

Z T

0

dt j˛.t/j2
E

R
D 1

RN2

X

r;n;n0

ı.En;r � En0;r /; (14.10)

which is a lower bound to h
iR.

14.3 Small World Networks

The translational invariance of regular networks can be destroyed by randomly
adding B bonds to them. In doing so, one creates “shortcuts”, i.e., shorter paths,
between many pairs of nodes. The obtained structures are called small-world
networks (SWN). Here, we obtain SWN starting from a one-dimensional ring, see
Ref. [16].

We note that CTQW on SWN never loose the information of the initial node j .
Thus, the averaged probabilities to return to j are a good measure to quantify the
efficiency of the transport on such networks [14]. For CTRW the decay is depicted,
for instance, in Fig. 5(a) of Ref. [16]. The initial decay of hp.t/iR occurs faster
when the numbers of additional bonds B is larger. At intermediate times the decay
follows a power-law, namely t�1=2, for the ring and changes to a decay of stretched
exponential-type when B increases [10]. Therefore, CTRW will quickly explore the
SWN until equipartition is reached, which happens after a relatively short time.
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Fig. 14.1 (Color online) The long-time average of h�.t/iR, h
iR, for SWN with N D 100, 500,
and 1;000 nodes as a function of B=N

The CTQW situation is more subtle and is depicted in Fig. 5(b) of Ref. [16].
The ensemble average h�.t/iR for a ring of N nodes and for times smaller than
N=2 shows an oscillating behavior, whose maxima decay as t�1. At longer times
interference sets in and results in an irregular behavior, see also [13]. The oscillatory
behavior remains intact as long as B is significantly less than N . With increasing B
the curves for h�.t/iR are smoothed out, such that the heights of the first maxima
as well as the depths of the minima decrease. At longer times the curves get flat
and h�.t/iR approaches a limiting value. The lower bound hj˛.t/j2iR behaves in a
similar fashion as h�.t/iR.

Figure 14.1 shows h
iR, calculated based on Eq. (14.9), for SWN for several N ,
namely for N D 100, 500, and 1;000, as a function of B=N . For B D 0 there is
only one realization and forN even one has [16]:

h
ringiR � 
 D 1

N

X

j


jj D 2N � 2

N 2
: (14.11)

Increasing B up to N , h
iR is sometimes not monotonic; for B=N comparable to
unity it reaches a plateau which increases with N . Therefore, increasing the number
of bonds results to a less efficient transport from the initial node to all others when
compared to the situation for B D 0, see also [16].

14.4 Transition from Star Graphs to Complete Graphs

In this section we study the transition from star graphs to complete graphs, achieved
by adding new bonds to the original graph. Here, the addition of bonds leads to a
domain in which the CTQW transport is more efficient: this is in contrast to the
findings of the previous section devoted to SWN. We start from a star graph of size
N with one central node and N � 1 peripheral nodes connected to the central one.
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Fig. 14.2 hPQWiR for
networks obtained from a star
graph with N D 10 nodes.
The inset shows a
magnification of the vertical
scale in the region close to
Bmax=2

To this graph we add B bonds. The maximal number of bonds that can be added is
Bmax.N / D Œ.N�1/.N�2/�=2, where we do not allow more than one bond between
any pair of nodes. When B D Bmax.N / we obtain the complete graph, in which
every node is connected to every other node [4]. The star graph and the complete
graph have very distinct topologies: The star graph has a central node which has
functionality N � 1, while each of the peripheral nodes has functionality 1. On the
other hand, the complete graph has only nodes of functionalityN�1. Both networks
are “regular”, in the sense that they are invariant under the “exchange” symmetry:
Exchanging the positions of any pair of nodes (except for the central node of the
star graph) leaves the networks unchanged, see Ref. [4]. The eigenvalue sets for
these graphs can be obtained analytically: The star graph has only three distinct
eigenvalues [14], namely E1 D 0, E2 D � � � D EN�1 D 1, and EN D N , with
degeneraciesD.0/ D 1,D.1/ D N �2, andD.N/ D 1, respectively. The complete
graph has only two distinct eigenvalues [25], E1 D 0 and E2 D � � � D EN D N ,
with degeneraciesD.0/ D 1 and D.N/ D N � 1.

Randomly adding bonds to the star graph leads to networks with distinct
topologies and with different eigenvalue sets: For B very close to 1 or to N ,
the number of graphs which are topologically distinct is small. For B  1 and
N � B  1, this number is large, see Ref. [4]. The influence of the additional
bonds on the transport efficiency gets reflected in the average probabilities Np.t/
for CTRW and in the lower bound j N̨ .t/j2 for CTQW, see Ref. [4]. The long-time
CTQW behavior is given by hPQWiR. Figure 14.2 shows hPQWiR as a function
of B in which the number of realizations was taken to be R D 10;000. As
B increases from zero one observes a decrease of hPQWiR from the star graph-
value, P SG

QW D .N 2 � 4N C 6/=N 2 � 1=N . This decrease continues until a
broad plateau centered around B D Bmax=2 is reached. Increasing B further
results in an increase of hPQWiR until the PQW value for the complete graph,
P CG

QW D .N 2 � 2N C 2/=N 2 � 1=N , is attained. In the intermediate (plateau)
domain hPQWiR is bounded from below by 1=N and becomes comparable to the
CTRW value. Therefore, we infer that by adding bonds to the star graph (until
B � Bmax=2) one enhances – in the ensemble average – the efficiency of the CTQW.
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14.5 Conclusions

In this article we have demonstrated differences in transport over given graphs in
cases in which the transport is purely classical and given by CTRW and in cases
when it is quantum mechanical in nature and described by CTQW. While under
simple assumptions the corresponding factors are, for each graph, based on exactly
the same set of eigenvalues and eigenfunctions, the implementation of the CTRW
and of the CTQW leads to vastly different behaviors. We have exemplified this by
focusing on two types of disordered structures, namely on SWN that start from a
ring and on random structures intermediate between star- and complete graphs. We
have also shown that the intuitive notion that adding bonds may lead to a quicker
transport is not always fulfilled in the quantum case. In summary, we find that the
physical properties of the transport are much more rich in the quantum than in the
classical case.
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Chapter 15
Excitations Transfer and Random Walks
on Dynamic Contacts Networks

Raffaella Burioni, Elena Agliari, and Davide Cassi

Abstract Diffusion and spreading processes are strongly influenced by the
topology of the substrate. An interesting example is provided by exchange reactions
in the diffusion-limited regime, that model the spreading of an excitation among a
population of randomly moving agents. In this case, the excitation is diffusing on
an evolving dynamical graph, created by the istantaneous contacts of the moving
agents. In recent works, the excitation random walk on the contacts graph generated
by a set of random walkers moving on restricted geometries has been considered.
We review here the properties of the process and we extend our results to the case
of multiple excitations transfer with fermionic and bosonic statistics.

15.1 Introduction

Networks are one of the most flexible representations of a set of elements connected
pairwise by a relation, and they are widely used to model complex phenomena in
many different disciplines, ranging from physics to chemistry, to biology and social
sciences [11, 19]. The elements connected by the relation are represented by sites,
and relations or interaction are described by links, connecting two sites. When a
dynamical or a statistical model is defined on the network, with variables living on
the sites for example, the topology of the interactions has a strong influence on the
dynamics or the equilibrium properties. Understanding this influence has been one
of the central problems in networks research in the last decades.

In a large variety of systems however, the relations connecting two elements are
not static and can change with time, leading to an effective dynamical network that
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evolves on the same time scale of the dynamical system itself. This is the rule rather
than an exception in social relations, person to person communications, molecular
interactions in biological systems, metabolic, ecologic and neural networks [9, 10,
12, 15, 17, 20, 25], and this observation has recently led to a new line of research
on time varying and temporal networks [21, 23]. Interestingly, the dynamic nature
of time varying networks has been shown to play a crucial role in equilibrium and
non-equilibrium phenomena, still to be unraveled.

A particularly interesting class of dynamical network is that generated by inter-
actions of moving agents in physical proximity, i.e. in contact. Contacts networks
are observed in reaction diffusion processes in chemical species, in movements of
humans and animals, and they come into play when a “reaction” occurs in case
two agents are in contact, being the reaction a contagion process, an information
spreading or word-of-mouth process, an excitation transfer or a chemical reaction:
the excitation or the wave front moves on an effective network created by the
instantaneous contacts of agents. In all these situations, the topological, metric
and spectral properties of the dynamic networks evolve with time, and the time
dependent adjacency matrix of the network can be determined once the rule for the
contact process, or the explicit data for the contacts, are given [17].

We will consider here a basic yet interesting model of spreading on a dynamic
network, generated by the contacts of N agents performing a simple random walk
on a static substrate [6]. Each agent diffusing on the substrate represents a particle
that can be either in an excited (A�) or in an unexcited (A) state; when an excited
particle meets an unexcited one, they react [13] according to the scheme

A� C A ! AC A�: (15.1)

This reaction mechanism is known as homogeneous energy transfer and it takes
place from a so-called donor (A�) to a so-called acceptor (A), which occur to be
sufficiently close. In this way, the excitation moving from one particle to another
one can be looked at as a “second-level” random walker moving on the contact
graph generated by the set of N agents, i.e. the set of particles A and A�. Even
if apparently simple, this model features interesting non linear many-body effects,
that can be detected in more realistic dynamic contacts networks, induced by
physical proximity. Moreover, the model can be extended to describe spreading
of information and contagion processes on the dynamic contacts network [3, 5, 7].
We review here our previous results on a single excitation transfer and we extend
our analysis to the case of transfer of multiple excitations with different exclusion
properties, i.e. following either Fermi-Dirac or Bose-Einstein statistics.

As for the underlying static substrates, we devote a particular attention to a class
of interesting experimental frameworks, the so called restricted geometries [4, 14].
This expression refers to two, possibly concurrent, situations: low dimensionality
and small spatial extent. In the low dimensional case, we expect strong effects due
to multiple encounters between random walkers. In finite volumes and mesoscopic
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samples, when the process occurs on a spatial scale too small to consider the infinite
volume limit, an explicit and non trivial dependence on the number of walkers N
and on the volume V , not only through the density N=V , can arise [7].

The paper is organized as follows. In Sect. 15.2 we introduce our model, and
in Sect. 15.3 we review the main results on single excitation transfer. In Sect. 15.4
we discuss the case of multiple excitations with bosonic and fermionic statistics.
Finally, Sect. 15.5 contains our conclusions and perspectives.

15.2 The Model: Excitations Transfer and Random Walks
on the Dynamic Contacts Network

We consider N simple random walkers, moving on a finite structure of volume
V (henceforth, the substrate), and we indicate the position of the i -th walker at
time t with xi .t/, being i D 1; : : : ; N . At time t D 0, the walkers are randomly
distributed on the substrate and one of them carries an excitation. When two walkers
i and j meet at time t , i.e their distance on the substrate is smaller than R, a time
dependent link is established between them and if walker i is carrying the excitation,
the excitation is transferred to walker j . We fix the collision radius R D 1 to avoid
parity effects. If more than one walker meet the carrier (multiple hit), the excitation
jumps on one of them, chosen randomly. The model described is a discrete-time
stochastic process X .t/, where the state space of the system is composed by the
set of the random walkers [6]. At time t , the system is in state i if the excitation is
on walker i . Then, the transition (or jump) probabilities, are themselves a stochastic
process. In particular, at time t the transition probability from state i (X .t/ D i )
to state j (X .t C 1/ D j ) is a function of the positions xi .t/ and xj .t/ of the two
agents i and j , hence a function of two stochastic processes. In Figs. 15.1 and 15.2
we depict the random walk of the excitation among moving walkers.

For the moving agents, the interesting quantities are the probability P0.r; t/ of
being at 0, the origin, at time t , being r the initial position at t D 0 and the
probability F0.r; t/ of being at 0 for the first time at time t , again, being r the
initial position at t D 0. The diffusion of the excitation on the contact network can
also be looked as a random walk and this will be described through the following
quantities:

• J .t/, the average number of jumps performed by the excitation at time t .
• S .t/, the average number of different states visited at time t ; the probability

S .t; k/ that k different states have been visited by the system at time t , S .t/ DPN
kD1 kS .t; k/.

• The cover time � , defined as the average time required to the excitation to visit all
the N walkers (an interesting quantity, analogous to the lattice-covering time for
random walks [28]). We also define the cover walk-length as the average number
of jumps required to visit all the states, and we denote it as �; of course, � � � .
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Fig. 15.1 A system made up of N D 10 particles on a square toroidal lattice sized L D 5 is
depicted from two different perspectives: particles react via exchange (left panels); the excitation
performs a random walk on the related dynamic graph (right panels). Time runs from top to bottom
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Fig. 15.2 This figure refers
to Fig. 15.1 and it shows the
motion of the excitation on
the static substrate. Notice
that, differently by a simple
random walk, at each time
step t , the excitation can
either stop or move and jumps
can possibly be towards
next-nearest-neighbours

We consider as substrates hypercubic lattices of linear size L and volume V D
Ld (with d D 1; 2; 3), with periodic boundary conditions. To take into account the
effects of topology, we also investigate the case of self-similar lattices, with given
fractal and spectral dimensions, dF and ds respectively [16].

15.3 Single Excitation Random Walk

An analytical description of the system can be obtained in the limit of low density
of walkers [6], i.e. N=V  1. In fact, under this condition, multiple hits can be
neglected and the model can be mapped into two equivalent problems. For example,
the process can be seen in the reference frame of the excitation. In this frame, the
walker carrying the excitation is stuck at the origin, and the remainingN � 1 agents
perform a simple random walk, with 2 jumps on each time step. The jump of the
excitation from walker i to walker j corresponds to the following process: walker j
hits the origin and gets stuck, while walker i gets free and starts performing its own
walk. In this picture, the process is a double-state random-walk process [28], as each
walker can exist in two different states: either stuck at the origin or free. In a second
picture, the problem is mapped into a label switching process: the walker originally
carrying the excitation stays fixed at the origin, and when a walker crosses the origin
they exchange their label. This second picture has the advantage of mapping all
the relevant random walk quantities into trapping problems for the free particles
[26]. Both pictures are rigorously valid only on translation invariant lattices, but the
validity can be extended, in the large time limit, to self similar structures [6].

First, the number of jumps at time t is easily calculated in the label switching
picture. In the low density regime, the number of jumps performed at time t is the
number of passages through the origin made byN �1 random walkers at time t , that
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is N � 1 times the number of passages through the origin made by a single walker.
The mean number of times that a walker starting from r visits the origin in a walk
of t steps is independent of r for large t , and equals 	 t

V
, where V is the volume of

the lattice [24]. The average number of jumps is then the average number of times
that N � 1 independent random walkers hit the origin, that is

J .t/ 	 N � 1

V
t; (15.2)

always neglecting multiple hits. In the case of walkers with a radius of action, in the
origin there is a finite-size trap. If v is the volume of the trap, then:

J .t/ 	 .N � 1/ v

V
t: (15.3)

For example, for a radiusR D 1, v D 2dC1 for hypercubic lattices of dimension d .
As for the cover time � , in the low density limit this is equal to the time needed

for N � 1 different walkers to be absorbed into a trap located at the origin. This is
a complex many-body problem (already formulated in the frame of extreme value
statistics, see e.g. [29]).

In order to estimate � , we first calculate the average first-passage time through
the origin, where the average is performed over all possible starting positions r ; on
d -dimensional hypercubic lattices this reads as

htiV D
X

r

1

V

1X

tD0
tF0.r; t/ 	 ad gd .V /;

where the last passage holds for large V , ad is a constant that depends only on d ,
and gd .V / is the volume-dependent factor:

gd .V / D
8
<

:

V 2 d D 1

V logV d D 2

V d > 2:

In the case of fractal lattices, the general formula htiV 	 ads gds .V / has been
calculated analytically in particular cases and on general self-similar structures
[1, 2, 8, 18, 22, 27]:

gds .V / D
8
<

:

V 2=ds ds < 2

V logV ds D 2

V ds > 2;

ds being the spectral dimension of the lattice [16].
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We now make the following approximation: we estimate the first-passage time
of the first out of m walkers as the first-passage time of one single walker divided
bym. Thus, the time of absorption of the first walker is gd .V /=.N � 1/, that of the
second walker (the first out of N � 2 left) is gd .V /=.N � 2/ and so on. Therefore,
the cover time results as

�.N; V / 	
N�1X

nD1

ad gd .V /

N � n 	 �
� C logN CO.N�1/

�
ad gd .V /; (15.4)

where the last relation holds in the limit of large N . Then, we can estimate the
average number of jumps required to visit all the states as

�.N; V / D N � 1
V

�.N; V /: (15.5)

In fact, the average time taken by the excited particle to meet another particle out of
the remainingN � 1 is just V=.N � 1/, (see Eq. 15.2).

Let us now consider the number S .t/ of distinct particles visited at time t . Still
in the low-density limit and in the label switching picture, this quantity is the average
number of particles (out ofN �1) that have been trapped at time t with a trap in the
origin. This, in turn, is N � 1 times the trapping probability of a single walker with
a trap in the origin.

This quantity has been calculated in [28] for Euclidean lattices. In particular, if
U.t/ and S.t/ are the survival probability of the walker and the average number of
sites visited by the walker at time t , respectively, the two quantities are related by
the formula U.t/ D 1 � S.t/=V . Moreover, the behavior of U.t/ for large times is

U.t/ 	 exp

�
� �d t

gd .V /

�
; (15.6)

where �d is a constant depending on the underlying topology; see also [6], Eqs. 15.4
and 15.4. Therefore, we have

S .t/ 	 .N � 1/

�
1� exp

�
� �d t

gd .V /

��
: (15.7)

Now, by comparing S.t/ 	 V Œ1 � U.t/� with S .t/, we can derive that the fraction
S .t/=.N � 1/ of distinct particles excited just corresponds to the fraction S.t/=V
of distinct sites visited by a regular random walker on the substrate.
Equation 15.7 holds also for self-similar substrates, replacing d with ds.

For earlier times, the role of topology in the behavior emerges [28] and Eq. 15.6
is replaced by

U.t/ 	 exp

�
��ds t

min.ds=2;1/

gds .V /

�
: (15.8)



206 R. Burioni et al.

Finally, let us consider the probability distribution S .k; t/ for the k distinct
agents visited at time t . This quantity corresponds to the probability that the number
of walkers absorbed into a trap at the origin is k. Recalling that U.t/ is the
probability that a given walker has survived up to t , we have

S .k; t/ D U.t/N�k.1 � U.t//k�1
�
N � 1
k � 1

�
; 1 � k � N;

that is, recalling that for Euclidean lattices ds � d ,

S .k; t/ D e�.N�1/�ds t=gds .V / �e�ds t=gds .V / � 1
�k�1

�
N � 1

k � 1

�
: (15.9)

Notice that, in the thermodynamic limit, Eq. 15.9 becomes a Poissonian distribution
with average � D �ds .N � 1/t=gds .V /.

The time tpeak.k/, each distribution is peaked at, can be directly derived from
Eq. 15.9 as

tpeak.k/ D V

�d
log

�
N � 1

N � k

�
: (15.10)

An important feature concerning S .k; tpeak.k// is that it exhibits a minimum at
k D Qk D .N C 1/=2, as can be deduced from Eqs. 15.9 and 15.10.

It is as well possible to calculate the average time �N�k spent by the system in
state corresponding to exactly k distinct states visited:

�N�k D
1X

tD0
S .k; t/ 	 V

�ds .N � k/
; (15.11)

where the last relation was derived in the continuum limit for t .
All the previous calculations are very well verified numerically, as shown by the

plots in Figs. 15.3 and 15.4.
Finally, we mention that the same techniques presented here, based on first

passage quantities, can be used to investigate different types of contact reactions.
A particular interesting one is, using the same chemical language, the so called
autocatalytic reaction:

A� C A ! A� CA�; (15.12)

so that after the contact both particles are in the excited state. Clearly, this reaction
is able to describes contagion processes, information spreading and word-of-mouth
diffusion [3, 5, 7] among moving agents. In particular, in the case of information
spreading in presence of progressive degradation, an interesting effect due to
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Fig. 15.3 Upper panels: Average cover time �.N; V /, properly rescaled, versus the number N
of particles making up the system and diffusing on a periodic chain (left panel) and on a cubic
lattice (right panel). Equation 15.4 provides the best fit when reactants concentration is small.
Lower panels: Average cover walk-length �.N; V / versus N for a system of particles diffusing and
reacting on a Sierpinski gasket (left panel) and in a cubic lattice with periodic boundary conditions
(right panel). Different sizes are depicted, as shown by the legend. Equation 15.5 provides the best
fit when reactants concentration is small. Notice that in the latter case �.N; V / is independent of V

crossing from high density to low density regimes has been identified, leading to
non trivial effects in the dependence on N and V separately [7]. Interestingly, this
kind of effects are signatures of contact networks dynamics.

