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Abstract The effect of the long-range Coulomb interaction on the formation of the
Kohn–Luttinger superconductivity in monolayer doped graphene is studied disregard-
ing the Van der Waals potential of the substrate and both magnetic and non-magnetic
impurities. It is shown that the allowance for the Kohn–Luttinger renormalizations up
to the second order in perturbation theory in the on-site Hubbard interaction inclu-
sively, as well as in the intersite Coulomb interaction, significantly affects the interplay
between the superconducting phases with the f -wave, p+ i p-wave, and d + id-wave
symmetries of the order parameter. It is demonstrated that takingCoulomb repulsion of
electrons located at the next-nearest neighboring atoms in such a system into account
changes qualitatively the phase diagram and enhances the critical temperature of the
transition to the superconducting phase.
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1 Introduction

At the present time, the possible development of superconductivity in the framework
of the Kohn–Luttinger mechanism [1], suggesting the emergence of superconduct-
ing pairing in the systems with purely repulsive interaction [2], in graphene under
appropriate experimental conditions is widely discussed. Despite the fact that intrin-
sic superconductivity so far has not been observed in graphene, the stability of the
Kohn–Luttinger superconducting phase has been investigated and the symmetry of
the order parameter in the hexagonal lattice was identified. It was found [3] that chiral
superconductivity [4] with the d + id-wave symmetry of the order parameter pre-
vails in a large domain near the Van Hove singularity in the density of states (DOS).
The competition between the superconducting phases with different symmetry types
in the wide electron density range 1 < n ≤ nVH, where nVH is the Van Hove fill-
ing, in the graphene monolayer was studied in papers [5,6]. It was demonstrated that
at intermediate electron densities the Coulomb interaction of electrons located on the
nearest carbon atoms facilitates implementation of superconductivity with the f -wave
symmetry of the order parameter, while at approaching the Van Hove singularity, the
superconducting d + id-wave pairing evolves [5,6].

In this work, we investigate the role of the Coulomb repulsion of electrons located at
the next-nearest neighboring carbon atoms in the development of the Kohn–Luttinger
superconductivity in an idealized graphene monolayer disregarding the effect of
the Van der Waals potential of the substrate and both magnetic and non-magnetic
impurities. Using the Shubin–Vonsovsky (extendedHubbard)model in theBornweak-
coupling approximation, we construct the phase diagram determining the boundaries
of superconducting regions with different types of the symmetry of the order parame-
ter. It is shown that taking Coulomb repulsion of electrons located at the next-nearest
neighboring sites of hexagonal lattice into account leads to a qualitative modifica-
tion of the phase diagram, as well as to an increase in the critical temperature of the
transition to the superconducting state in the system.

2 Theoretical Model

In the hexagonal lattice of graphene, each unit cell contains two carbon atoms;
therefore, the entire lattice can be divided into two sublattices A and B. In the
Shubin–Vonsovsky model [7], the Hamiltonian for the graphene monolayer taking
into account electron hoppings between the nearest atoms, as well as the Coulomb
repulsion between electrons located at one, neighboring and next-nearest neighboring
atoms in the Wannier representation, has the form:

Ĥ = Ĥ0 + Ĥint, (1)

Ĥ0 = −μ

⎛
⎝∑

f σ
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f σ +

∑
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gσ

⎞
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,

123



510 J Low Temp Phys (2016) 185:508–514

Ĥint = U
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Here, operators a†f σ (a f σ ) create (annihilate) an electron with spin projection σ =
±1/2 at the site f of the sublattice A; n̂ A

f σ = a†f σa f σ denotes the operator of the
number of fermions at the f site of the sublattice A (analogous notation is used for
the sublattice B). Vector δ connects the nearest atoms of the hexagonal lattice. We
assume that the position of the chemical potential μ and the number of carriers n in
the graphene monolayer can be controlled by a gate electric field. In the Hamiltonian,
t1 is the hopping integral between the neighboring atoms (hoppings between different
sublattices), U is the parameter of Hubbard repulsion between electrons of the same
site with the opposite spin projections, and V1 and V2 are the Coulomb interactions
between electrons of the neighboring and the next-nearest neighboring carbon atoms
in the monolayer. In the Hamiltonian, the symbol 〈〈 〉〉 indicates that the summation
is carried out only over the next-nearest neighbors.

Proceeding to themomentumspace andperforming theBogoliubov transformation,

αikσ = wi1(k)akσ + wi2(k)bkσ , i = 1, 2, (2)

we diagonalize Hamiltonian Ĥ0, which acquires the form:

Ĥ0 =
2∑

i=1

∑
kσ

Eikα
†
ikσ αikσ . (3)

The two-band energy spectrum is described by the expressions [8]

E1k = t1|uk| − t2 fk, E2k = −t1|uk| − t2 fk, (4)

where the following notation has been introduced:

fk = 2 cos(
√
3kya) + 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
,

uk =
∑

δ

eikδ = e−ikx a + 2e
i
2 kxa cos

(√
3

2
kya

)
, |uk| = √

3 + fk.