15.4 Multiple Excitations Random Walk with Bosonic
and Fermionic Statistics

In this section we consider a system where the number of excitations Ne diffusing
on the dynamic graph is larger than one. In this case, we can distinguish between
two alternative scenarios, according to possible constraints on the number �i of
excitations which can be hosted by the same particle i :

• �i 2 f0; 1g, i D 1; : : : ; N ,
• �i 2 f0; 1; : : : ; Neg, i D 1; : : : ; N .
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Fig. 15.4 Upper panel: Probability distribution S .k; t / versus time t for a system of N D 32

particles diffusing on a cubic lattice sized L D 16 with periodic boundary conditions. Each curve
represents a different value of k; as explained by the legend, only a subset of curve is depicted
seeking for readability. The inset shows S .k; t / versus the number of visited random walkers k
for three different instants of time; from left to right: t D 6 
 102; 1:1 
 103; 2 
 103 . Data points
(ı) are fitted by a Poissonian distribution with average � D �d tN=V in agreement with Eqs. 15.4
and 15.9. Lower panels: tpeak.k/ (left) and �N�k (right) as a function of k for a periodic cubic
lattice. The solid lines (whose equations are reported) represent the best fits in agreement with
Eqs. 15.10 and 15.11, respectively. The only free parameter is �d and we get �f itd D 2:79˙ 0:07

With obvious meaning, we refer to such distinct cases as fermionic (hereafter labeled
as F ) and bosonic (hereafter labeled as B), respectively.

The latter case is the easiest to treat since each excitation performs an indepen-
dent walk on the dynamic graph, yet one has to take into account the fact that the
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Fig. 15.5 Average final time �.N;Ne; V / (left) and walk length �.N;Ne; V / (right), as a function
of Ne , for fermionic (�) and bosonic (�) systems. Data points refers toN D 128 particles reacting
and diffusing on a toroidal square lattice with size ranging from L D 28 to L D 212. The lower
the concentration the best the agreement with Eqs. 15.13 and 15.14, respectively

number of donors is a stochastic variable. Of course, when excitation concentration
	e D Ne=N is small enough, we expect the two cases to asymptotically converge.

Following arguments similar to those described above, we can properly extend
previous results allowing for Ne ¤ 1; here we will explicitly consider only the case
of homogeneous substrates, but the analysis can be straightforwardly extended also
to self-similar structures like fractals.

Let us start with the average cover time, for which we find

�B.N;Ne; V / D �.N; V /

Ne
	 gd .V /

logN

Ne
;

�F .N;Ne; V / 	 gd .V /
log.N �Ne/

Ne
; (15.13)

while the average cover walk-length is given by

�B.N;Ne; V / 	 gd .V /

V

�
N logN for Ne  N;

Ne logN for Ne � N;

�F .N;Ne; V / 	 gd .V /

V
.N �Ne/ log.N �Ne/I (15.14)

where we simply provided the leading term. Notice that the latter quantity best
evidences the difference between the two systems: �B.N;Ne; V / is a (non-strictly)
monotonically increasing function of Ne , conversely, just due to the constraints on
�i , �F .N;Ne; V / decreases with Ne .
The analytical results for �B;F and �B;F are checked numerically in Fig. 15.5.
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of N D 128 particles diffusing on a toroidal square lattice sized L D 128; different choices
of Ne correspond to different symbols as explained by the legend. Notice that the difference
between bosonic (pink) and fermionic (green) system is negligible when Ne=N � 1. The curves
represent the best fit according to Eq. 15.15 and its extension for the bosonic case. The survival
probability U.Ne=N; t/ considered is pure exponential; despite this approximation, fit coefficients
agree, within the error (about 5%), with predictions

Let us now consider the average number of distinct sites visited by the whole set
of excitations diffusing on the dynamic graph. For the fermionic system the problem
can again be solved by exploiting known results about the survival probability
U.	trap; t/ for a random walk with trap concentration 	trap D Ne=V :

S F .t/ D Ne C .N �Ne/
�
1 � U

�
Ne

N
; t

��
: (15.15)

In the bosonic case we must take into account that the number of donors follows a
probability distribution and, for a given realization, it is given by

PN
iD0.1 � ı�i ;0).

When Ne is large, we can replace the quantity Ne=N appearing in Eq. 15.15 with
1 � .1� 1=N/Ne . Consequently, and as can be verified from Fig. 15.6, S B.t/ �
S F .t/ and

�
S B.t/ � S F .t/

�
goes to zero as Ne is lowered.

The “efficiency” of the fermionic system can also be evinced from another point
of view: in Fig. 15.7 (left panel) we show numerical results for the probability
distributions S B.k; t/ and S F .k; t/: the former are more spread and peaked
at larger times. Such a difference can possibly be reduced by setting the same
(fermionic) initialization for both systems (see the right panel in Fig. 15.7). This
means that, at t D 0, also the bosonic system displays exactly Ne donors. With this
new arrangement the difference between S B.k; t/ and S F .k; t/ is reduced, though
the trend described above emerges more and more as time goes by. In any case,
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S .k; tpeak/ exhibits a minimum at k D Qk such that S . Qk; tpeak/ � 1
2
ŒN C S .0/�,

whose origin lies, again, in the maximum extent for the configurational space
pertaining to that time.

There is also a new feature with respect to the case Ne D 1 which is, indeed,
a very effect of excitations collective behaviour. For small values of k, both
distributions S B.k; tpeak/ and S F .k; tpeak/, represented in Fig. 15.8, exhibit an
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oscillatory profile. The period of such oscillations depends, essentially, on N�S .t/

V
,

and it stems from the peaked distribution governing the number of excitations
jumping at each time. As k grows such distribution is more and more spread and,
consequently, oscillations vanish.

15.5 Conclusions

Time varying networks generated by contacts of moving agents are one of the most
interesting and intriguing topics in network sciences, nowadays. Their relevance
covers topics in chemical kinetics, biology and ecology, social sciences and commu-
nications. Here we have considered a random walk process mimicking the diffusion
of excitations among a population of agents moving on a restricted geometry. In
particular, we have considered the case of a single excitation transfer and of multiple
excitations with fermionic and bosonic statistics, evidencing the main properties
of this more complex case that features interesting collective behavior. Analytical
estimates of first passage related quantities have been calculated in the low density
limit on lattices and self similar substrates, which are in excellent agreement with
numerical simulations. These quantities feature a strong dependence on the topology
of the substrate in low dimensions, as well as interesting non trivial dependence on
the number of agents and on the volume of the substrate.
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Chapter 16
Ballistic Soliton Transport in Networks

Zarif A. Sobirov, K.K. Sabirov, Davron Matrasulov, A.A. Saidov,
and K. Nakamura

Abstract We treat the problem reflectionless (ballistic) soliton transport on
simplest networks and their combinations via solving nonlinear Schrödinger
equation on simplest graphs. In particular, the relation between the nonlinearity
coefficients of different bonds describing conditions for ballistic transport is derived
for star graph. It is shown that the method can be extended to different simplest
graph topologies and their combinations.

16.1 Introduction

Particle and wave transport in discrete structures and networks is of considerable
fundamental and practical interest for many problems arising in mesoscopic physics.
The problem of nonlinear waves and solitons in networks described by stationary
and time-dependent Schrodinger equation on graphs has been attacked by few
groups during last few years.

In particular, soliton solutions and connection formulae are derived for simple
graphs in the Ref. [12]. The problem of fast solitons on star graphs is treated in
the Ref. [5] where the estimates for the transmission and reflection coefficients are
obtained in the limit of very high velocities. The problem of soliton transmission and
reflection is studied in [9] by solving numerically the stationary NLSE on graphs.
Dispersion relations for linear and nonlinear Schrödinger equations on graphs are
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discussed in [8]. The problem of scattering from nonlinear networks described by
stationary NLSE is studied in the Ref. [10].

The stationary NLSE with power focusing nonlinearity on star graphs was
studied in recent papers [5–7], where existence of the nonlinear stationary states are
shown for ı�type boundary conditions. In particular, the authors of [5] considered a
star graph with N semi-infinite bonds, for which they obtain the exact solutions for
the boundary conditions with ˛ ¤ 0. Exact analytical solutions of stationary NLSE
on graphs are obtained in [11] for simplest topologies.

In this work we treat the problem of reflectionless (ballistic) transport of
solitons on simple networks. Nonlinearity coefficients for different bonds are
considered to be different. The relation between the nonlinearity coefficients for
which ballistics transport is possible is derived. Soliton solution for such case is
obtained analytically.

16.2 NLSE on Network: Conservation Rules

Let us first consider an elementary branched chain or a primary star graph (PSG)
where the vertex site is now taken as origin O . Space coordinates on individual
bonds are here defined as follows: b1 	 .�1; 0/, b2 	 .0;C1/ and b3 	 .0;C1/.
On each bond we have the nonlinear Schrödinger equation (NLSE)

i
@�k

@t
C @2�k

@x2k
C ˇkj�kj2�k D 0; k D 1; 2; 3; (16.1)

with xk defined on �1 < x1 < 0; 0 < x2; x3 < 1. It should be noted that
the strength of nonlinearity ˇk.> 0/ may be different among bonds. We will treat
the solution of NLSE on PSG which satisfies the following conditions at infinity:
�1.x1/ ! 0 at x1 ! �1, �k.xk/ ! 0 at xk ! 1 for k D 2; 3. One of the
physically important conditions for the solution in PSG is the norm conservation.
The norm is defined as

N D k�k2 D
0Z

�1
j�1.x; t/j2dx C

1Z

0

j�2.x; t/j2dx C
1Z

0

j�3.x; t/j2dx: (16.2)

Let us find conditions for which the norm is conservative. For this purpose we
calculate its time-derivative:

d

dt
N D

0Z

�1

@j�1.x; t/j2
@t

dx C
1Z

0

@j�2.x; t/j2
@t

dx C
1Z

0

@j�3.x; t/j2
@t

dx:
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From Eq. (16.1) we have the continuity equation,

@ j�k.x; t/j2
@t

D � @

@x
jk.x; t/

� �2 @
@x

Im

�
��
k .x; t/

@�k.x; t/

@x

�
; (16.3)

where jk.x; t/ means the current density.
Using Eq. (16.3), we find that the norm is conservative only when the following

connection formula at the vertex is satisfied:

Im

�
��
1

@�1

@x

�ˇ̌
ˇ̌
xD0

D Im

�
��
2

@�2

@x

�ˇ̌
ˇ̌
xD0

C Im

�
��
3

@�3

@x

�ˇ̌
ˇ̌
xD0

: (16.4)

In Eq. (16.4) we prescribe Œ� � � �jxD0 to limx1!�0 Œ� � � � for variables on bond b1 and to
limx1!C0 Œ� � � � for variables on bond b1;2. Hereafter the same prescription as above
will be employed.

The equality in Eq. (16.4) implies the local current conservation condition at the
vertexO ,

j1.0; t/ D j2.0; t/C j3.0; t/: (16.5)

16.2.1 Energy Conservation Rule

The second important condition for the solution on PSG is the energy conservation.
In PSG, the energy is defined as

E D E1 C E2 CE3; (16.6)

where

Ek D
Z

bk

 ˇ̌
ˇ̌@�k
@x

ˇ̌
ˇ̌
2

� ˇk

2
j�kj4

!
dx: (16.7)

Evaluating time derivative of E.t/ using Eq. (16.1) we obtain

d

dt
E D Re

�
@��

1

@x

@�1

@t

�ˇ̌
ˇ̌
xD0

� Re

�
@��

2

@x

@�2

@t

�ˇ̌
ˇ̌
xD0

C Re

�
@��

3

@x

@�3

@t

�ˇ̌
ˇ̌
xD0

:

(16.8)
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Consequently, the energy is conserved if the following rule is satisfied:

Re
h
@��

1

@x
@�1
@t

iˇ̌
ˇ
xD0

D Re
h
@��

2

@x
@�2
@t

iˇ̌
ˇ
xD0 C Re

h
@��

3

@x
@�3
@t

iˇ̌
ˇ
xD0 ; (16.9)

which is another connection formula at the vertex O .

16.2.2 Boundary Condition at the Vertex and Sum Rule
for Nonlinearity Coefficients

The norm and energy are conserved, provided the (nonlinear) boundary conditions
in Eqs. (16.4) and (16.9) at the vertex are valid. These boundary conditions are found
to be satisfied by employing either one of the following linear connection formulas
at the vertexO ,

˛1�1jxD0 D ˛2�2jxD0 D ˛3�3jxD0I
1

˛1

@�1

@x

ˇ̌
ˇ̌
xD0

D 1

˛2

@�2

@x

ˇ̌
ˇ̌
xD0

C 1

˛3

@�3

@x

ˇ̌
ˇ̌
xD0

; (16.10)

or

˛1
@�1

@x

ˇ̌
ˇ̌
xD0

D ˛2
@�2

@x

ˇ̌
ˇ̌
xD0

D ˛3
@�3

@x

ˇ̌
ˇ̌
xD0

I

1

˛1
�1jxD0 D 1

˛2
�2jxD0 C 1

˛3
�3jxD0; (16.11)

where ˛1, ˛2 and ˛3 are arbitrary real constants.
Among many possible choices of ˛1, ˛2 and ˛3, there is one special case in which

an infinite number of constants of motion can be found and NLSE on PSG becomes
completely integrable. We shall now consider this case by finding suitable values
for ˛1, ˛2 and ˛3.

Let us assume that there exists a bond-independent universal function g.x; t/
underlying PSG, which satisfies

˛k�kjxD0 D g.0; t/;

˛k
@�k

@x

ˇ̌
ˇ̌
xD0

D @g.x; t/

@x

ˇ̌
ˇ̌
xD0

(16.12)

for k D 1; 2; and 3. The upper half of Eq. (16.10) is identical to the upper half
of Eq. (16.12). With use of Eq. (16.12) the lower half of Eq. (16.10) can also be
satisfied under the constraint,
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1

˛21
D 1

˛22
C 1

˛23
: (16.13)

Similarly, using Eqs. (16.12) and (16.13), we find that Eq. (16.11) can be satisfied
as well.

The question arising after the above treatment can be formulated as following:
Is there any bond-independent universal function which should satisfy Eq. (16.12)?
The answer is yes. In fact, the general soliton solution of the integrable nonlinear
Schrödinger equation (NLSE) in 1-d chain,

i
@�

@t
C @2�

@x2
C ˇj� j2� D 0; (16.14)

takes the form (see Zakharov-Shabat [13])

�.x; t/ D
s
2

ˇ
iq.x; t/; (16.15)

where q.x; t/ stands for the ˇ-independent universal solution which satisfies the
completely-integrable NLSE with ˇ D 2,

iqt C qxx C 2qjqj2 D 0; �1 < x < C1: (16.16)

Now we can introduce the solution of NLSE in Eq. (16.1) on PSG, which, on each
bond, is composed of the universal soliton solution q.x; t/ on a simple 1-d chain but
multiplied by the inverse of square root of bond-dependent nonlinearity ˇk :

�k.xk; t/ D
s
2

ˇk
iq.xk; t/; (16.17)

where the functions q.x1; t/ and q.x2;3; t/ satisfy Eq. (16.16) and are defined on
.�1I 0� and Œ0;C1/, respectively.

Then, noting the above fact and choosing

˛k D p
ˇk .k D 1; 2; 3/; (16.18)

Eq. (16.12) at the vertex is reduced to

p
ˇk�kjxD0 D p

2iq.0; t/I
p
ˇk
@�k

@x

ˇ̌
ˇ̌
xD0

D p
2i
@q.xk; t/

@x

ˇ̌
ˇ̌
xD0

(16.19)
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with k D 1; 2; and 3. Here
p
2iq.x; t/ corresponds to g.x; t/ in Eq. (16.12). At the

same time, the constraint in Eq. (16.13) becomes

1

ˇ1
D 1

ˇ2
C 1

ˇ3
; (16.20)

which means the sum rule for strengths of nonlinearity around the vertex. Thus the
general solution in Eq. (16.17) has proved to satisfy the boundary condition that
guarantees the norm and energy conservation rules for PSG.

Summarizing, the norm and energy conservation rules are satisfied by the
connection formula in Eqs. (16.10) or (16.11) at the vertex. Among many possible
choices of ˛k , an interesting integrable case occurs when ˛k takes the value in
Eq. (16.18) and strengths of nonlinearity around the vertex satisfy the sum rule in
Eq. (16.20). In this case the general soliton solution on PSG is given by Eq. (16.17).
Equation (16.20) plays a crucial role: unless ˇ1 ¤ ˇ2; ˇ3, no interesting bifurcation
of a soliton propagation occurs at the vertex.

16.2.3 An Infinite Number of Conservation Rules

In the previous section, we showed that the norm and energy conservation rules can
be satisfied by the general solution in Eq. (16.17) which is composed of Zakharov-
Shabat solution of the integrable NLSE with ˇ D 2 in Eq. (16.16). Below we
shall show that, so long as the general solution on PSG is described by parts of
the universal scaled function q.x; t/, all the conservation laws for 1-d chain should
hold for PSG under the sum rule Eq. (16.20).

Applying Zakharov-Shabat’s theorem [13] to each of three bonds, we now
investigate the following quantity:

Qn.t/ �
3X

kD1
ˇ�1
k

Z

bk

fn.q.xk; t//dxk; (16.21)

where q.xk; t/ is the solution of Eq. (16.16) in the bond bk and fn.q.x; t// obeys
the recursion relation (see Eq. (35) of [13]):

fnC1 D q
@

@x

�
1

q
fn

�
C

X

jClDn
fj fl ;

f1 D jqj2: (16.22)

In fact, with use of Eq. (16.20), the r.h.s. of Eq. (16.21) turns out:
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ˇ�1
1

0Z

�1
fn.q.x; t//dx C .ˇ�1

2 C ˇ�1
3 /

C1Z

0

fn.q.x; t//dx

D ˇ�1
1

C1Z

�1
fn.q.x; t//dx D ˇ�1

1 .2i/
nCn; (16.23)

where the second equality is due to the conservation rule for the 1-d chain [13] and
Cn is constant. Hence Qn has proved to be a constant of motion.

It is easy to see that fn is the 2n-th order polynomial of q and its derivatives with
respect to x, written in the following form

fn D
nX

sD1
bsPn;2s.q; qx; qxx; � � � /; (16.24)

where Pn;2s D qk1.q�/k2qk3x .q�
x /
k4 � � � with k1 C k2 C k3 C � � � D 2s.

Noting Eq. (16.17), one can obtain an infinite number of conservation laws in
PSG,

.2i/nCnˇ
�1
1 D 1

2

3X

kD1

Z

bk

nX

sD1
bs

�
ˇk

2

�s�1
Pn;2s.�k; �k;x; � � � /dxk: (16.25)

In Eq. (16.25), the cases n D 1 and 3 give the norm and energy conservation
rules in Eqs. (16.2) and (16.6) with (16.7), respectively. The current conservation
rule is now given by

.2i/2C2ˇ
�1
1 D 1

2

X

k

Z

bk

�
��
k

@�k

@xk

�
.xk; t/dxk: (16.26)

Some higher-order conservation rules are as follows:

.2i/4C4ˇ
�1
1 D 1

2

X

k

Z

bk
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�k
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@x3k
C 3ˇk
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@xk
j�kj2
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.xk; t/dxk; (16.27)
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t = t1t = 0

Fig. 16.1 Splitting of soliton. t1 > � . Broken curves represent ghost solitons

The above results are also true for more general star graphs consisting of M
semi-infinite bonds connected at a single vertex. In such cases, the initial soliton at
an incoming bond splits intoM �1 solitons in the remaining outgoing bonds. In this
case, on the r.h.s. of the lower halves of Eqs. (16.10) and (16.11), the summation is
taken over all the outgoingM � 1 bonds. Correspondingly, the extended version of
Eqs. (16.20) is given by

1

ˇ1
D PM�1

jD1
1

ˇj
: (16.29)

Another example of the graph for which the soliton solution of NLSE can
be obtained analytically is a directed tree graph. The above results can be easily
extended to this case.

16.2.4 Injection of a Single Soliton and Transmission
Probabilities at t ! C1

Here we calculate transmission probabilities for a single soliton which is incoming
through an semi-infinite bond b0 and outgoing through the semi-infinite bonds ˇ� l .

A single (bright) soliton on a graph, which takes the general form in Eq. (16.17),
is described with use of parts of Zakharov-Shabat’s soliton with ˇ D 2 [13]: ��
lying on individual bonds b� is given by

��.x� ; t/ D a
p
2p
ˇ
�

�
exp

h
i v
2
x� � i

	
v2

4
� a2



t
i

cosh
�
a.x� C l � vt/

� ; (16.30)

where v;�l and a are bond-independent parameters characterizing velocity, initial
center of mass and amplitude of a soliton, respectively. In the simplest graph (: PSG)
in Fig. 16.1, the soliton at bond b1 splits into two parts and appears in both of b2 and
b3. This is a novel feature of the soliton propagation through a branched chain and
networks in general. Precisely speaking, the soliton dynamics here is governed by
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a single characteristic time � � l
v

. While for 0 � t � � the soliton at b1 is a real
one and those at b2 and b3 are ghosts, for � � t the soliton at b1 is a ghost and those
at b2 and b3 are real. The incoming real soliton on b1 and outgoing ghost solitons
at b2 and b3 arrive at the vertex O . At t D 0 with l � 1, the soliton lying on the
bond b1 is exclusively responsible for the norm N . On the other hand, at t � 1,
the solitons running through the bonds b2 and b3 are exclusively responsible for the
norm. Therefore we can naturally define transmission probabilities at t ! C1.

Let us consider the general graph with incoming semi-infinite bond b0 .�1; 0/

and n outgoing semi-infinite bonds b� l .0;C1/, l D 1; 2; : : : ; n. According to a
combination of sum rules for nonlinearity coefficients we have

1

ˇ0
D

nX

lD1

1

ˇ� l
: (16.31)

From this rules it follows that the limit at t ! C1, transmission coefficients vanish
on the part of graph of intermediate part (between incoming and outgoing bonds).

Transmission probability for arbitrary bond b� l are defined as

T� l � 1

N

Z C1

0

j�� l.x; t/j2dx: (16.32)

In the case of a single soliton solution with v > 0 we have

T� l D 1

N

2a2

ˇk

Z C1

0

dx

cosh2.a.x C l � s� l � vt//

D 1

N

2a2

ˇk

Z C1

l�s� l�vt
dx

cosh2.ax/
: (16.33)

At the limit t ! C1, we have

T� l ! 1

N

2a2

ˇk

Z C1

�1
dx

cosh2.ax/
D ˇ1

ˇ� l
: (16.34)

We should recognize the reflection probability at the bond b1 is vanishing:

R0 D 1

N

2a2

ˇ0

Z 0

�1
dx

cosh2.a.x C l � vt//

D 1

N

2a2

ˇ0

Z l�s� l�vt

�1
dx

cosh2.ax/
D 0: (16.35)

The last equality is justified at the limit t ! C1.
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According to the sum rule (16.31) one can see the unitarity to be satisfied.

X

l

T� l D 1: (16.36)

The result in Eq. (16.34) provides new analytic expressions for the transmission
probability for open networks with incoming and outgoing semi-infinite bonds.

16.3 Ablowitz-Ladik(AL) Equation on Networks

Let us consider an elementary branched chain (see Fig. 16.2), namely, a primary star
graph (PSG) consisting of three semi-infinite bonds connected at the vertex O .

We denote individual lattice sites as .k; n/, where k D 1; 2, and 3 mean the
bond’s number and n corresponds to the position on each bond. For the first bond
k D 1, n is numbered as n 2 B1 D f0;�1;�2; : : :g, where .1; 0/ means the
branching point, i.e., the vertex. For the second (k D 2) and third (k D 3) bonds,
n varies as n 2 Bk D f1; 2; 3; : : :g. .2; 1/ and .3; 1/ stands for the points nearest to
the vertex.

Discrete nonlinear Schroödinger equation (DNLS) a la Ablowitz-Ladik (AL) is
defined on each bond except for the vicinity of the vertex as

i P k;n C . k;nC1 C  k;n�1/
�
1C �kj k;nj2

� D 0; (16.37)

where .k; n/ 62 f.1; 0/; .2; 1/; .3; 1/g. It should be noted that �k may be different
among bonds. There is an ambiguity about the interaction around the vertex, which
is resolved as follows: Let’s first introduce Hamiltonian for PSG as

H D �
�1X

nD0
. �

1;n 1;nC1 C c:c:/ �
3X

kD2

C1X

nD1
. �

k;n k;nC1 C c:c:/; (16.38)

where at the virtual site .1; 1/ we assume  1;1 D s2 2;1 C s3 3;1 with appropriate
coefficients s2 and s3. Then Eq. (16.37) can be obtained by the equation of motion

Fig. 16.2 Primary star graph.
Three semi-infinite chains
B1; B2 and B3 connected at a
vertex O
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i P k;n D fH; k;ng (16.39)

at .k; n/ 62 f.1; 0/; .2; 1/; .3; 1/g, with use of non-standard Poisson brackets

f k;m;  �
k0;ng D i.1C � j k;mj2/ıkk0ımn; f k;m;  k0;ng D f �

k;m;  
�
k0;ng D 0:

On the same footing as above, the equation of motions in Eq. (16.39) at (1,0), (2,1)
and (3,1) are given, respectively, as

i P 1;0 C . 1;�1 C s2 2;1 C s3 3;1/
�
1C �1j 1;0j2

� D 0; (16.40)

i P k;1 C .sk 1;0 C  k;2/
�
1C �kj k;1j2

� D 0; k D 2; 3: (16.41)

The solution is assumed to satisfy the following conditions at infinity:  1;n ! 0

at n ! �1 and  k;n ! 0 at n ! C1 for k D 2 and 3.

16.3.1 Norm Conservation

It is known that the norm conservation is one of the most important physical
conditions in conservative systems. Since Eqs. (16.37), (16.40) and (16.41) are
available from Hamilton’s equation of motion with non-standard Poisson brackets,
the norm and energy conservations seem obvious. Below, however, we observe them
explicitly. Extending the definition in the case of 1-d chain [4], the norm for PSG is
given as

N D k k2 D
3X

kD1

1

�k

X

n2Bk
ln
�
1C �kj k;nj2

�
: (16.42)

Its time derivative is given by

d

dt
N D

3X

kD1

X

n2Bk
Ak;n (16.43)

with

Ak;n D 1

1C j�k;nj2
�
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k;n

P k;n C P �
k;n k;n

�
: (16.44)
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For .k; n/ 62 f.1; 0/; .2; 1/; .3; 1/g with use of Eq. (16.37) we have

Ak;n D 1

i

�
 k;n 

�
k;nC1 �  �

k;n k;nC1
�

�1
i

�
 k;n�1 �

k;n �  �
k;n�1 k;n

�

� jk;n � jk;n�1; (16.45)

where

jk;n � 1

i

�
 k;n 

�
k;nC1 �  �

k;n k;nC1
�

(16.46)

implies a local current. Carrying out the summation in Eq. (16.43), we have

X

k

X

n

0
Ak;n D j1;0 � j2;1 � j3;1; (16.47)

where
P
k

P
n

0 means the summation over all sites on PSG except for the points

.1; 0/; .2; 1/; .3; 1/.
Similarly, for .k; n/ D .1; 0/; .2; 1/; .3; 1/ with use of Eqs. (16.40), (16.41) we

obtain

A1;0 D s2
1

i

�
 1;0 

�
2;1 �  �

1;0 2;1
�

Cs3 1
i

�
 1;0 

�
3;1 �  �

1;0 3;1
� � j1;0 (16.48)

and

Ak;1 D jk;1 � sk
1

i

�
 1;0 

�
k;1 �  �

1;0 k;1
�

(16.49)

for k D 2; 3. Then we can see

d

dt
N D

3X

kD1

X

n2Bk
Ak;n � 0; (16.50)

i.e., norm conservation. Therefore, for any choice of values s2 and s3 the norm
conservation turns out to hold well.
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16.3.2 Energy Conservation

Energy for PSG is expressed in a symmetrical form as

E D �2Re
hX�1

nD�1  
�
1;n 1;nC1 C

X3

kD2
XC1

nD1  
�
k;n k;nC1

C �
1;0.s2 2;1 C s3 3;1/

i
: (16.51)

To show that the energy is conservative, we see its time derivative

d

dt
E D �2Re

�1X

nD�1

�
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1;n

P 1;nC1 C P �
1;n 1;nC1

�

�2Re
3X

kD2

C1X

nD1
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 �
k;n

P k;nC1 C P �
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�2Re
�
 �
1;0

�
s2 P 2;1 C s3 P 3;1

�C P �
1;0 .s2 2;1 C s3 3;1/

�
: (16.52)

With use of Eq. (16.37) we have

�
�1X

nD�1

�
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1;n

P 1;nC1 C P �
1;n 1;nC1

�

D 1

i

�1X

nD�1

�j 1;n�1j2 � j 1;nC1j2
� �
1C �1j 1;nj2

� �  �
1;�1 P 1;0; (16.53)

�
1X

nD1
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 �
k;n

P k;nC1 C P �
k;n k;nC1

�

D 1

i

1X

nD2

�j k;n�1j2 � j k;nC1j2
� �
1C �1j k;nj2

� � P �
k;1 k;2: (16.54)

Substituting Eqs. (16.53) and (16.54) into Eq. (16.52) and using Eqs. (16.40) and
(16.41), we find:

d

dt
E D �2Re

�
 �
1;0

�
s2 P 2;1 C s3 P 3;1

�

C P �
1;0

�
s2 2;1 C s3 3;1 C  �

1;�1 P 1;0
�C P �

2;1 2;2 C P �
3;1 3;2

�

D 2Re

�
1

i
.1C �1j 1;0j2/

�j 1;�1j2 � js2 2;1 C s3 3;1j2
�

C1

i

3X

kD1
.1C �kj k; 1j2/

�
s2k j 1;0j2 � j k;2j2

� � � 0: (16.55)
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The last equality comes from the pure imaginary nature of the expression in Œ� � � �.
Equation (16.55) is nothing but the energy conservation.

As one can see from Eqs. (16.50) and (16.55) the norm and energy are conserved
for any choice of the parameters s2 and s3. But in general one cannot guarantee other
conservation laws. In the next sections we consider a special case with appropriate
choice of s2 and s3 which guarantees an infinite number of conservation laws.

16.3.3 Completely Integrable Case: Dynamics Near Branching
Point and Sum Rule

Among many possible choices of s2 and s3, there is one special case in which an
infinite number of constants of motion can be found and DNLSE on PSG becomes
completely integrable. We shall now consider this case by finding suitable values
for s1 and s2.

For this purpose, we shall first add to each bond Bk (k D 1; 2; 3) a ghost-bond
counterpartB 0

k so that Bk CB 0
k constitutes an ideal 1-d chain. Then we suppose that

a solution of AL equation on PSG is given by

 k;n.t/ D 1p
�k
qk;n.t/; k D 1; 2; 3 (16.56)

where qk;n.t/ are solutions of DNLSE on the ideal 1-d chain ([1–4]):

i Pqn C .qnC1 C qn�1/.1C jqnj2/ D 0; (16.57)

with n being integers in .�1;C1/. The solutions of Eq. (16.57) may be different
among three fictitious chains Bk C B 0

k (k D 1; 2; 3).
Comparing Eqs. (16.40), (16.41) and (16.57), one can find at the vertex the

following equalities:

1p
�1
q1;1.t/ D s2p

�2
q2;1.t/C s3p

�3
q3;1.t/; (16.58)

1p
�k
qk;0.t/ D skp

�1
q1;0.t/; k D 2; 3: (16.59)

Noting the spatio-temporal behaviors of soliton solutions and to guarantee

Eq. (16.59) for any t , qk;n.t/ D sk

q
�k
�1
q1;n.t/ with k D 2; 3 should be satisfied

for any integer n. From the latter equality we obtain

sk

r
�k

�1
D 1 or sk D

r
�1

�k
.k D 2; 3/ (16.60)

and qk;n.t/ � qn.t/, i.e., the solution qk;n.t/ is bond independent.
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Now combining this results with Eq. (16.58) we have the sum rule among
nonlinearity coefficients:

1

�1
D 1

�2
C 1

�3
(16.61)

Thus one can see that the solution on PSG is defined as a common (bond-
independent) soliton solution of Eq. (16.57) multiplied by square root of the inverse
nonlinearity coefficient. This issue is guaranteed, so long as the sum rule for
nonlinearity coefficients �1, �2 and �3 in Eq. (16.61) is satisfied simultaneously.

In the case of another choice of parameters s2 and s3 we shall see a completely
different nonlinear dynamics of solitons such as reflection of a soliton at the vertex.
The initial value problem for such parameters will be treated elsewhere.

We also notice that the parameters s2 and s3 correspond to the ˛2
˛1

and ˛3
˛1

,
respectively, in the case of continuous NLSE considered in the preceding work [12].

16.3.4 An Infinite Number of Constants of Motion

It is well known that Ablowitz-Ladik (AL) equation on the 1-d chain has an infinite
number of constants of motion. Now we shall proceed to obtain an infinite number
of constants of motion for general solutions of AL equation on PSG. First of all, it
should be noted that the solution on PSG can now be written as

 k;n.t/ D 1p
�k
qn.t/; n 2 Bk; k D 1; 2; 3; (16.62)

where qn.t/ stands for a general solution of AL equation (16.57) and is restricted to
each bonds Bk (k D 1; 2; 3).

While we already proved the conservation of energy, we can generalize it to the
general cases: Without taking the complex conjugate, Eq. (16.38) can be explicitly
written as

Z D �
�1X

nD�1
 �
1;n 1;nC1 �

3X

kD2

C1X

nD1
 �
k;n k;nC1

� �
1;0.s2 2;1 C s3 3;1/: (16.63)

Substituting Eq. (16.62) into Eq. (16.63),Z is rewritten as

Z D � 1

�1

�1X

nD0
q�
n qnC1 �

3X

kD2

1

�k

C1X

nD1
q�
n qnC1

C 1

�1
q�
0 q1 �

3X

kD2

skp
�1�k

q�
0 q1: (16.64)
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Using the value sk in Eq. (16.60) and the sum rule in Eqs. (16.61), (16.64) reduces
to the constant for the case of 1-d chain [1, 2]:

Z D � 1

�1

C1X

�1
q�
n qnC1: (16.65)

Therefore Z in Eq. (16.63) is a constant of motion, and its real and imaginary parts
imply energy and current, respectively.

For other higher-order conservation rules, we can write them as

1

�1
Cm D 1

�1

�1X

nD0
fm.q1;n/C

3X

kD2

1

�k

C1X

nD1
fm.qk;n/; (16.66)

where fm is defined as a expansion coefficient of the expression (see [2])

C1X

nD�1
log.g.0/n C g.1/n z2 C g.2/n z4 C : : :/ D f1z

2 C f2z
4 C : : : ; (16.67)

with

g.0/n D 1; g.1/n D Rn�1Qn�2;

g.m/n D Rn�1
Rn�2

g
.m�1/
n�1 �

m�1X

lD1
g
.m�l/
n�1 g.l/n ; m D 2; 3; 4; : : : ; (16.68)

Rn D q�
nC2; Qn D �qnC2: (16.69)

The conservation laws (16.66) include some undefined terms that must be defined as

 1;n D s2 2;n C s3 3;n with n � 1; (16.70)

 k;n D sk k;n; k D 2I 3 with n � 0: (16.71)

The conservation laws in Eq. (16.66) follows from the nature of solution (16.62)
and the sum rule for nonlinearity coefficients (16.61).

For m D 1 we obtain current and energy conservation laws. At m � 2 we obtain
higher order conservation laws. Some of higher-order constants of motion are as
follows:

1

�1
C2 D �

3X

kD1

X

n2Bk

	
 �
k;nC1 k;n�1.1C �kj k;nj2/

C�k

2
 2k;n. 

�
k;nC1/2



; (16.72)
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1

�1
C3 D �

3X

kD1

X

n2Bk

h	
 �
k;nC2 k;n�1.1C �kj k;nC1j2/C �k 

�
k;n 

�
k;nC1 2k;n�1

C. �
k;nC1/2 k;n k;n�1



.1C �kj k;nj2/C �2k

3
 �
k;nC1 k;n

i
: (16.73)

16.4 Conclusions

Thus we studied the problem of reflectionless soliton transport in simple networks
considering the case when the nonlinear Schrodinger equation on simplest graphs
becomes completely integrable. The strength of cubic nonlinearity is assumed to
be different from bond to bond, and the networks are assumed to have at least two
semi-infinite bonds with one of them working as an incoming bond. The connection
formula at vertices are derived obtained from norm and energy conservation rules.
Under these conditions, we also showed an infinite number of constants of motion.
It is shown that the results can be extended to other simplest graph topologies,
i.e., general star graphs, tree graphs, loop graph and their combinations. Using the
ballistic transport of Zakharov-Shabats soliton through networks we have derived
expressions for the transmission probabilities on the outgoing bonds, which are
inversely proportional to the bond-dependent strength of nonlinearity.
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Chapter 17
Symmetry Breaking in Open Quantum
Nonlinear Systems

Almas F. Sadreev, Evgeny N. Bulgakov, Dmitrii N. Maksimov,
and Konstantin N. Pichugin

Abstract We consider symmetry breaking in the simplest open quantum nonlinear
systems such as dimer and plaquette of four nonlinear sites coupled with linear tight-
binding wires. If the solution is stationary, the total Hilbert space can be projected
into the inner states of the dimer or plaquette by the Feshbach procedure. That
derives a nonlinear analogue of the Lippmann-Schwinger equation with injected
wave as a source. By neglecting radiation shifts the Lippmann-Scwinger equation
limits to the coupled mode theory equations widely used in optics. We show three
scenarios for the transmission through the nonlinear quantum systems. The first
one inherits the linear case and preserves the symmetry. In the second scenario the
symmetry is broken because of different intensities at the dimer sites. In the third
scenario the intensities at the sites are equaled but phases of complex wave function
are different. That results in a vortical power flow between the nonlinear sites similar
to the DC Josephson current. We show how the phenomenon of symmetry breaking
can used for switching of outputs symmetrically coupled to the quantum dimer. Also
we reveal a domain in the parameter space where none of stationary solutions exist.
As a result injection of a monochromatic symmetric wave gives rise to emission of
nonsymmetric satellite waves with energies different from the energy of the incident
wave. Thus, the response exhibits non monochromatic behavior.

17.1 Introduction

To the best our knowledge symmetry breaking (SB) in the nonlinear systems was
first predicted by Akhmediev who considered a composite structure of a single
linear layer between two symmetrically positioned nonlinear layers [1]. One could
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easily see that if the wave length is larger than the thickness of the nonlinear layers
then Akhmediev’s model could be reduced to a dimer governed by the nonlinear
Shrödinger equation

�
�j 1j2 �u

�u �j 2j2
��

 1

 2

�
D E

�
 1

 2

�
: (17.1)

Independently the SB was discovered for the discrete nonlinear Schrödinger
equation with a finite number of coupled cites (nonlinear dimer, trimer, etc.) [2–8].
For example, in the case of the nonlinear quantum dimer Eilbeck et al. found
two different families of stationary solutions of NSE (17.1) [2]. The first family
is symmetric (antisymmetric) (j�1j D j�2j) while the second is nonsymmetric
(j�1j ¤ j�2j). This consideration was later extended to a nonlinear dimer embedded
into an infinite linear chain [9] with the same scenario for the SB. Multiple
bifurcations to the symmetry breaking solutions were demonstrated by Wang et al.
[10] for the nonlinear Schrödinger equation with a square four-well potential.
Remarkably, the above system can also support a stable state with a nodal point,
i.e., quantum vortex [11]. In the framework of the nonlinear Schrödinger equation
one can achieve bifurcation to the states with broken symmetry varying the chemical
potential which is equivalent to the variation of the population of the nonlinear sites
or, analogously, of the constant in the nonlinear term of the Hamiltonian. In practice,
however, one would resort to the optical counterparts of the quantum nonlinear
systems where the variation of the amplitude of the injected wave affects the strength
of Kerr nonlinearity (see Refs. [12–23] for optical examples of symmetry breaking).

A wave injected into the nonlinear quantum or optical systems accomplishes
manyfold functions. Similar to the linear systems scattered wave carries information
about inner structure of the closed system. However this wave can also switch
on/off corresponding inner states. Application of wave pulses can cause transitions
between stable solutions, realizing all-optical switching [24]. Other words, these
pulses shake the nonlinear system to give rise to bifurcations [25]. The phase
of wave function in the open nonlinear quantum system can also become a key
player. The quantum system can be opened by many ways. Examples of the open
symmetrical quantum dimer with attached one-dimensional wires are shown in
Fig. 17.1.

The open quantum dimer shown in Fig. 17.1a is equivalent to the system in which
two nonlinear cavities are aligned along the waveguide considered by Maes et al.
[18, 19]. That system is symmetric relative to the inversion of the transport axis if
equal power is injected on both sides of the coupled cavities. Maes et al. has shown
that nevertheless the reflected output power might be different on both sides of the
defects due to nonlinear effects, i.e., the symmetry of the system can be broken
under effect of input power. The same result was demonstrated by Brazhnyi and
Malomed in a linear discrete chain (Schrödinger lattice) with two nonlinear sites
shown in Fig. 17.1b [9].

The next important question on the open nonlinear quantum systems is whether
the solutions in the linear waveguides could be stationary monochromatic plane
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a

u u

b

u

ψ1

ψ2

γ1/2

γ1/2

φ−2φ−3 φ−1 φ0 φ1 φ3φ2

c

d

Fig. 17.1 Different designs of open quantum nonlinear dimer shown by bold closed circles. Linear
wires attached to the dimer are shown by solid lines. Waves injected into nonlinear quantum dimer
are shown by red arrows

waves, reflected  .n; t/ D R exp.�ikn � iE.k/t/ and transmitted  .n; t/ D
T exp.ikn�iE.k/t/, whereR and T are the reflection and transmission amplitudes.
If the answer is positive then we can apply the Feshbach projection technique
[26–31] and implement the formalism of non-Hermitian effective Hamiltonian (now
nonlinear) which acts on the nonlinear sites only thus truncating the Hilbert space
to the scattering region [22, 31]. When the radiation shifts of the energy levels are
neglected that formalism reduces to the well known coupled mode theory (CMT)
equations [32–35]. In the present paper we will show that there are domains in the
parameter space where there are no stable stationary solutions. We will demonstrate
numerically that a plane wave incident onto a nonlinear object gives rise to emission
of multiple satellite waves with energies (frequencies) different from the energy
(frequency) of the probing wave.

17.2 Symmetry Breaking for Transmission
Through Nonlinear Dimer

We consider the nonlinear dimer coupled with linear tight-binding chain shown in
Fig. 17.1c. The chain supports continuum of plane waves

�j .t/ D 1p
2�j sin kj exp.˙ikj � iE.k/t/ (17.2)

with the propagation bands given by

E.k/ D �2 cosk;�� � k � �: (17.3)
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The nonlinear dimer is coupled with the linear chain via the coupling constant
p
�

shown in Fig. 17.1c by dash lines. In the case of the nonlinear dimer the Schrödinger
equation takes the following form

i P�j D ��jC1 � �j�1 C p
�ıj;0. 1 C  2/;

i P 1 D �j 1j2 1 � u 2 C p
��0; (17.4)

i P 2 D �j 2j2 2 � u 1 C p
��0:

Let us, first, search for the solution of the Schrödinger equation (17.4) in the form
of a stationary wave

�j .t/ D �j e
�iEt (17.5)

where the discrete space variable j and the time t are separated. The absence
of nonlinearity in the waveguides drastically simplifies analysis of Eq. (17.4).
Assuming that a wave is incident from the left we can write the solutions in the
left �.L/j and right �.R/j waveguides as:

�
.L/
j D A0 exp.ikj /C r exp.�ikj /; �.R/j D t exp.ikj /; (17.6)

where parameter A0 is introduced to tune the intensity of the probing wave. Notice
that Eq. (17.6) implicitly defines reflection and transmission amplitudes r and t .
One can now match the solutions Eq. (17.6) to the equations for the nonlinear
sites to obtain a set of nonlinear equations for on-site and reflection/transmission
amplitudes. Computationally, however, it is more convenient to use the approach of
the non-hermitian Hamiltonian [29, 31] in which the number of unknown variables
equals to the number of nonlinear sites. Following Ref. [22] we write the nonlinear
analogue of the Lippmann-Schwinger equation

.E �Heff /j i D p
��0 (17.7)

where the effective Hamiltonian is given in Appendix for the tight-binding wire. If
the eigen-energies of the nonlinear dimer are spaced in the centrum of propagation
band of wire, i.e., near zero we can approximate the effective Hamiltonian as follows

Heff D
��i� C �j 1j2 �u � i�

�u � i� �i� C �j 2j2
�
: (17.8)

which corresponds to phenomenological approach [26, 27] in the scattering theory.
One can easily see that in the limit � ! 0 the dimer is decoupled from the
waveguides and Eq. (17.7) limits to the standard nonlinear Schrödiner equation of
the closed nonlinear dimer (17.1).
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On the other hand, let us write the effective Hamiltonian (17.8) in the represen-
tation of the eigen-states of the linear dimer

jsi D 1p
2

�
1

1

�
; jai D 1p

2

�
1

�1
�

(17.9)

where the indexes s; a note the symmetric and antisymmetric states with the
corresponding eigen-energiesEs;a D �u. In this representation Eq. (17.7) will take
the following form

ŒE � Es � �.j 1j2 C j 2j2/C i��As � �.j 1j2 � j 2j2/Aa D p
��0;

��.j 1j2 � j 2j2/As C ŒE � Ea � �.j 1j2 C j 2j2/�Aa D 0: (17.10)

This equation is the coupled mode theory (CMT) equation for the stationary
transmission [32–35]. After Eq. (17.7) is solved one easily obtains transmis-
sion/reflection amplitudes from Eq. (17.4)

r D 2�iV C 1
ECi0�Heff V D i O� 1

ECi0�Heff
O� C D p

�As; (17.11)

t D �0 � R (17.12)

where O� D p
�.1 1/.

Thus, we reduced the problem of scattering of wave through the nonlinear
quantum dimer to the computational problem of self-consistent solution of
CMT equation (17.7). The results of computation are presented in Fig. 17.2
(amplitudes of symmetric and antisymmetric modes) and Fig. 17.3 (transmission).
Equation (17.10) has three solutions. The first symmetry preserving solution inherits
the linear case, i.e. limits to the solution of the linear Lippmann-Schwiner equation
for �0 ! 0 or � ! 0 and shown by dash lines. Wave injected into the dimer
has zero coupling with the antisymmetric mode and therefore can not excite it as
shown in Fig. 17.2b. Respectively, the transmission through the dimer would have
resonance dip at the eigen-energy of the dimer at Es D �u. However because of
the nonlinear shift �j 1j2 the dip is spaced at the energy E > Es as seen from
Fig. 17.2c.

If to assume a symmetry breaking with j 1j ¤ j 2j the antisymmetric mode
Aa couples with the injected wave also as seen from Eq. (17.10). Therefore, there
should be the second symmetry breaking (SB) solution in which symmetric and
antisymmetric modes both are excited as shown in Fig. 17.2a, b by solid red
lines. Respectively we observe the second resonance dip at the energy right to the
antisymmetric eigen energyEa D u in Fig. 17.2c. Stability of the SB solution shown
by open circles is restricted.

The symmetry preserving and symmetry breaking solutions exist provided that
the determinant of matrix jE�Heff j ¤ 0. There could be the singular case when the
jE �Heff j D 0 when an inverse of the matrix does not exist. In the linear case that
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Fig. 17.2 Energy behavior of (a) the symmetric amplitude jAsj, (b) the antisymmetric amplitude
jAaj, (c) transmission, and phase difference .�1 � �2/=� of the model shown in Fig. 17.1c for,
� D 0:5; � D 0:04; u D 0:1; �0 D 0:2. Stability of the solutions is marked by closed and open
circles

can occur only for discrete points in the space of the model parameters and results
in rather exotic bound states in continuum (BSC) [36–39]. Nonlinear systems open
new page in the BSC phenomenon. In framework of a generic two-level nonlinear
Fano-Anderson model it was shown that the BSC arises by self-consistent way [40]
without necessity to tune physical parameters as it was in the linear case. This
phenomenon is generic and recently was applied to photonic crystals with defects
made of Kerr media [22, 41] and nonlinear crystals [42].

For the open nonlinear dimer we have the following equation for jE�Heff j D 0:

j 1j D j 2j D I;E D Ea C 2�I: (17.13)

After substitution of this equation into Eq. (17.10) we obtain

As D
p
��0

Ea�EsCi� D �
p
��0

2u�i� D  1C 2p
2

D
q

I
2
.ei�1 C ei�2/;

cos2.�1 � �2/=2 D ���0
4u2C�2 : (17.14)



17 Symmetry Breaking in Open Quantum Nonlinear Systems 241

Fig. 17.3 (a) View of the waveguide coupled with two off-channel defect rods made from
Kerr media. The absolute value of EM field solution for (b) the symmetry preserving solution
!a=2�c D 0:355, (c) the symmetry breaking solution !a=2�c D 0:355 and (d) !a=2�c D
0:358. The EM wave incidents at the left of the waveguide. the lattice constant a D 0:5�m, the
cylindrical dielectric rods have radius 0:18a and dielectric constant � D 11:56 (GaAs at the wave
length 1:5�m) in air

We name such a solution as the phase symmetry breaking solution. Figure 17.2
shows the energy behavior of the amplitudes and phase difference by gray solid
line. As seen from Fig. 17.2c this solution is unstable.

The Schrödinger equation exactly corresponds to the Maxwell equations for TM
modes in two-dimensional photonic crystals where the z-component of electric
field plays role of the quantum mechanical wave function [43]. In particular the
considered open quantum dimer is equivalent to the directional photonic crystal
waveguide with two off-channel defect cavities [22]. Figure 17.3 demonstrates the
symmetry preserving and symmetry breaking solutions of the nonlinear Maxwell
equations in the two-dimensional photonic crystal system with optical cavities made
from a Kerr media. In particular, Fig. 17.3d demonstrates the symmetry breaking
solution where one of the cavities remains completely dark.
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a b c

Fig. 17.4 Current flows for the symmetry preserving solution which inherits linear case (a), the
symmetry breaking solution (b), and (c) the phase symmetry breaking one at a!=2�c D 0:35.
Bold open circles mark the nonlinear defects

Because of the phase difference �1 ¤ �2 for the phase symmetry breaking branch
a current can flow between the nonlinear sites similar to tunneling current between
two superconducting samples. Multiplying equation (17.4) by complex conjugated
amplitudes and subtracting the complex conjugated terms one can obtain the value
of the power flow current flowing between the chain at the “0”-th site and cavities
as follows

j0!1;2 D p
�Im.�0 

�
1;2/: (17.15)

Similar manipulations with the cavity amplitudes give the current between the
cavities

j1!2 D uIm. 1 
�
2 / D uı�I sin.2�/: (17.16)

The current from the “�1”-th site to the “0”-th site of the chain coincide with
current from the “0”-th site to the “1”-th one. Therefore the currents (17.15) and
(17.16) coincide too in accordance with the Kirchhoff rule. Thus, the input power
induces vortical current between the waveguide and cavities via the coupling

p
�

and between the cavities via the coupling u. The Josephson analogue of current
can be demonstrated in photonic crystal which reveals the stability domain for the
phase symmetry breaking solution [22]. This solution does not visualize broken
symmetry in modulus of wave function but clearly shows breaking of symmetry in
the Poynting currents in Fig. 17.4.

17.3 Switching of Quantum Flows in T-Shape Structure

Figure 17.3d demonstrates the resonance state where only one of nonlinear sites is
excited while opposite site is completely dark. Note there is equivalent resonance
state with symmetry inversion of the dimer. Then this dark site will blockade
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the quantum transmission through the site. Therefore in the T-junction shown in
Fig. 17.1d one of the outputs will be switched off. Moreover applying pulses of
injected wave we can switch these flows from one output to another. These ideas
were realized in our Ref. [23].

For the present system we approximate the tight-binding wires with finite
propagation band with continual wires with infinite propagation bands. That allows
us to use the CMT formulated in Refs. [33, 35]:

i P 1 D .�j 1j2 � i�/ 1 C i
p
��2�ei�

i P 2 D .�j 2j2 � i�/ 2 C i
p
��3�ei� (17.17)

The phase � D kL where k is the wave vector and L is a distance between
junction and the dimer sites as shown in Fig. 17.5a. These CMT equations are to
be complemented by the equations for light amplitudes at each site

S2� D �2�ei� � p
� 1;

S3� D �3�ei� � p
� 2;

�2Ce�i� D �p
� 1;

�3Ce�i� D �p
� 2: (17.18)

The T-connection connects ingoing and outgoing amplitudes by the S-matrix as
follows [23]

0

@
S1�
�2�
�3�

1

A D 1

3

0

@
�1 2=3 2

2 �1 e

2 2 �1

1

A

0

@
S1C
�2C
�3C

1

A : (17.19)

Equations (17.17)–(17.19) form full system of equations for nine amplitudes:
A1;A2; �2C; �2�; �3C; �3�; S1�; S2�; S3�. In Fig. 17.5b we present the stationary
solution of these nonlinear equations as the transmission probabilities from the
input wire into the output wires jt12j2 D jS2�j2=j�0j2; jt13j2 D jS3�j2=j�0j. There
are at least two solutions. The first solution shown by grey solid line preserves
the symmetry and therefore is not interesting for T-switching. The second SB
solution shown by red and blue lines in Fig. 17.5b provides almost 100 % blocking
of quantum flow to the second output waveguide, and is stable. In Fig. 17.6 we
show realization of these effects of the symmetry breaking in the T-shaped photonic
crystal waveguide [23].

That result is extremely important for the switching of the output flows from one
output into another one. In order to switch the system from one asymmetric state to
the other we following Refs. [13,18] apply pulses of the input power injected into the
waveguide 1. The direct numerical solution of the temporal CMT equation (17.17)
with S1C.t/ D �0.t/e

iEt is shown in Fig. 17.7 which demonstrates the switching
effect. The stepwise time behavior of amplitude �0.t/ is shown by gray line. One
can see that after the first pulse of the input amplitude the oscillations of the cavity
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Fig. 17.5 (a) Continual version of the open quantum dimer shown in Fig. 17.1c. The input wave
labelled as S1C D �0e

iEt is applied through waveguide 1. (b) The transmission probabilities into
the output waveguides 2 and 3 vs energy. Stability of solutions is marked by thicker lines

amplitude relax into the stable stationary solutions with broken symmetry. Moreover
after each next pulse the state of the system transmits from one asymmetric state to
the other as was observed by Maes et al. [18].

17.4 Four-Site Nonlinear Plaquette

In the previous section we demonstrated how the phenomenon of SB occurs in the
nonlinear dimer due to resonant excitation of both symmetric and antisymmetric
modes As;Aa. In this section we consider the transmission through four-site
plaquette shown in Fig. 17.8. The closed system supports two degenerate modes
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Fig. 17.6 The EM field solution for (a) the symmetry preserving solution !a=2�c D 0:3442 and
(b) the symmetry breaking solution the for !a=2�c D 0:3442 in the T-shaped photonic crystal
made of the same material as given in Fig. 17.3. Defect rods fabricated from Kerr media which
play role of nonlinear sites of the nonlinear dimer are shown by stars
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of different symmetries hAsj D 1
2
.1; 1;�1;�1/ and hAaj D 1

2
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corresponding degenerate eigenvalue is Es;a D 0. In the case of the four-site
plaquette the effective Hamiltonian takes the following form [29, 31]

Heff D
 Oh.1; 2/ Ov

Ov Oh.3; 4/

!
;

Oh.i; j / D
���.eik1 C eik2/=2C �j i j2 �u � �.eik1 � eik2/=2

�u � �.eik1 � eik2/=2 ��.eik1 C eik2/=2C �j j j2
�
;

Ov D
��u 0

0 �u

�
; (17.20)

Eq. (17.7) should now be solved for the state vector of the plaquette h j D
. 1;  2;  3;  4/ with the source term hinj D .1; 0;˙1; 0/. The results of numerical
solution are presented in Fig. 17.9.

The result is similar to the case of nonlinear dimer including that there is now
a domain the parameter space where all stationary solutions are unstable as shown
in Figs. 17.2 and 17.7. Respectively, the solution of the transmission problem in
such system can be described neither by transmission and reflection amplitudes
equations (17.6) nor by the Feshbach projection method, i.e. by the effective non-
Hermitian Hamiltonian equation (17.7). The problem of plane wave scattering from
the nonlinear plaquette can only be solved through numerical simulation of the time-
dependent equation.
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Fig. 17.10 Time evolution of populations of symmetric Bs (blue line), and antisymmetric Ba (red
line) resonant modes, � D 0:4; � D 1; � D 0:09E D 0:4. The insets show the real parts of
amplitudes u3 (blue line), and v3 (red line) vs. time t in the corresponding regimes. One can clearly
see that in course of time the system evolves to a non-stationary solution

As numerical tests we perform the wave-front simulations with the initial state

j in.n/i D f .n/ 
.C/
1 .n; 0/; (17.21)

where

f .n/ D
(

1 if n � �100 I
e�.nC100/2=250 if n > �100; (17.22)

is an auxiliary function that provides a smooth increase of incident plane wave
amplitude. Figure 17.10 shows the time evolution of populations As;Aa of sym-
metric and antisymmetric resonant modes. At t D 0 a symmetric wave front (17.21)
is sent from the left waveguide towards the plaquette with its energy and amplitude
within the domain of unstable stationary solutions E D 0:4 (shown by red star
in Fig. 17.7a). First when t 2 Œ150; 350� only symmetric state of the plaquette is
excited; Aa D 0. However, the symmetry preserving solution is unstable. That
causes transition to the symmetry breaking solution Aa > 0 at t � 400. As a
result the plaquette emits stationary plane waves of both symmetries with the same
energy as the probing wave when t 2 Œ450; 650�. Since this solution is also unstable
the system transits to another regime at t � 700. It is clearly seen in Fig. 17.10
that in this regime the solution is also symmetry breaking, however, what is more
interesting, it is non-stationary. The Fourier power spectrum F.E/ Fig. 17.11 of the
amplitude 3 for t � 800 clearly shows the presence of three peaks, the central peak
with energyE D 0:4 and two satellites with energiesE1 D �1:71, E2 D 2:51.
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Fig. 17.12 (a) Response of nonlinear plaquette to symmetric probing wave � D 0:4; � D 1; � D
0:4; A0 D 1. Transmission probability jT11j2 for symmetry preserving solutions – dashed blue
line, jT11j2 SB solutions – solid red line, jT12j2 SB solutions – solid black. (b) Corresponding
Fourier power spectrum of amplitude u3 at E D 0:5 (red star in (a))

With the growth of the nonlinearity constant � which is equivalent to growth
of the amplitude of the injected wave the dynamical properties of the nonlinear
plaquette change drastically. Figure 17.12a shows the transmission probabilities
vs. the incident energy. One can see that compared against Fig. 17.9 the trans-
mission peak is now shifted towards the edge of the propagation band. When the
energy of the incident wave belongs to the instability window of the symmetry
preserving solution E D 0:5 (red star in Fig. 17.11a) the system rapidly evolves to
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non-stationary symmetry breaking regime. The time-Fourier power spectrum with
several equidistant satellite peaks is shown in Fig. 17.12b. It should be noticed that
although there now is a pair of stable symmetry breaking solutions at E D 0:5

the system nevertheless does not access them but immediately transits to the
non-stationary regime. That phenomenon of satellite peak generation obviously
differs from the second harmonic generation where the waves of twice the energy
(frequency) would be emitted [44].

17.5 Summary and Discussions

In this paper we considered the simplest nonlinear open systems whose closed
analogues allow for symmetry breaking, namely, dimer and four-site square pla-
quette [2–8]. The term “open” means that linear waveguides are now attached to the
nonlinear objects. The waveguides are chosen in the form of tight-binding double
chains. As shown in Fig. 17.1 this architecture preserves the mirror symmetry with
respect to the center-line of the waveguides. Then if there are stationary solutions
(17.5) the standard procedure of matching reflected/transmitted waves (17.6) can
be applied to obtain the transmision/reflection coefficients. It is more convenient,
however, to use the Feshbach projection technique to project the total Hilbert
space onto the space of the inner states that describe the scattering region only
[26,28,29,31]. The resulting equation could be seen as a nonlinear equivalent of the
Lippmann-Schwinger equation (17.7) where Heff is the nonlinear non hermitian
effective Hamiltonian whose matrix elements depend in turn on the amplitude of
the injected wave. The corresponding equations are written down for both dimer by
Eq. (17.8) and four-site square nonlinear plaquette equation (17.20). The effective
Hamiltonian differs from the nonlinear Hamiltonian considered in Refs. [2–7, 10]
due to the presence of dissipative terms �2 exp.ikp/ where � is the hopping matrix
element that controls the coupling between the closed system and the waveguides.

In case of transmission of a symmetric plane wave through the nonlinear dimer
we found two families of solutions. In the symmetry preserving family the incident
symmetric wave is reflected and transmitted into the same symmetric channel. The
second family, however, violates the symmetry of the probing wave. It means that
when a symmetric wave is injected into the system the SB gives rise to emission
of the antisymmetric plane waves and vice versa. Therefore the nonlinear dimer is
capable for the mode conversion, although, with maximum efficiency around 50 %.
We found that the direct solution of the time-dependent Schrödinger equation with a
wave front incident to the nonlinear dimer gives the same results for the transmission
probabilities as found from the approach of the non-Hermitian Hamiltonian. It
should be pointed out that the key feature that makes possible to access the SB
solutions is the presence of domains in the parameter space where all symmetry
preserving solutions are unstable. It means that in course of time the symmetry
preserving solution will eventually collapse due to the presence of noise. The second
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important aspect about the open nonlinear dimer is that symmetry is broken by both
intensity and phase of the scattering function.

Similar consideration was made for the open nonlinear four-site plaquette
(see Fig. 17.1b). Its closed counterpart has the symmetry group D4 that provides
many opportunities for the symmetry breaking [10]. However the presence of the
waveguides in the design shown in Fig. 17.1b substantially reduces this symmetry
to the symmetry of the open dimer. Therefore one can expect a similar scenario for
SB. However, in the case of plaquette four nonlinear degrees of freedom participate
in the transmission which dramatically changes the dynamical picture. The standard
theory of stability [45, 46] based on small perturbation technique reveals that there
are domains in the parameter space where none of the stationary solutions (neither
symmetry preserving nor symmetry breaking) are stable. It means that the scattering
problem could not be reduced to stationary equations. Direct solution of the time-
dependent Schrödinger equation revealed the emission of satellite waves at the
energies different from the energy of incident wave provided that this energy is
chosen within the domain where the symmetry preserving solution is unstable.
The number of satellite wave and their energies depend mostly on the intensity of
injected wave (or equivalently on the nonlinearity constant). This effect is different
from the second harmonic generation with satellite energies not equal twice the
injected wave energy. Emergence of additional equidistant peaks in the Fourrier
power spectrum of four-cite nonlinear system was reported almost 30 years ago in
the seminal paper by Eilbeck et al. [2]. We believe that nowadays with the ongoing
development of experimental techniques, in particular in handling photonic crystal
waveguides, that phenomenon opens a new opportunity for harmonics generation.
Another interesting possibility for constructing nonlinear quantum double-chain set-
ups could be Bose-Hubbard ladders in optical lattices [47].

Appendix

The solution of the infinite tight-binding one-dimensional wire is

hj jEi D  E.j / D 1p
2�j sin kj exp.ikj /; (17.23)

where E D �2 cosk, and hEjE 0i D ı.E � E 0/. In the site representation we have
for example the matrix element at the the first off-channel site

h 1jV  1

E C i0 �Hw
V j 1i

D �h 1jV jj D 0i
Z 2

�2
dE 0 E0.j D 0/

1

E C i0 �E 0 
�
E0 .j D 0/

D i�

2j sin k.E/j C �

4�
P

Z 2

�2
dx

1p
1 � x2.x �E=2/ D i�

2j sin k.E/j : (17.24)
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The same expression we obtain for other matrix elements. Here P have a
meaning of principal integral. Therefore we have

Heff D
 

� i�
2j sin k.E/j C �j 1j2 �u � i�

2j sink.E/j
�u � i�

2j sink.E/j � i�
2j sink.E/j C �j 2j2

!
: (17.25)
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Chapter 18
Charge Separation and Transport in Third
Generation Hybrid Polymer-Fullerene
Solar Cells

B.L. Oksengendler, Oksana B. Ismailova, M.B. Marasulov, N.N. Turaeva,
Davron Matrasulov, and J.R. Yusupov

Abstract Exciton dissociation in polymer-fullerene hybrid organic solar cells is
studied within the quantum mechanical and statistical approaches. The different
mechanisms for splitting of exciton into electron and hole is discussed.

18.1 Introduction

Third generation solar cells based on organic photovoltaic materials are being
considered as a serious alternative for silicon based ones. Usually such solar cells are
fabricated using polymer structures as donors and fullerene embedded into polymers
as acceptor. In some cases quantum dots can be embedded into the polymer matrix.
The maximum conversion efficiency of such solar cells are expected to reach 80 %
[10] due to so-called multiple exciton generation effect [12]. The mechanism such
effect is still subject for discussions and extensive studies. Topics of the past studies
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of third generation solar cells both polymer-fullerene and polymer-quantum dot
based ones can be classified as follows:

1. Mechanism of the multiple exciton generation by quantum dots induced by single
photon absorption;

2. Transmission of generated excitons through the quantum-dot-polymer or
polymer-fullerene interface and possible splitting of exciton into electron and
hole during this separation;

3. The exciton transport and charge separation along the polymer chain;
4. Transport of electrons and holes through in the polymer-quantum dot or polymer-

fullerene networks;
5. The charge carrier collection at the metal-polymer interface;
6. Degradation of solar cell.

Among the above issues (2), (3), and (6) are still remaining as less studied,
despite the extensive studies during last few years [2–4, 10–12, 16].

In this paper we develop microscopic mechanism for exciton splitting and charge
transport in organic solar cells on the basis of polymers and nanoparticles (e.g.
quantum dot, fullerene).

18.2 Charge Separation via Dopant Charge Exchange

Assuming that electron is moving along linear polymer chain and the mass of the
hole is large enough, splitting of the exciton can be considered as similar to charge
exchange between the hydrogen atom and a potential well induced by effective
positive charge (Fig. 18.1).

In [13, 14] the process of exciton dissociation on fullerene via the reaction

ex C F 0 ! hC F �; (18.1)

was considered as a resonance charge exchange studied in [17]. However, in general
case potential wells induced by electron and hole on fullerene trap have different
depths. Therefore one needs to strict treatment of charge separation as a charge
exchange process. This can be done within the Landau-Zener theory [9].

If exciton moves along linear polymer chain and approaches to fullerene
molecule, the molecular terms corresponding to states “electron-on holeCfullerene”
and “electron-hole on fullerene” (Fig. 18.1) can be written as

(
U1.R/ D U

.1/
0 C�Eex

U2.R/ D U
.2/
0 � e2="R

(18.2)
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Fig. 18.1 Schematic representation of exciton dissociation via resonance rechargeable

Fig. 18.2 Schematic
representation of the crossing
terms V1.R/.exciton C F0/
and V2.R/.hole C F�/

where U .1/
0 and U .2/

0 are the terms of electron on polymer (highest occupied orbital,
HOMO) and trapped into fullerene correspondingly;�Eexis the exciton perturbation
energy, " is dielectric constant of polymer matrix.

As it can be seen from Fig. 18.2, the terms U1.R/ and U2.R/ are crossing at the
point:

R� D e2="

U
.2/
0 � U .1/

0 ��Eex
(18.3)
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In its motion along the polymer chain with the velocity � , exciton passes through
the point R� (Fig. 18.2) that leads to radiationless transition from term 1 to 2
(Landau-Zener transition) and subsequently the reaction given by Eq. (18.1) occurs.
Furthermore, the “free hole” continues to move along the chain and reaches the
point QR�. If the electron hole system remains at the term 2 this will correspond to
the splitting of exciton into electron (which will remain at the fullerene) and hole
that will move along the chain. Then the probability for such decay can be written
as [9]:

P. Q�/ D !1!20.R�/
�
1 � !20!1. QR�/

�
(18.4)

!1!20.R�/ D !20!1. QR�/ D 2

"
1 � e

� 2�j OV j2
„Q�jF1�F2j

#
e

� 2�j OV j2
„Q�jF1�F2j ; (18.5)

where F1.R�/ and F2
� QR�� are values for forces of terms 1 and 2 at the crossing

point R� and QR�,
ˇ̌
ˇ OV
ˇ̌
ˇ
2

is the matrix element describing transition from term 1 to

term 2 in second order of perturbation theory; Q� D �
p
1 � 	2=R�2 is the velocity

component directed along fullerene (Fig. 18.2). Using Eqs. (18.4) and (18.5), for the
of exciton splitting cross-section we have

�decex .�/ D 2�

Z R�

0

P Œ Q�.	/� 	d	 (18.6)

if the perturbation is week enough, i.e.,
ˇ̌
ˇ OV
ˇ̌
ˇ
2  „� jF1 � F2j ; by taking into

account Eqs. (18.4) and (18.5) from Eq. (18.6) we obtain

�decex �
8�2

ˇ̌
ˇ OV
ˇ̌
ˇ
2 �
e2="

�3

„
h
U
.2/
0 � U

.1/
0 ��Eex

i4
1

�
(18.7)

As it can be seen from this result, exciton splitting cross section depends on (�)
and (�Eex). This fact imposes certain restrictions for using of polymer matrices
with high mobility of excitons. Having known the cross section, �decex for exciton
splitting one can easily estimate the relaxation time for emitted excitons [17]:

�decex D 1=�decex NF � �; (18.8)

here NF is the concentration of fullerene molecules in the polymer matrix
(network).
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18.3 Statistical Model for Exciton Dissociation
in Regular Polymers

One of the possible mechanisms for splitting of exciton into electron and hole is in
transition via the polymer network vertex. If one draws a sphere of 	˜„=p2m0�Eex
around the polymer vertex where lying at the crossing N bonds of the polymer chain,
it follows from the uncertainty principle that exciton can be in dissociated state
inside such sphere. To some extent such a state of analog of well-known compound
states from nuclear physics [1]. The life time of such state can be estimated as [1,9]
�kc � „=�Eex. After this time exciton can pass through the vertex as a whole
system or splits into electron and hole which will move along different bonds of
a polymer chain (Fig. 18.3). The probability for splitting of exciton at the vertex
within the statistical physics based approach can be written as [8]

Fstat D Zsep=Zsum D .2C 2
N e

��Eex=kT /=ŒN C 2C 2
Ne

��Eex=kT �; (18.9)

where are Zsep and Zsum are the partition functions of splitted and whole systems,
respectively.

For �Eex=kT  1 Eq. (18.9) can be written as

Fstat D N � 1
N

: (18.10)

It is clear from this expression that in large N limit the probability approaches 1. For
N D 3 we have Fstat D 2=3.

For �Eex=kT � 1 from Eq. (18.9) we get

Fstat D 2.N � 1/ exp.��Eex=kT / (18.11)

Fig. 18.3 The exciton
separation at the polymer
chain vertex connecting three
bonds
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Having known the probability for exciton splitting, Fstat from Eqs. (18.9) to (18.11)
one can get estimate for the exciton dissociation time as

�csex D 1=�csex �N0� � Fst D 1=N0��

� „p
2m�Eex

�2
� Fstat ; (18.12)

where N0 is the concentration of excitons in polymer matrix.
For N0 D 1021sm�3, � D 105sm=s, �Eex � 5e, VN D 3 we have

�csex D 1:5 
 10�11s.

18.4 Quantum Mechanical Model: Perturbation Theory

Constructing of quantum-mechanical model for exciton dissociation in its trans-
mission through the polymer network vertex is of importance for understanding
microscopic mechanisms of the process. In this work we develop perturbation theory
based approach for such study. The main question we are interested to explore is:
What kind of explicit form has the perturbation potential acting to the exciton at the
polymer chain vertex?

We assume that the potential acting to exciton at the vertex of the polymer chain
has delta-function form:

U D U0a
3ı.

!
r /: (18.13)

where U0; a3 and ı are measured in eV , PA3 and cm�3, respectively. For the vertex
having N -bonds this potential can be written as V D N 
 U .

Furthermore, we consider exciton moving along a bond of the polymer chain and
approaching a vertex of the chain. Fixing the origin of the coordinate system at the
center of mass of exciton one can consider interaction of the exciton with external
potential and a scattering of a vertex on exciton. Introducing two characteristic
times, reorganization time of the exciton, (�in) and the time during which interaction
with a vertex occurs, (�ext ), we can consider two limiting situations for which we
can use different types of perturbation theory. Namely, Landau and Livshic [9] for
�in � �ext , one can use sudden perturbation approximation, while for the case
�in  �ext , one can apply adiabatic perturbation theory.

To find in under which conditions each regime is possible we need to estimate
the time during which exciton reaches the vertex of the polymer chain, i.e. the area
where external perturbation acts. If the motion of exciton from bond to bond is
jump-like motion, then each jump is characterized by diffusion coefficient which
can be written as [16],

D Š 1

6
a2=�j ; (18.14)
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Fig. 18.4 “Phase diagram”
based on Eq. (18.16)

where 1=�j is the jump frequency. On the other hand, within the Bohr atom
framework, the internal reorganization time can be estimated as

�in D 2�
p
r3�

e
; (18.15)

where r is the effective exciton radius, � is the reduced mass of exciton 1
�

D 1
me

C
1
mn

, �in D 1:8 
 10�16"
	
m0
�



c, dielectric permittivity " of the polymer, m0 is the

electron mass, �ext D 1:8 
 10�16 1
D
c. Thus the boundary between two regimes can

be defined as

"

�
m0

�

�
D 1

D
(18.16)

Equation (18.16): The “phase diagram” describing these regimes can be repre-
sented as in the Fig. 18.4.

Consider the case when the following condition is obeyed:

1

D
< "

m0

�
: (18.17)

Potential acting to exciton at the vertex connecting N -bonds of the polymer chain
can be written as

Uvertex D N 
 U0a3ı
!
.r/
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Then the probability for transition of exciton from the ground state, 'ground Dq
�
Qa3 e

�r=nQa to an excited state, 'ex D
q

�
Qa3n3 e

�r=nQa can be written as

Wgr!ex D
ˇ̌˝
'ex jUvertexj 'ground

˛ˇ̌2

.„!/2 D jM j2
j„!j2 ; (18.18)

where „! � E
.n/
ex � E

.gr/
ex .

We assume that the exciton shaking processes consist of two stages: Excitation
of the electron in exciton into the higher orbit and its transition into conductance
band induced by thermal motion. Subsequently, the hole appears in lower band.

Such transition is possible under the condition
ˇ̌
ˇE.n/

ex

ˇ̌
ˇ � kT , and we have „! D

��Eex
n2

C�Eex D �Eex
�
1 � 1

n2

�
: Using the wave functions of ground and excited

states, the matrix element in the expression for the transition probability can be
written as

M D ˝
'ex jUvertexj 'gr

˛ D �

Qa3 U0N
1

n3=2
(18.19)

Then for probability we have

QWgr!ex D �2
�
NU0

�Eex

�2 �
kT

�Eex

�3=2  
1

1 � kT
�Eex

!2
; (18.20)

The total probability for dissociation of exciton into electron and hole being
distributed over the bonds of the polymer chain can be written as

W D � QWgr!ex

� N � 1
N

(18.21)

In case of the adiabatic perturbation occurring under the condition

1

D
> "

m0

�
; (18.22)

one can use Landau-Zener theory [9] dissociation theory. For this purpose we need
to plot the energy terms of the systems “exciton-vertex” and “unbounded electron-
hole-vertex” (Fig. 18.5). To find the explicit functional forms of these terms we
assume that they can be considered as the sum of the ground state energy of exciton
and Van der Waals interaction between the exciton and chain vertex. The latter will
be modeled as the dielectric ball. Assuming that the Van der Waals interaction is
weak enough we can plot the terms presented in (Fig. 18.5).
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Fig. 18.5 Schematic representation of exciton dissociation and association via scattering at the
vertex

Fig. 18.6 Polarization of the
vertex B, that is considered
modeled as a dielectric ball

The potential of interaction between the vertex and the free carriers can be
considered as a result of the polarization of electron and hole in dielectric medium
(Fig. 18.6).

Then the effective electrostatic field caused by electron-hole pair and acting on a
vertex can be written as [18]:

jEC C E�j D 1

"

2q cos˛

R2 C l2=4
D 1

2"0

2ql

.R2 C l2=4/
3=2
: (18.23)
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It is clear that in case of separation of electron and hole over the different bonds of
the chain, one can write l

2
D Rctg˛. For this case the energy term can be written as

E.eCh/
ex .R/ D �1

2
˛pol jEC C E�j2 � e2

R 
 2" 
 ctg˛

D �1
2

˛pol

."/2
4e2 cos2 ˛

R4 .1C ctg2˛/
2

� e2

R 
 2" 
 ctg˛ ; (18.24)

where apol is the vertex polarization angle ˛ depends on the number of bonds
connected at the vertex:

˛ D 90ı
�
1 � 2

N

�
(18.25)

The term illustrated in Fig. 18.5 crosses with that of delta-like potential at the R�:

R� �
�

e cos˛

1C ctg2˛

�1=2 � 2˛pol

�Eex.1/

�1=4
: (18.26)

The probability for inirradiative Landau-Zener transition describing of exciton
dissociation at the point R� can be written as [9]:

1 �W2 D 1 � 4�V 2

„# jF2j ; (18.27)

where V 2 is the square of the adiabatic coupling operator matrix element, # is
velocity of exciton

F2 D
�
�Eex .1/

2

�5=4
8

˛
1=4
pol ."/

2

�
1C ctg2˛

e cos2 ˛

�1=2
(18.28)

second term force at the point R�. Furthermore, for the case when exciton amoves
along the chain the crossing point of terms can be found from the following
equation:

Uoa3ı .R/ ��Eex .1/ D �1
2
˛pol

1

2

2ql0
	
R2 C l20

4


3=2 ; (18.29)

where l0 is the dipole moment of the electron-hole pair in two electron bands.
The total exciton dissociation probability can be written as a product of two

probabilities as

W D W1 
 .1 �W2/; (18.30)
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where W1 D 4�2jV j2
„�jF.R��/j is the probability for transfer from one term to another one

at the point R�� and .1 � W2/ is the probability for staying of free electrons and
holes at the point R�.

18.5 Quantum Mechanical Model: Quantum Graphs
Based Approach

An alternative to the above approaches for description of exciton splitting in
polymer network is so-called quantum graph based description. In physics quantum
graphs were introduced as a “toy” model for studies of quantum chaos by Kottos and
Smilansky [7]. However, the idea for studying of a system confined to a graph dates
back to Pauling [15] who suggested to use such systems for modeling free electron
motion in organic molecules. During last two decades quantum graphs found
numerous applications in modeling different discrete structures and networks in
nanoscale and mesoscopic physics (e.g., see reviews [5–7] and references therein).
However, mathematical properties of quantum graphs were extensively studied in
eighties of the last century. Later quantum graphs became subject for extensive
research in different topics of mesoscopic and nanoscale physics and quantum chaos
theory (see, e.g. review papers [5–7] and references therein).

Graphs are the systems consisting of bonds which are connected at the vertices.
The bonds are connected according to a rule which is called topology of a graph.
Topology of a graph is given in terms of adjacency matrix [5, 7]:

Cij D Cji D
�
1; if i and j are connected
0; otherwise

i; j D 1; 2; :::; V:

Quantum dynamics of a particle on a graph is described by one-dimensional
Schrödinger equation [5, 7] (in the units „ D 2m D 1):

i
@�b.x; t/

@t
D �@

2�b.x; t/

@x2
C V.x; t/�b.x; t/ (18.31)

where b denotes a bond connecting i th and j th vertices, and for each bond b, the
component �b of the total wavefunction �b is a solution of the Eq. (18.31).

In this work we consider simplest topology, so-called star graph, i.e. three or
more bonds connected at the single vertex. In this case the boundary conditions can
be written as
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8
ˆ̂̂
<

ˆ̂̂
:

�1jyD0 D �2jyD0 D : : : D �N jyD0;
�1jyDl1 D �2jyDl2 D : : : D �N jyDlN D 0;
NP
jD1

@
@y
�j jyD0 D 0:

(18.32)

We note that to some extent, quantum graphs can be convenient and effective
tool to describe charge separation and transport in polymer networks which are the
underlying structure of organic solar cells. In particular, exciton can be described as
wave packet and splitting of exciton into electron and hole can be easily treated
within such approach. The Schrodinger equation can be solved with the initial
condition given in the form of Gaussian wave packet:

 1 .x1; t D 0/ D 1pp
2��

e
� .x��/2

2�2
Cip0x: (18.33)

Figure 18.7 presents wave packet dynamics (which effectively can describe
exciton dynamics) on quantum star graph with three bonds. The profile of the packet
is plotted for different time moments. Sensitivity of the dynamics with respect to the
changes of the initial velocity of the packet and packet width can be seen from the
Fig. 18.8. Using more realistic initial wave function, i.e. wave function of exciton
allows to make the results more realistic. Also, including into the Schrodinger
equation the potential for interaction of exciton with the vertex should improve the
quality of the obtained results. Thus quantum graphs can be rather effective tool
for description of the exciton dynamics and charge separation in polymer networks.
Treating the process for other (than star graph) more complicated topologies is of
importance for practical application of the method to poly-conjugated polymers.

18.6 Conclusion

A microscopic mechanism of the exciton dissociation in the polymer network
is treated within the quantum mechanical approaches. Considering exciton as an
analog of hydrogen atom allows one to consider exciton separation as ionization
process occurring in the “collision” of exciton with the vertex of the polymer chain.
In this case, depending on the “collision energy” sudden – and adiabatic perturbation
theories can be used to describe splitting of exciton at the chain vertex. Alternative
approach, which is based on modeling of polymer network by quantum graphs
provides possibility to study the dependence of the dissociation process on the
network/chain topology.
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Fig. 18.7 Gaussian wavepacket evolution in quantum star graph. The bonds of the graph have
different lengths
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Fig. 18.8 Gaussian wavepacket evolution in quantum star graph. The same graph in Fig. 18.7 with
the different initial velocity of the packet and packet width



18 Charge Separation in Third Generation Solar Cells 267

References

1. Blatt JM, Weisskopf VF (1952) Theoretical nuclear physics. Wiley, New York
2. Brabec C, Scherf U, Dyakonov V (2008) Organic photovoltaics. Wiley-VCH, Woinheim
3. Brendas J-L, Norton J, Corniel J (2009) Molecular understanding of organic solar cell: the

challenges. Acc Chem Res 42(11):1691–1699
4. Deibel C, Djyakonov V (2010) Polymer-fullerene bulk heterojunction solar cells. Rep Progr

Phys 73:09401
5. Gnutzmann S, Smilansky U (2006) Adv Phys 55:527
6. Gnutzmann S, Keating JP, Piotet F (2010) Ann Phys 325:2595
7. Kottos T, Smilansky U (1999) Ann Phys 76:274
8. Kubo R (1965) Statistical mechanics: an advanced course with problems and solutions. North-

Holland, Amsterdam
9. Landau LD, Livshic EM (1974) Quantum mechanics. Nauka, Moskv, p 576

10. Lewis N, Crabtel, Nozik A et al (2005) Basic research need for solar energy utilization. Report
of the basic energy sciences workshop on solar energy utilization, April 2005, Second Printing,
October 2005, US Department of Energy

11. Nicholson P, Castro F (2010) Organic photovoltaics: principals and techniques for nanometers
scale characterizations. Nanotechnology 21:492001

12. Nozik A (2008) Chem Phys Lett 457:3–11
13. Oksengendler B, Turaeva N, Marasulov M et al (2012) Appl Sol Energy 48(3):22
14. Oksengendler BL, Marasulov MB, Nurgaliev IN (2013) Doklady AN RU 2:22
15. Pauling L (1936) J Chem Phys 4:673
16. Pope M, Swenberg C (1999) Electronic processes in organic crystals and polymers, 2nd edn.

Oxford University Press, New York
17. Smirnov BM (2001) Physics of ionized gases. Wiley, New York
18. Yavorsky B, Detlaf A (1982) A modern handbook of physics. Mir Publisher, Moscow, p 712



Chapter 19
Complex Antenna Optimization

Haojiong Liu, Ibrahim Tekin, Oksana Manzhura, and Edip Niver

Abstract Complex electromagnetic problems arise due to various applications in
science and technology that are becoming a necessity in our daily activities. As
systems become more complex their design and implementation require novel
topologies and sophisticated optimization tools to meet the challenges. One of the
key components in commercial and military communication systems is an antenna
which serves as an energy conversion device from an electrical source into radiated
electromagnetic fields. However, system specifications require optimized design
for antennas in terms but not limited to higher gain, broader bandwidth, smaller
size, proper radiation pattern and polarization and lower cost. Addressing these
complex issues requires an optimized solution based on sophisticated numerical
electromagnetic solvers. Here, Fano-Chu (1950) limits which were proposed for
electrically small antennas have been extended to rather larger structures. The
basic premise for the concept is that volume antenna (more conducting elements
within specified volume) yields higher gain. Starting from this assumption an
antenna structure based on Moxon antenna has been developed to produce circularly
polarized antenna for satellite communications (SATCOM), RFID tag reader and
Global Positioning System (GPS). Cross-Moxon elements were redesigned to
optimize gain and lower cross-polarization as well as maintain low profile and
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adequate bandwidth. Designed antennas were fabricated and measured leading to
significant size reduction, improved higher gain, reduced cross-polarization and
lower cost compared to commercially available state-of-the-art antennas.

19.1 Introduction

Moxon antenna [1] is basically a two-element Yagi-Uda antenna [2], with a
bent dipole element to reduce its height and is commonly preferred antenna for
HAM operators due to its size, forward gain and wide band impedance match.
A systematic sequence of topologies starting from a single vertical element to
two cross vertical elements of the Moxon arms fed through a hybrid coupler to
achieve Circular Polarization is implemented. Then widened strip arm elements
were investigated to understand the effects on widening the bandwidth. The logic in
this evolution was to obtain maximized gain based on Fano-Chu limits [3], which
suggests that more metalization in the radiating configuration that fills the volume
would yield higher gain for electrically small antenna [4–6]. Extending the width
of the strip into tapered shape and splitting of the equivalent dipole elements with
additional bends at the extended tips of these tapered bow tie [7] arms lead to a
wider bandwidth and improved cross-polarization ratio.

Novel Circularly Polarized (CP) UHF SATCOM antenna [8–10] is developed
based on Moxon antenna (bent dipole element over a ground plane), and further
extended for RFID and GPS applications. For RFID mobile applications [11],
tag reader antenna is required to have high performance including a broadband
operation, circular polarization as well as a large angular coverage from horizon to
zenith. For systems at these frequencies, wavelength could be on the order of third
to quarter of a meter and conventional antennas may be too big for commercial use.
For GPS applications, antennas [12] are required to have very precise narrow band
performance at specific frequency bands (L1 and L2 bands). Novel tag reader RFID
antenna and another dual band GPS antenna based on extended Moxon antenna
were proposed.

In overall, the measured antenna produced lower physical height, higher gain,
wider bandwidth, cross-polarization and lower back lobe radiation compared to
commercial counterparts, such as an eggbeater currently used in SATCOM practice
as well as similar antennas in RFID and GPS applications.

19.2 Prototype Antenna Topologies and Performance

Moxon antenna is known for its compact size and its directive properties due to the
presence of the ground plane. A sketch of one of the bent dipole antennas is shown
in Fig. 19.1. The length of the one arm of the dipole is L + W, and the arm is bent
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Fig. 19.1 Moxon like bent
dipole antenna over a ground
plane

toward a ground plane from L distance away from the center of the dipole. The end
point of the bent dipole antenna is H away from the ground plane as in Fig. 19.1.

The bent dipole is fed from the center of the antenna with a differential input. The
RHCP can be obtained simply by placing two dipole bent antennas perpendicular
to each other, one in x-z plane, the other in y-z plane and feeding through a hybrid
quadrature coupler.

The electromagnetic simulations are performed using HFSS (for antenna) and
ADS (matching circuit) software. The ground plane is finite and its dimensions
are 4L 
 4L. The power handling capability has not been taken into consideration
for simulations. The material for the antenna conductor is chosen as copper. The
two dipole antennas are fed by a 90ı phase shift from the two lumped ports. After
optimization antennas are prototyped and measurements are taken.

19.3 General Design and Optimization of the New Split Bow
Tie Moxon Based Antenna

The proposed antenna consists of two bent Moxon type split bowtie antennas.
The evolution of the Moxon antenna through widening and tapering the arms, and
further splitting arms kept at an optimum angle with terminated bends resulted
in the antenna shown in Fig. 19.2. The two bent antennas, located perpendicular
to each other as shown in Fig. 19.2, are fed at the center via differential input
through a hybrid coupler to produce Right Hand Circular Polarization (RHCP). An
expanded view of a split-arm (element) is shown in Fig. 19.3 marked with numbers
to identify the optimization parameters used in numerical simulations. The detailed
optimization procedure is outlined in Table 19.1 is subject to extensive numerical
simulations.

These Moxon based prototype antennas have been applied to UHF SATCOM,
RFID tag reader and GPS applications. Simulation results as well as experimental
measurements of these prototype antennas are outlined below.
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Fig. 19.2 Proposed Moxon based antenna in 3D plane over a ground plane

19.3.1 Moxon Based UHF SATCOM Antenna

UHF antenna is designed to operate in 200–400 MHz frequency range. Assembled
antenna over a ground plane is shown on Fig. 19.4.

This antenna was initially designed without design detail No. 10, which, when
used, allows to tune antenna with a lower overall height No. 12.

Characteristic dimensions of a single triangular shaped antenna conductor is
shown on Fig. 19.5. Most of the dimension values are as follows:

OL Overall radial length 138 mm
W Length of vertical arms 45 mm
H Distance from the ground plane 80 mm
˛ Angle of element bend towards ground plane

(angle to horizontal)
22ı

OH Overall height of the antenna 200 mm
OD Overall diameter of the antenna 280 mm

Input Impedance of this antenna model is simulated and shown on Fig. 19.6.
It shows that S11min D �8dB@275 and 390MHz, and 3 dB bandwidth of the
input impedance is over .f2 � f1/ @3 dB D 170MHz. Measured Return loss of
this antenna is compared with measured return loss of the commercial eggbeater
antenna and presented in Fig. 19.7. UHF antenna is fed through a quadrature coupler
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Fig. 19.3 Single split arm element of a Moxon based antenna

MINICIRCUITS ZX10Q-2-3+ in the frequency range of 220–470 MHz. Measured
antenna return loss is better then 18 dB for the entire measured range. Radiation
patterns of the UHF split bow tie antenna were simulated for various frequencies of
the frequency range. The results of RHCP and LHCP Gain simulations are presented
in Table 19.2. Typical radiation pattern of this antenna, simulated at 340 MHz, is
presented on Fig. 19.8.

During design and simulations of the split bow tie UHF antenna surface currents
were calculated and are presented in Fig. 19.9. Currents are shown at 280MHz,
the lower S11 resonance point. Currents are presented on the plot in the 1–25 A/m
range, but reach as high as 60 A/m in the most active (shown as red) areas.
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Table 19.1 Optimization of geometrical parameters in numerical simulations

Parameter
Number description RFID antenna behavior GPS antenna behavior

1 Length of the
wedge cutout

Moving wedge tip closer to the Z axis, effectively makes the first
section of the wedge ” , shifts central frequency + and BW
)(

2 Spread angle of the
wedge cutout

)( the angle, i.e. sharpening the wedge cutout, ” BW and
shifts central frequency (or resonance) *

3 Vertical length ” the length, low resonance point + in frequency but * in
S11, high resonance point + in frequency and + in S11. Total
bandwidth decreases

)(the length, low resonance point * in frequency but + in
S11, high resonance point * in frequency and * in S11. Total
bandwidth increases

4 Length of the first
bend

” the length, low resonance
point + in frequency but * in
S11, high resonance point +
in frequency and * S11.
Total bandwidth *

” the length, low resonance
point + in frequency but * in
S11, high resonance point +
in frequency and * S11. Total
bandwidth +

)( the length, low resonance
point * in frequency but + in
S11, high resonance point *
in frequency and + S11.
Total bandwidth +

)( the length, low resonance
point * in frequency but + in
S11, high resonance point *
in frequency and + S11. Total
bandwidth *

5 Outer angle of the
first bend

* the outer angle, low resonance
point + in frequency but * in
S11, high resonance point +
in frequency and + in S11.
Total BW +

* the outer angle, low resonance
point * in frequency but + in
S11, high resonance point +
in frequency and + in S11.
Total BW +

+ the outer angle, low resonance
point * in frequency but + in
S11, high resonance point *
in frequency and * in S11.
Total BW *

+ the outer angle, low resonance
point + in frequency but * in
S11, high resonance point *
in frequency and * in S11.
Total BW *

6 Outer angle of the
vertical section
(90ı)

)( outer angle of the vertical section, i.e. sharpening the
angle, improves Reflection Impedance around lower resonance
frequency, while looses some match around higher resonance
frequency. No significant loss of bandwidth is observed with
sharper outer angle

7 Inner angle of the
vertical section

” the inner angle, low
resonance point + in
frequency but + in S11, high
resonance point + in
frequency and + in S11.
Total BW stays unchanged

” the inner angle, low
resonance point * in
frequency but + in S11, high
resonance point + in
frequency and * in S11. Total
BW +

)( the inner angle, low
resonance point * in
frequency but * in S11, high
resonance point * in
frequency and * in S11.
Total BW stays unchanged

)( the inner angle, low
resonance point + in
frequency but * in S11, high
resonance point * in
frequency and + in S11. Total
BW *

(continued)
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Table 19.1 (continued)

Parameter
Number description RFID antenna behavior GPS antenna behavior

8 Horizontal length
(without tip)

” the length, low resonance point + in frequency but * in S11,
high resonance point + in frequency and + S11. Total BW +

)( the length, low resonance point * in frequency but + S11,
high resonance point * in frequency and * in S11. Total BW *

9 Outer angle of the
horizontal
section

” the outer angle, low resonance point * in frequency but +
S11, high resonance point + in frequency and * in S11. Total
BW +

)( the outer angle, low resonance point + in frequency but * in
S11, high resonance point * in frequency and + in S11. Total
BW *

Only 9 out of 14 parameters are presented here
”-longer(larger), )(-shorter(smaller), *-higher (increase), +-lower (decrease)

Fig. 19.4 Assembled UHF
antenna over a ground plane

19.3.2 Moxon Based RFID Tag Reader Antenna

RFID tag reader antenna is designed to operate in 850–1,050MHz range. Charac-
teristic dimensions of a single triangular shaped antenna conductor are shown on
Fig. 19.10. Assembled antenna over a ground plane is shown on Fig. 19.11.

The Return Loss of the RFID antenna is simulated and shown on Fig. 19.12 and
compared to measured performance of the prototype shown on Fig. 19.13. RFID
antenna has simulated S11 3 dB range of 710–1;200MHz. Measured S11 is better
then 10 dB in 800–1;180MHz.

Antenna gain is simulated to be approximately 7 dB and front to rear ratio is
15 dB. When assembled antenna is measured over a small (compared to the size of
the antenna) ground plane and compared with a commercially available RFID of
known gain, the measured gain of the Moxon type RFID antenna can be judged to
be around 15–17 dB (Fig. 19.14).
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Fig. 19.5 Single element of the Moxon UHF antenna over a ground plane

19.3.3 Moxon Based GPS Antenna

Moxon based type antenna for GPS applications is designed to work in two GPS
bands, 1;227:60˙ 10:23 and 1;575:42˙ 10:23MHz. Characteristic dimensions of
a single split antenna arm are shown in Fig. 19.15.

Assembled antenna over a ground plane is shown on Fig. 19.16.
The Return Loss of the GPS antenna is simulated and shown on Fig. 19.17 and

compared to measured performance of the prototype shown on Fig. 19.18. GPS
antenna has simulated S11 3 dB range of 1;000–1;720MHz.
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Fig. 19.6 Input impedance S11 and S22 of the Moxon UHF antenna over a ground plane

Fig. 19.7 Measured S11 of the bent bow tie Maxon antenna at the input terminal of the hybrid
coupler. The higher curve belongs to the commercial eggbeater antenna

Measured S11 is better then 10 dB in 1;000–1;600MHz and features deep reso-
nances around both bands of interest, where RL is better then 30 dB. Antenna gain
is simulated to be approximately 6:6 dB at 1;227MHz and 8:25 dB at 1;575MHz,
while front to rear ratio is better then 14 dB.
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Table 19.2 Maximum
RHCP and LHCP gains of
Moxon based split bow tie
antenna

Frequency Max gain Max gain
(MHz) (dB-RHCP) (dB-LHCP)

240 11.4 � 1:6

280 7.4 � 7:6

340 8.6 �11:9
380 8.2 �15
400 8 �14

Fig. 19.8 RHCP and LHCP Gain of the UHF Moxon based split bow tie antenna at 340MHz

Measured relative power delivered by the antenna is shown on Fig. 19.19 for
both ranges. Higher band shows somewhat lower power then the lower band due to
mismatch and alignment issues during the experiment.

19.4 Comparisons of Split Bow Tie Moxon Type Antenna
Sizes and Performance to Commercially Available
Antennas for All Three Applications

In case of UHF SATCOM application the proposed antenna design yields size of at
least a third size by volume as compared to the standard UHF eggbeater antenna.
Proposed antenna also outperforms a standard eggbeater antenna in frequency
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Fig. 19.9 Surface current distribution on the split bow tie UHF antenna at 280MHz

Fig. 19.10 Dimensions of a single split arm of the RFID tag reader antenna arm
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Fig. 19.11 Assembled RFID
tag reader antenna over a
ground plane

bandwidth , gain and front to back ratio. Summary of the antenna comparison to
commercially available UHF antennas is presented in Table 19.3.

In RFID tag reader application the proposed antenna design yields size of at least
a one quarter size by volume as compared to the smallest commercially antenna with
similar parameters. Summary of the antenna comparison to commercially available
RFID tag reader antennas is presented in Table 19.4.

In case of GPS application the proposed antenna design yields size of at three
quarter size by volume as compared to the smallest commercially available antenna
with similar parameters, while providing better frequency range and gains in both
bands of interest. Summary of the antenna comparison to commercially available
RFID tag reader antennas is presented in Table 19.5.

19.5 Conclusion

Proposed circularly polarized (CP) antenna configurations based on Moxon type
antenna (bent dipole element over a ground plane) are presented for broadband UHF
SATCOM, RFID tag reader and GPS applications.

Extensive numerical simulations based on optimization of various parameters
on the antenna structure were carried out to achieve higher gain, wide band
impedance match, high cross-polarization and low profile. Two vertical elements
of the Moxon arms, widened strip arm elements, structures with bends at 90ı
for achieving broadband operation are simulated, and measured. For the antennas
that are prototyped, return loss S11 measurements were performed, and gains are
simulated using HFSS.

For the band of 225–400 MHz, antennas have reasonable CP gain and can be
used for UHF SATCOM band. It was observed that height of the proposed antennas
was reduced by at least 50 % compared to conventional eggbeater antenna making
them suitable to comply with the aerodynamic structure of a radome that can be
placed on a body of a helicopter or a fixed wing aircraft.
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Fig. 19.13 Measured return loss of the RFID antenna

Fig. 19.14 RFID measured antenna pattern comparison
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Fig. 19.15 Dimensions of a single triangular shaped GPS antenna arm

Fig. 19.16 Assembled GPS
antenna over a ground plane

Furthermore, prototype antennas were compared with commercial counterparts
and were observed that RFID tag reader antenna was almost four times smaller in
physical dimensions for a higher gain of 17 dB. In case of GPS antenna the overall
gain was observed to increase for the comparable physical dimensions.
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Fig. 19.18 Measured return loss of the GPS antenna over a ground plane

Fig. 19.19 Measured
radiation patterns of the GPS
antenna at L1 and L2 bands
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Table 19.3 Comparison of UHF SATCOM antennas

Required
Dimensions installation Frequency Gain Front-to-back

Manufacturer/model (cm) volume (cm3) range (MHz) (dB) ration (dB)

Proposed bent bow tie
Moxon type UHF
antenna

˛28�16:5 10,169 225–400 8 22

Myers engineering
international
mini-UHF SATCOM
eggbeater antenna

20�20�27 10,800 243–318 6

Standard UHF
eggbeater antenna

˛34� 30 27,237 240–360 5.9 11

Table 19.4 Comparison of RFID tag reader antennas

Required
Dimensions installation Frequency Gain Front-to-back Beam

Manufacturer/model (cm) volume (cm3) range (MHz) (dB) ration (dB) widthı

Proposed Moxon type
bent bow tie RFID
antenna

10:0�10:0�
2:2

220 850–1,050 6.75 15.35 80ı@3:5

Laird tech S8656-X
special application
antenna

19:2�19:2�
2:4

884 865–870 6 80ı@3:0

AvaLAN wireless
6 dBi indoor
antenna

15:0�15:0�
4:0

900 890–960 605 12

Poynting patch A
0025 antenna

24:5�23:5�
4:0

2,303 860–960 7

IA33A INTELLITAG 25:9�25:9�
3:8

2,549 902–928 7 18 65ı@3:0

Table 19.5 Comparison of GPS antennas

Required
Dimensions installation Frequency range (MHz) Gain (dB)

Manufacturer/model (cm) volume (cm3) L1 L2 L1 L2

Proposed bent bow
tie Moxon type
GPS antenna

7:3� 7:3 � 1:5 80 1,217.4–1,237.8
(20.4)

1,528.1–1,607.8
(79.7)

60.6 8.3

GPS source L1/L2
DARG antenna

6:6� 6:6 � 2:4 104 1,212.6–1,242.6
(30)

1,560.5–1,590.5
(30)

4 7

GPS source
ruggedized
L1/L2 GPS
passive antenna

6:6� 6:6 � 2:4 104 1,217.5–1,237.8
(20.3)

1,565–1,586 (21) 5 5

ALLICOM SB240
Marine GPS
antenna

˛12:0� 20:65 113 1,575.42˙10 4



19 Complex Antenna Optimization 287

References

1. Moxon L (2002) HF antennas for all locations, 2nd edn. Radio Society of Great Britain,
Bedford

2. Elliott RS (1981) Antenna theory and design. Prentice-Hall, Englewood Cliffs
3. Chu LJ (1948) Physical limitations on omni-directional antennas. J Appl Phys 19:1163–1175
4. Schwering F (1976) Workshop on electrically small antennas: background and purpose. In:

Proceedings of the ECOM-ARO workshop on electrically small antennas, Fort Monmouth,
6–7 May 1976

5. Hansen RC, Collin RE (2011) Small antenna handbook. Wiley, Hoboken
6. Jofre L, Martinez-Vazquez M, Serrano R, Roqueta G (2012) Handbook on small antennas.

EurAAP, Bruxelles
7. Nagatoshi M, Tanaka S, Horiuchi S, Morishita H (2010) Downsized bow-tie antenna with

folded elements. IEICE Trans Electron E93-C(7):1098–1104
8. Jahoda JR, Shergold SD (1992) Broadband antenna. US Patent 5,111,213, 5 May 1992
9. Regala F (2006) Portable co-located LOS and SATCOM antenna. US Patent 7,019,708, 28 Mar

2006
10. Tekin I, Manzhura O, Niver E (2011) Broadband circularly polarized antennas for UHF

SATCOM. In: IEEE general assembly and scientific symposium, 2011 XXXth URSI, Istanbul,
13–20 Aug 2011

11. Marrocco G (2008) The art of UHF RFID antenna design: impedance-matching and size-
reduction techniques. IEEE Antennas Propag Mag 50(1):66–79

12. Parkinson BW, Spilker JJ Jr (1996) Global positioning system: theory and applications, vols 1
and 2. AIAA, Washington, DC



Chapter 20
Complex Nonlinear Riccati Equations
as a Unifying Link in Fundamental Physics

Dieter Schuch

Abstract Even if the discovery of the Higgs boson should be confirmed, the
theoretical physics building is far from being complete. Essential everyday expe-
rience like dissipation and irreversibility are not naturally included in the formalism
of classical and quantum mechanics. Quantum mechanics, as a supposedly linear
theory, is then by definition not able to include the majority of processes in nature
that obey nonlinear evolution equations. Also thermodynamics as a phenomenolog-
ical theory and cosmology (including gravity) reside on yet different floors in this
building. In this paper, it will be shown how a reformulation of quantum mechanics
in terms of complex Riccati equations might allow for a unification of these afore-
mentioned aspects in terms of the same formalism.

20.1 Introduction

With the formalisms of Lagrange and Hamilton at the beginning of the nineteenth
century, classical mechanics was not only an instrument for practical purposes,
but an almost elegant piece of art derived from first principles and based on
energy as a conserved quantity. However, in this picture there was no direction
of time (only canonical transformations) and no dissipation of mechanical energy
(the Hamiltonian function is constant). The universe appeared to be a gigantic
clockwork, everything seemed to be determined and could – in principle – be
calculated. The picture of a cold, inhuman universe did not really fit in with the
romantic Zeitgeist of that time and its slogans like “back to nature”.
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So it was not too surprising that, as a kind of reaction, phenomenological
theories based on the observation of nature were developed and gained interest.
Particularly thermodynamics, based on three empirical laws, turned out to be
extremely successful and the industrial revolution in the nineteenth century would
not have been possible without it. Also electrodynamics, based on Maxwell’s
equations, added to the success of a description of nature in terms of continuous
quantities and flows instead of particles or even atomistic models. Scientists like
Mach dominated; scientists like Boltzmann were depressed.

But at the beginning of the twentieth century it got even worse. The same
system could, in some experiments, behave like a discrete particle, in others like
a continuous wave. This wave-particle duality was only resolved by quantum
mechanics, specifically in Schrödinger’s formulation of wave mechanics. However,
since Schrödinger’s theory is somehow based on classical (Hamiltonian) mechanics,
we face the same problems as in classical mechanics: there is no direction of
time (only unitary transformations) and no dissipation of energy (the (hermitian)
Hamiltonian operator is a constant of motion). Nevertheless, quantum mechanics is
probably the most successful and influential (also for the economy) physical theory
so far.

Towards the end of the twentieth century, a rather different theory, nonlinear
(NL) dynamics, became very popular. Not only because it was able to produce
aesthetically attractive pictures of so-called fractals [1], but also because it was able
to describe complex phenomena that can be observed in nature, like the weather,
different growth processes and much more (including evolutionary processes with
a direction of time and dissipation of energy). A typical pattern in fractals, as well
as in natural growth processes, is a spiral, i.e. an object that combines an angular
motion with a change of radius leading to something like a logarithmic spiral (see
the shell of a nautilus or the horn of a ram).

Now at the beginning of the twenty-first century, physics is in a somewhat
schizophrenic state: quantum mechanics (and other alleged fundamental theories)
is reversible, conservative and linear (thus providing a desired superposition prin-
ciple), whereas the observable (macroscopic) nature (e.g., as described by NL
dynamics) is essentially irreversible, dissipative and nonlinear. (Not to mention
that also thermodynamics and cosmology (including gravity) are not naturally
compatible with quantum mechanics.)

Is it therefore possible to find a unifying formulation for all these different
aspects of physics? In order to answer this question let us have a closer look at
which properties are supposedly essential for quantum mechanics and decide which
one(s) is(are) disputable. (1) According to Planck, the action (not necessarily the
energy!) is quantized (in portions of Planck’s constant h or „ D h

2�
). (2) C.N. Yang

stated in his talk on the occasion of Schrödinger’s 100th birthday [2] that quantum
mechanics is essentially based on complex quantities (in the mathematical sense).
(3) The formal structure of quantum mechanics is that of a linear theory, thus having
a superposition principle which goes well with the wave aspect of material systems.
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In a modified formulation, phenomena like irreversibility and dissipation should
also be covered so it shall not be assumed that reversibility and conservation of
energy are actually essential for quantum mechanics.

Which of the above-mentioned properties can be sacrificed to allow it to link with
other fields like NL dynamics? I claim it is the “credo” of linearity since linking it
with NL dynamics is otherwise impossible by definition. Apart from this, there are
certain NL differential equations for which a kind of superposition principle still
exists (related to the linearizability). An equation of that kind is the quadratically
NL Riccati equation.

In the following, therefore, it will be shown how one can find complex Riccati
equations in time-dependent (TD) quantum mechanics (Sect. 20.2) and time-
independent (TI) quantum mechanics (Sect. 20.3). Section 20.4 explains how
aspects like irreversibility and dissipation can be incorporated into this formulation
of quantum mechanics. The formal similarity with other fields like NL dynamics,
thermodynamics, Bose–Einstein condensates and even cosmology (to mention a
few examples) will be depicted in Sect. 20.5 and some concluding remarks given in
Sect. 20.6.

20.2 Complex Riccati Equations in TD Quantum Mechanics

In the following, TD Schrödinger equations (SE) with at most quadratic
Hamiltonian (particularly, the harmonic oscillator (HO) with constant or TD
frequency !, and the free motion, V D 0 in the limit ! ! 0) in one dimension
shall be considered,

i„ @
@t
�.x; t/ D

�
� „2
2m

@2

@x2
C m

2
!2x2


�.x; t/ : (20.1)

In these cases, Gaussian wave packet (WP) solutions can be obtained that can be
written in the form

�WP .x; t/ D N.t/ exp

�
i

�
y.t/ Qx2 C 1

„ < p > Qx CK.t/

�
(20.2)

with Qx D x� < x >D x � � where the mean value of position is given by< x >DR C1
�1 dx��x� D �.t/, and < p >D m P� represents the classical momentum. The

(possibly TD) normalization factor N.t/ and the purely TD function K.t/ in the
exponent are not relevant to the following discussion. The TD coefficient of the
quadratic term in the exponent is assumed to be complex, y.t/ D yR C iyI , where
the imaginary part is related to the position uncertainty< Qx2 >D< x2 > � < x >2

via yI D 1
4<Qx2> . The maximum of the WP is located at x D< x > .t/ D �
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and, thus, follows the classical trajectory determined by the Newtonian equation of
motion that can be obtained by inserting (20.2) into (20.1),

R�C !2� D 0 ; (20.3)

where overdots denote derivatives with respect to time.
The time-evolution of the WP width can be determined in the same way and is

governed by the complex NL Riccati equation

PC C C 2 C !2 D 0 (20.4)

where the complex variable C .t/ is up to a constant factor identical to y.t/, i.e.,
C D 2„

m
y. Equation (20.4) actually contains all the information about the WP

dynamics (including that of Eq. (20.3)) that can also be obtained from the TDSE
(20.1), thus providing the desired NL description of the corresponding quantum
system. However, due to the nonlinearity, also further information that is not obvious
in the linear form can be extracted. This shall be demonstrated subsequently.

There are different ways of treating the (inhomogeneous) Riccati equation. It can
be solved directly by transforming it into a homogeneous NL (complex) Bernoulli
equation if a particular solution QC of the Riccati equation is known. The general
solution of Eq. (20.4) is then given by C D QC C V .t/ where V .t/ fulfils the
Bernoulli equation

PV C 2 QC V C V 2 D 0 : (20.5)

This equation can be linearized via V D 1
�

to yield

P� � 2 QC � D 1 (20.6)

which can be solved straightforwardly. The solution depends sensitively on the
initial value �0 and contains an integral depending on the particular solution QC ,

I .t/ D R t
dt 0 � R t0

dt 002 QC .t 00/. The general solution of the Riccati equation (20.4)
can then be written as

C D QC C d

dt
ln Œ�0 C I .t/� ; (20.7)

or, in the case of constant QC , simply in the form

C D QC C e�2 QC t
1

2 QC
	
1 � e�2 QC t



C �0

; (20.8)

defining a one-parameter family of solutions depending on the (complex) initial
value �0 as parameter. Note that for imaginary QC , the exponential functions in
(20.8) turn into trigonometric functions and provide, e.g. for the HO with constant
!, Gaussian WPs with oscillating width.



20 Complex Nonlinear Riccati Equations as a Unifying Link in Fundamental Physics 293

Comparison with supersymmetric (SUSY) quantum mechanics [3, 4] shows
that this solution is formally identical to the most general superpotential W.x/,
fulfilling a real Riccati equation and leading to a one-parameter family of isospectral
potentials that have the same supersymmetric partner potential (see, e.g., [5–7]). A
major difference between the SUSY situation and the one in our TD case (apart
from replacing the spatial variable by a temporal one) is the fact that the variables
of the NL equations (20.4) and (20.5) are complex, whereas W.x/ is usually real.
Also, the parameter �0 D V �1

0 in our case is generally complex and determines the
initial conditions.

The complex NL Riccati equation (20.4) can be rewritten as a real NL equation

if a new (real) variable ˛.t/ is introduced via
	
2„
m
yI



D CI D 1

˛2
where ˛.t/

is directly proportional to the WP width. Inserting this into the imaginary part of

Eq. (20.4) allows one to determine the real part of the variable as
	
2„
m
yR



D CR D

P̨
˛

, which, when inserted into the real part of (20.4) together with the above definition
of CI , finally turns the complex Riccati equation into the real NL so-called Ermakov
equation1 for ˛.t/,

R̨ C !2˛ D 1

˛3
: (20.9)

It had been shown by Ermakov [11] in 1880, i.e., 45 years before quantum
mechanics was formulated by Schrödinger and Heisenberg, that from the pair of
Eqs. (20.3) and (20.9), coupled via !2, by eliminating !2 from the equations, a
dynamical invariant, the Ermakov-invariant

IL D 1

2

�
. P� ˛ � P̨ �/2 C

	 �
˛


2� D 1

2
˛2

"�
P� � P̨

˛
�

�2
C
	 �
˛2


2
#

D 1

2
˛2
h
. P�� CR�/

2 C .CI �/
2
i

D 1

2
˛2
�
. P��C �/

� P��C ��
�� D const: (20.10)

can be obtained (this invariant was rediscovered by several authors, also in a
quantum mechanical context; see, e.g., [12–14]).

This invariant has (at least) two remarkable properties: (i) it is also a constant
of motion for ! D !.t/, in the case where the corresponding Hamiltonian does
not have this property; (ii) apart from a missing constant factor m, i.e., mass of the
system, it has the dimension of an action, not of an energy. The missing factor m is
due to the fact that Ermakov used the mathematical Eq. (20.3), whereas in a physical
context, Newton’s equation of motion, i.e., Eq. (20.3) multiplied by m, is relevant.

1This equation had been studied already in 1874 by Adolph Steen [8]. However, Steen’s work was
ignored by mathematicians and physicists for more than a century, because it was published in
Danish in a journal not usually containing many articles on mathematics. An English translation
of the original paper [9] and generalizations can be found in [10].
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Since the WP solutions of the TDSE (particularly in the context of quantum
optics) can also be considered as coherent states (CS), it shall now be shown how
the complex Riccati variable can be used to define generalized creation/annihilation
operators. These can be used to construct CS with TD width that are no minimum
uncertainty WPs but fulfil the Schrödinger–Robertson uncertainty relation [15, 16].

The standard creation/annihilation operators can be obtained by factorizing the
Hamiltonian operatorHop of the HO [17, 18] or an operator related to it via

OHop D Hop

„!0 D
�
aCa C 1

2

�
(20.11)

where aCa is the so-called number operator and the creation and annihilation
operators are defined by

aC D �i
r

m

2„!0
	pop
m

C i !0 x



D 1

2„!0
�

� „p
m

@

@x
C p

m!0 x

�
(20.12)

a D i
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m

2„!0
	pop
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� i !0 x



D 1

2„!0
� „p

m

@

@x
C p

m!0 x

�
(20.13)

where pop D „
i
@
@x

and a is the adjoint operator of aC.
The number that is the eigenvalue of aCa is the number of quanta of the action „

since Hop
!0

has the dimension of an action! With the help of a, the ground state wave
function can be obtained and from this, by successive application of aC, the excited
states can be created. Via superposition of all these states, Schrödinger obtained
a stable Gaussian WP (with constant width) [19]. Generalizations of Schrödinger’s
approach were achieved for the description of coherent light beams emitted by lasers
in terms of what is now called coherent state (CS).

One of at least three different definitions of CSs is that these are eigenstates of
the annihilation operator a with (complex) eigenvalue z, a jz >D z jz >. Comparing
the CS jz > for the HO with the minimum uncertainty WP solution in the form of
Eq. (20.2), it shows that !0 D CI D 1

˛20
. So, in definitions (20.12) and (20.13), i !0

can be replaced by i CI . Therefore, for the more general case of WPs or CSs with
TD width, .CR ¤ 0/, i !0 must be replaced by the full complex quantity C in a
and by C � in the adjoint operator aC. If one then substitutes 1p

!0
D ˛0 in front of

the brackets with ˛.t/, the generalized creation and annihilation operators take the
form

aC.t/ D �i
r
m

2„ ˛.t/
	pop
m

� C � x



(20.14)

a.t/ D i

r
m

2„ ˛.t/
	pop
m

� C x


: (20.15)

These operators can even be turned into constants of motion if an additional
phase factor is taken into account. But in the case of CSs, as discussed here, this
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factor can be absorbed into the phase of the CS and will therefore be omitted in the
following (for further details see [20]).

Employing the above definition of the CS, but now with our generalized
annihilation operator, i.e., a.t/ jz >D z jz >, the CS (in position representation)
can be obtained in complete agreement with our WP definition in Eq. (20.2).

The complex eigenvalue z of a.t/ can be determined as

z D
r
m

2„ ˛ ŒCI �C i . P� � CR�/ � D i

r
m

2„ ˛ . P�� C �/ ; (20.16)

which looks familiar when compared with the Ermakov invariant (20.10). Indeed,
the absolute square of z is, up to a constant factor, identical to IL,

IL D „
m

�
z2I C z2R

� D „
m

zz� D „
m

jzj2 : (20.17)

An operator, corresponding to IL can then be written in analogy to OHop D Hop
„!0

as

m

„ IL;op D
�
aC.t/ a.t/C 1

2

�
: (20.18)

Factorization of this operator was also used [21] to find generalized creation
and annihilation operators for the HO with TD frequency but these operators were
expressed in terms of ˛ and P̨ instead of C .

Another property of the Riccati equation, which is particularly interesting in a
quantum mechanical context, is the existence of a superposition principle for this
NL differential equation [22–24]. This is related to the fact that the Riccati equation
can always be linearized. In our case, this can be achieved using the ansatz

C D
P�
�
; (20.19)

with complex �.t/, leading to

R�C !2� D 0 (20.20)

which has the form of the Newton-type equation (20.3) of the corresponding
problem, but now for a complex variable.

First, a kind of geometric interpretation of the motion of � in the complex plane
shall be given. Expressed in Cartesian coordinates,� can be written as � D uCiv, or
in polar coordinates as � D ˛ei' . Inserting the polar form into Eq. (20.19) leads to

C D P̨
˛

C i P' (20.21)

where the real part is already identical to CR, as defined above.
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The quantity ˛ defined above in CI as being proportional to the position
uncertainty is identical to the absolute value of � if it can be shown that

P' D 1

˛2
: (20.22)

This, however, can be proven by simply inserting real and imaginary parts of
(20.21) into the imaginary part of the Riccati equation (20.4). Comparing relation
(20.22), that can also be written in the form

Pvu � Puv D ˛2 P' D 1 ; (20.23)

with the motion of a particle under the influence of a central force in two-
dimensional physical space, it shows that this relation corresponds to the “conser-
vation of angular momentum”, but here for the motion in the complex plane!

Relation (20.23) also shows that real and imaginary parts, or phase and ampli-
tude, respectively, of the complex quantity are not independent of each other but
uniquely coupled. This coupling is due to the quadratic nonlinearity in the Riccati
equation. We will find an analogous situation also in the TI case, discussed in the
next section.

Finally, using the aforementioned results it can be shown that from the solution
of the Riccati equation (20.4), also the solution of the Newtonian equation (20.3),
and thus the complete information about the dynamics of the WP or the quantum
system can be gained. The square root of the inverse of CI supplies ˛.t/ integration
of CI provides ' (t), so � D ˛ei' can (up to a constant) be determined and it can
be shown that the imaginary part of � D u C iv is up to a constant factor identical
with the classical trajectory �.t/, i.e., v D m

˛0p0
�.t/ (for details see, e.g., [25]).

20.3 Complex Riccati Equations in TI Quantum Mechanics

In the TD case the real and imaginary parts, or phase ' and amplitude ˛,
respectively, of the complex variable �.t/ D ˛ei' which fulfils the linear equa-
tion (20.20) (that is obtained from the Riccati equation (20.4) via Eq. (20.19)) are not
independent of each other but coupled via the conservation law (20.23). A similar
situation exists when considering the TISE but now in the space-dependent case.

This can be shown using Madelung’s hydrodynamic formulation of quantum
mechanics [26] where the wave function is written in polar form as

�.r; t/ D %1=2.r; t/ exp

�
i

„S.r; t/
�

(20.24)

with the square root of the probability density % D ��� as amplitude and 1
„S as

phase (r is the position vector in three dimensions).
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Inserting this form into the TDSE (20.1) (now in three dimensions, and replacing
@
@x

by the nabla operator r), leads to a modified Hamilton–Jacobi equation for the
phase,

@

@t
S C 1

2m
.rS/2 C V � „2

2m

�%1=2

%1=2
D 0 ; (20.25)

and a continuity equation for the amplitude,

@

@t
%C 1

m
r.% rS/ D 0 : (20.26)

Already here, the coupling of phase and amplitude can be seen clearly since
the Hamilton–Jacobi equation for the phase S contains a term (misleadingly called
“quantum potential”, Vqu) depending on %, and the continuity equation for the
density % contains rS . It can be shown that also in the TI case this coupling is
not arbitrary but related to a conservation law.

In 1994, G. Reinisch [27] presented a nonlinear formulation of TI quantum
mechanics. Since in this case @

@t
% D 0 and @

@t
S D �E are valid, the continuity

equation (20.26) (we now use the notation %1=2 D j� j D a) turns into

r.a2rS/ D 0 (20.27)

and the modified Hamilton–Jacobi equation into

� „2
2m

�aC .V � E/ a D � 1

2m
.rS/2a : (20.28)

Equation (20.27) is definitely fulfilled for rS D 0, turning (20.28) into the usual
TISE for the real wave function a D j� j with position-independent phase S . (N.B.:
the kinetic energy term divided by a is just identical to Vqu!)

However, Eq. (20.27) can also be fulfilled for rS ¤ 0 if only the conservation
law

rS D C

a2
(20.29)

is fulfilled with constant (or, at least, position-independent)C .
This relation now shows explicitly the coupling between phase and amplitude of

the wave function and is equivalent to Eq. (20.22) in the TD case. Inserting (20.29)
into the rhs of Eq. (20.28) changes this into the Ermakov equation

�aC 2m

„2 .E � V / a D
�
1

„rS
�2

a D
�
C

„
�2

1

a3
; (20.30)

equivalent to Eq. (20.9) in the TD case.
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So far the energy E occurring in Eq. (20.30) is still a free parameter that can
take any value. However, solving this equation numerically for arbitrary values
of E leads, in general, to solutions a that diverge for increasing x. Only if the
energy E is appropriately tuned to any eigenvalue En of the TISE (see Eq. (20.32),
below) does this divergence disappear and normalizable solutions can be found.
So the quantization condition that is usually obtained from the requirement of the
truncation of an infinite series in order to avoid divergence of the wave function is, in
this case, obtained from the requirement of non-diverging solutions of the nonlinear
Ermakov equation (20.30) by variation of the parameter E . This has been verified
numerically in the case of the one-dimensional HO and the Coulomb problem and
there is the conjecture that this property is “universal” in the sense that it does not
depend on the potential V (see [27, 28]).

The corresponding complex Riccati equation is now given by

r
�r�
�

�
C
�r�
�

�2
C 2m

„2 .E � V / D 0 (20.31)

with the complex variable
�r�
�

� D ra
a

C i 1„rS which corresponds to
	
2„
m
y



D
C D P�

�
D P̨

˛
C i P' in the TD problem.

It is possible to show straightforwardly that Eq. (20.31) can be linearized to yield
the usual TISE

� „2
2m

�� C V � D E � ; (20.32)

but in this form the information on the coupling of phase and amplitude, expressed
by Eq. (20.29) and originating from the quadratic NL term in Eq. (20.31), gets lost.

20.4 Dissipative Systems

The conventional way of treating open dissipative systems uses the system-plus
reservoir approach, i.e., the system of interest is coupled to some (in the limit
infinitely many) environmental degrees of freedom (often harmonic oscillators) and
system plus reservoir together are considered a closed Hamiltonian system. Taking
certain limits and applying averaging processes finally leads to an irreversible
dissipative equation of motion for the system of interest. One of the most often-
quoted approaches of that kind is the one of Caldeira and Leggett [29,30]. A similar
idea, but with the most minimalistic environment, namely only one additional
position variable (plus the corresponding momentum) is behind the Bateman
Hamiltonian [31] that represents a constant of motion and provides an irreversible
equation of motion for the system,
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Rx C � Px C 1

m

@

@x
V D 0 ; (20.33)

i.e., a Newtonian equation with an additional linear velocity (or momentum)
dependent friction force (with friction coefficient � ); actually the Langevin equation
without stochastic force.

Since the environmental degrees of freedom are eliminated or ignored in
the end anyway, several approaches exist where only the effect of the environ-
ment on the observable system is taken into account without considering the
individual environmental degrees of freedom. This can lead to modifications of
the classical Lagrange/Hamilton formalism where the corresponding modified
(linear) Schrödinger equation is obtained via subsequent canonical quantization.
The canonical variables of these approaches are related with the physical position
and momentum variables via non-canonical transformations in the classical case,
corresponding to non-unitary transformations in the quantum mechanical case (for
further details see [32, 33]). The most frequently applied approach of that kind is
the one of Caldirola [34] and Kanai [35] which is uniquely related to one using
an exponentially expanding coordinate system [36], leading to a Hamiltonian that
is still a constant of motion. These approaches can be linked directly to the afore-
mentioned ones. Using standard methods to eliminate the environmental degrees
of freedom, Yu and Sun [37, 38] have shown how the conventional approach of
Caldeira–Leggett leads directly to the Hamiltonian operator of Caldirola–Kanai. It
is also possible to eliminate the second set of variables of the Bateman approach
by imposing time-dependent constraints [39] to get to the Hamiltonian of the
expanding system. Furthermore, this approach and the one of Caldirola–Kanai are
connected via an explicitly time-dependent canonical transformation. In our context
it is interesting that for these two approaches also an exact Ermakov invariant exists.
In the quantized version, Gaussian wave packet solutions can be obtained in the
same cases as in the conventional reversible theory, but now the maximum follows
a damped motion according to Eq. (20.33) and the time-dependence of the width is
determined by a modified complex Riccati equation that can again be transformed
into a (real) Ermakov-type equation.

Another type of effective approaches starts already on the quantum level by
adding some friction terms W.x; pop; t I�/ to the Hamiltonian operator. This
usually leads to NL Hamiltonians, HNL D HL C W , where quite different forms
of nonlinearities are considered in the literature (some are NL only because some
mean-value< : : : > occurs inW ) ([40–47], Süssmann 1973, unpublished, [48–50]).
Of these, an exact invariant was found [51, 52] for only two approaches [48, 49].

In the following, only those NLSEs possessing an Ermakov invariant shall be
discussed explicitly since it can be shown that the canonical approaches are unam-
biguously related to these by a non-unitary transformation [32,33]. In particular, the
equations of motion for the WP maximum and width can be uniquely transformed
into each other [33]. The approach of Hasse [48] uses a combination of products
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of position and momentum operators and their mean values. The other one [58] is
based on an irreversible Fokker–Planck-type equation for the probability density
that is obtained from the usual continuity equation by adding a time-symmetry-
breaking diffusion term. Following a method by Madelung [53] and Mrowka [54]
this (real) so-called Smoluchowski equation can be separated into two complex
equations: namely a modified SE for the wave function� and its complex conjugate
��, provided the separation condition

�D

@2

@x2
%

%
D � .ln %� < ln % >/ (20.34)

with diffusion coefficientD is fulfilled (for details see, e.g., [49, 55]).
This leads to the NLSE

i„ @
@t
�NL.x; t/ D fHL C �

„
i
.ln�NL� < ln�NL >/g�NL.x; t/ (20.35)

with complex logarithmic nonlinearity.
The additional NL term (WSCH) can be written as real and imaginary contribu-

tions in the form

WSCH D WRCiWI D �

2

„
i

�
ln
�NL

��
NL

� < ln
�NL

��
NL

>

�
C�

2

„
i
.ln %NL� < ln %NL >/

(20.36)

where the real part only depends on the phase of the wave function and provides
the friction force in the averaged equation of motion. The imaginary part does not
contribute to dissipation but introduces irreversibility into the evolution of the wave
function. It corresponds to the diffusion term in the Smoluchowski equation, but
still allows for normalizability due to the subtraction of the mean value of ln %.
Comparison with the approaches mentioned earlier shows that the real part is just
identical to Kostin’s term [45] and the imaginary part corresponds to Beretta’s term
[42–44] introduced to describe non-equilibrium systems (without dissipation).

The imaginary part breaks the time-reversal symmetry on the level of the prob-
ability density, introduces a non-unitary time evolution and turns the Hamiltonian
into a non-Hermitian one while still guaranteeing normalizable wave functions and
real energy mean values since its mean value vanishes.

Also from the real part of WSCH no additional term to the energy mean value
occurs, so this is still given by the mean value of the operators of kinetic and
potential energies. This real part is however not arbitrary but uniquely determined
by the separation condition and provides the correct dissipative friction forces in
the equation of motion for the mean values. Besides, the ratio of energy dissipation
(for the classical contribution) is in agreement with the classical counterpart and
arises because the mean values are calculated with �NL (the solution of Eq. (20.35))
instead of �L.
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The real part, by itself, would provide dissipation but retain a unitary time-
evolution of the wave function; whereas the imaginary part, on its own, would
provide irreversibility via a non-unitary time-evolution but no dissipation. Conse-
quently, only the combination of real and imaginary parts provides all the desired
properties of the quantum system under consideration. The reason for this is the
coupling of phase and amplitude of the wave function since WR depends on the
phase andWI on the amplitude.

The relation between the two NL approaches is discussed in detail in [33] and
can be traced back to a modification of the Riccati equation (20.31) by adding a
linear term. The two NLSEs have the same WP solutions where, in both cases, the
maximum �.t/ follows an equation of motion, like (20.33), with a linear friction
force and the WP width is determined by the modified Riccati equation

PCNL C � CNL C C 2
NL C !2 D 0 (20.37)

with an additional linear term depending on � .
As in the conservative case, CNL;I D „

2m<Qx2>NL D 1

˛2NL
is valid but the real part

of the complex Riccati variable now takes the modified form

CNL;R D P̨NL
˛NL

� �

2
: (20.38)

he corresponding Ermakov equation and invariant are now given by

R̨NL C
�
!2 � �2

4

�
˛NL D 1

˛3NL
(20.39)

and

INL D 1

2
˛2NL

��
P��

� P̨NL
˛NL

� �

2

�
�

�2
C
�
1

˛2NL
�

�2�
e�t D const: (20.40)

From this it is obvious that, apart from the factor e�t , INL can be written in
exactly the same form as in the conservative case if expressed in terms of � and C
instead of ˛ and P̨ , i.e.,

INL D 1

2
˛2NL

h
. P� � CNL;R �/

2 C .CNL;I �/
2
i
e�t ; (20.41)

which again shows the more universal validity of relations when expressed in terms
of the Riccati variable. Also, in this dissipative case, the invariant (without the
exponential factor) can be factorized to yield generalized creation and annihilation
operators where the CS obtained as eigenstates of the annihilation operator are
identical to the WP solutions of the NLSEs (for details, see [20]).
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20.5 Similarities with NL Dynamics and Other Fields
of Physics

In NL dynamics, an important phenomenon is the Hopf bifurcation as it can be the
first step on a route to turbulence and chaos [56]. A system displaying this property
can be described by the NL evolution equation

Pr C � r C r3 D 0 (20.42)

which has the solution

r2.t/ D � r20 e
�2 � t

r20 .1 � e�2 � t /C �
: (20.43)

For � � 0, the trajectory approaches a fixed point (the origin); however, for
� < 0, it spirals towards a limit cycle with radius r1 D j� j1=2 [56]. The same type
of differential equation is also discussed by Großmann with respect to self-similarity
and scale-invariance (see [57]).

The relation to our Riccati equations (20.4) or (20.37) is easily seen by
multiplying equation (20.42) by 4r and introducing a new variable R D 2r2,
leading to

PRC 2 � RCR2 D 0 : (20.44)

This is exactly the form of the Bernoulli equation (20.5) that can be obtained
if a particular solution QC of the Riccati equation is known. The coefficient 2�
of the linear term in Eq. (20.44), corresponds to 2 QC in Eq. (20.5) and, in the
dissipative case, is simply replaced by 2 QC C� . It has indeed been shown that, in the
dissipative case, this bifurcation occurs and one obtains two different WP solutions
with different behaviour in the spreading of the WP width, different uncertainties
and different energies (for details, see [58]).

Similarities with statistical thermodynamics become obvious if solution (20.8)
of the Riccati equation is rewritten as

C D QC C 2 QC
�0 2 QC e2 QC t C

	
e2 QC t � 1


 (20.45)

where the second term on the rhs is the solution of the corresponding homogeneous
Bernoulli equation (see Eq. (20.5)). Choosing �0 D 0, this term just has the form
of a Bose–Einstein distribution. Furthermore, with the substitutions 2 QC D „ !,
t D 1

kT
, the (real) expression

„
2
! C „ !

e„!=kT � 1
D „
2
! coth

� „!
2kT

�
D< energy > (20.46)
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is obtained which is the average energy of a single oscillator in thermal equilibrium
at temperature T (k D Boltzmann’s constant). The first term, corresponding to the
particular solution of the respective Riccati equation and is the ground state energy
of the HO; the second term corresponding to the solution of the Bernoulli equation
is the energy distribution obtained by Planck for the black body radiation. For the
choice 2 QC �0 D �2, this second term attains the form of a Fermi–Dirac distribution.

So far, the examples only consider real Riccati equations, but further complex
cases can also be found. The Gross–Pitaevskii equation is a (complex) SE with
cubic nonlinearity,

i„ @
@t
� D

�
� „2
2m

�C V.r; t/C gj� j2

� ; (20.47)

which is used in a mean field approximation to describe the macroscopic WP of
a BEC where V.r; t/ can be given by V.r; t/ D m

2
!2.t/r2, i.e., a HO with TD

frequency; g parametrizes the strength of the atomic interaction.
Although Eq. (20.47) cannot be solved analytically, the dynamics of the BEC

characterized by this equation can be described in terms of so-called moments
Mn .n D 1 � 4/ (for details, see e.g., [59]), where M1 represents the norm, M2

the width, M3 the radial momentum and M4 the energy of the WP. It can be shown
that these moments satisfy a set of coupled first-order differential equations (where
d
dt
M1 corresponds to the conservation of probability or particle number). This set

can be reduced to a single equation for M2 which can be expressed, using a new
variable X D p

M2, in the form of an Ermakov equation,

RX C !2.t/X D k

X3
; (20.48)

which, as shown in Sect. 20.2, is equivalent to a complex Riccati equation.
To include dissipative effects, one could add another NL term like the logarithmic

one from Eq. (20.35) to the Gross–Pitaevskii equation which would correspond to
adding a linear term to the Riccati equation. So one simply has to solve this modified
Riccati equation (or the corresponding Ermakov equation) to obtain all momentsMn

for the dissipative BEC [60].
This treatment of the BEC is also interesting for another reason. It has been

shown by Lidsey [61] that a correspondence can be established between positively-
curved isotropic, perfect fluid cosmologies and the two-dimensional harmonically-
trapped BEC by mapping the equations of motion for both systems onto a one-
dimensional Ermakov equation. The moments Mn defined above can be identified
in the cosmological context with M2 D scale factor, M3 D Hubble expansion
parameter and M4 D energy density of the universe. So the expanding universe
can be represented as an Ermakov or complex Riccati system.

More examples could be mentioned from fields like electrodynamics, optics,
quantum optics, supersymmetry, quantum gravity (see, e.g., [62, 63]) and others,
but further details would go beyond the scope of this article.



304 D. Schuch

20.6 Conclusions and Perspectives

In classical physics only real quantities have any physical significance and energy
in the form of Hamiltonians or Lagrangians plays the dominant role. In quantum
physics however, action, i.e., the product of energy and time (or position and
momentum), is essentially the quantized entity. The appearance of i D p�1,
and hence the use of complex quantities in quantum mechanics, is not just a
matter of mathematical convenience but has fundamental physical meaning. A
nonlinear version of quantum mechanics should therefore be formulated in terms of
a complex nonlinear differential equation that contains the same information about
the quantum system as the complex linear SE and is somehow linked to an invariant
with the dimension of action.

An example of that kind was found in the TDSE where the time-evolution of
the quantum uncertainties obeys a complex NL Riccati equation. The linearized
version of this Riccati equation is just a complex Newtonian equation of motion
for a quantity �.t/ where the coupling of phase and amplitude of this quantity
corresponds to the conservation of angular momentum for the motion of � in the
complex plane! The imaginary part of �.t/ is up to a constant factor just the classical
trajectory containing the information about the mean value of position.

The complex TD Riccati equation (or its transformed version, the real nonlinear
Ermakov equation) together with the classical Newtonian equation for the system
lead to a dynamical invariant with the dimension of action. When the operator
corresponding to this Ermakov invariant is factorized, one obtains generalized
creation and annihilation operators that also apply in cases where the Hamiltonian
is no longer invariant. Specifically, this is also valid for certain dissipative systems
when the Ermakov invariant is expressed in terms of the complex Riccati variable.
This has been shown using some effective models for the description of such open
systems.

In time-independent quantum mechanics the complex wave function fulfils a
linear differential equation. We have seen that this TISE is actually a linearized
form of a complex nonlinear Riccati equation. Why should one bother with a more
complicated nonlinear equation if there is a simpler linear version at hand for which
such nice properties like a superposition principle exist? Because, in the linear form,
it is not obvious that real and imaginary part, or phase and amplitude, respectively, of
the complex wave function are not independent of each other but uniquely coupled
via a kind of conservation law, equivalent to the conservation of angular momentum
in the complex plane in the TD case. This coupling can be traced back to the
quadratic nonlinearity in the Riccati equation and always occurs in systems that
can be described by complex Riccati equations.

Finally, an initial link to nonlinear dynamics was made where properties like
scale-invariance, bifurcations as a route to chaos and other similar properties already
emerge when real Riccati equations apply. Formal similarities with statistical
thermodynamics (also related to the solution of real Riccati equations) as well as
a complex Riccati equation (or the equivalent Ermakov equation) in the context
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os BECs were also mentioned. The relations to our nonlinear version of quantum
mechanics, in particular the effect of “complexification” will be further investigated.
In addition, formal similarities to fields like SUSY quantum mechanics, quantum
optics and cosmology shall be explored.
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