In this paper, we use the Bornweak-coupling approximation, in which the hierarchy
of model parameters has the form:

W > U > V1 > V2, (5)

123



J Low Temp Phys (2016) 185:508–514 511

Fig. 1 First- and second-order diagrams for the effective interaction of electrons in the graphenemonolayer.
Solid lines with light (dark) arrows correspond to the Green functions for electrons with spin projections
+ 1

2 (− 1
2 ) and energies corresponding to graphene energy bands Ei and E j . Subscripts i and j can acquire

the values of 1 or 2. Here momenta q1 = p1 + p − k and q2 = p1 − p − k are introduced

where W is the bandwidth in the graphene monolayer (4). In the calculation of the
scattering amplitude in the Cooper channel, the condition (5) allows us to limit the
consideration only to the second-order diagrams in the effective interaction of two
electrons with the opposite values of the momentum and spin and to use the quantity
�̃(p,k) for it. Graphically, this quantity is determined by the sum of the diagrams
shown in Fig. 1. It is well known that the possibility of Cooper pairing is determined
by the characteristics of the energy spectrum near the Fermi level and by the effective
interaction of electrons located near the Fermi surface [9]. Assuming that the chemical
potential in doped monolayer graphene falls into the upper energy band E1k and
analyzing the conditions for the occurrence of the Kohn–Luttinger superconductivity,
we can consider the situation in which the initial and final momenta of electrons in the
Cooper channel also belong to the upper band. In this paper, we perform the calculation
of the phase diagram of the superconducting state in graphene following the scheme
we used in our previous work [5].

3 Results

Figure 2a shows the calculated phase diagram of the superconducting state in a
graphene monolayer as a function of the carrier concentration n and V1 for the set
of parameters U = 2|t1|, and the Coulomb interaction V2 = 0. It can be seen that
the phase diagram consists of three regions. At low electron densities n, the ground
state of the system corresponds to the chiral superconductivity with the d + id-wave
symmetry of the order parameter [4]. At intermediate electron densities, the super-
conducting f -wave pairing is implemented. At the large values of n, the domain of
the superconducting d + id-wave pairing occurs [3]. With the increase of the para-
meter V1 of the intersite Coulomb interaction, in the region of small values of n, the
d + id-wave pairing is suppressed and the pairing with the f -wave symmetry of the
order parameter is implemented. Thin blue lines in Fig. 2 are the lines of equal values
of the effective coupling constant |λ|. It can be seen that in this case in the vicinity of
nVH the effective coupling constant reaches the value of |λ| = 0.1.

It should be noted that to avoid the summation of the parquet diagrams [10,11],
we do not analyze here the electron density regions that are very close to nVH. For
this reason, the boundaries between different domains of the implementation of the
superconducting pairing, as well as the lines of the equal value of |λ| that are very
close to the Van Hove singularity, are indicated in the phase diagram by dashed lines.
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Fig. 2 Phase diagram of the superconducting state of the graphene monolayer shown as a function of the
variables “n − V1” at U = 2|t1| for a V2 = 0 and b V2 = 0.6V1. For all the points on the same thin blue
line, the value of |λ| is constant and marked with the corresponding number (Color figure online)

Let us consider the modification of the phase diagram for the graphene monolayer
with regard to the Coulomb interaction V2 between the electrons located at the next-
nearest carbon atoms. It can be seen from Fig. 2b for the fixed ratio between the
parameters of the long-range Coulomb interactions V2 = 0.6V1 that when V2 is taken
into account, the phase diagram changes qualitatively. This evolution involves the
suppression of a large region of the superconducting state with the f -wave symmetry
at the intermediate electron densities and the implementation of the chiral supercon-
ducting pairing with the p + i p-wave symmetry of the order parameter. In addition,
when V2 is taken into account, the effective coupling constant increases to the value
of |λ| = 0.3. Consequently, it leads to a significant increase in critical temperatures
of the superconducting transitions in idealized doped graphene. Note that here we do
not take electron hoppings to the next-nearest carbon atoms t2 into account, because
switching on of these hoppings for the graphene monolayer does not significantly

Fig. 3 Energy spectra of a
graphene monolayer defined by
(4) (blue and green solid lines)
and energy spectra obtained in
the framework of the Dirac
approximation (black dashed
line). Subplot depicts the path
around the Brillouin zone (Color
figure online)
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modify the DOS in the carrier concentration regions between the Dirac point and both
points nVH [2,5].

It should be noted also that the Kohn–Luttinger superconductivity in graphene
never develops near the Dirac points. The calculations show that in the vicinity of
these points, where the linear approximation for the energy spectrum of the graphene
monolayer works pretty well, the DOS is very low and the effective coupling constant
|λ| < 10−2. The higher values of |λ|, which are indicative of the development of
the Cooper instability at reasonable temperatures, arise at electron densities n >

1.15. However, at such densities, the energy spectrum of the monolayer along the
direction KM of the Brillouin zone (Fig. 3) already significantly differs from the
Dirac approximation.

4 Conclusions

We have analyzed the conditions for the emergence of the superconducting Kohn–
Luttinger pairing in an idealized graphene monolayer, disregarding the Van der
Waals potential of the substrate and both magnetic and non-magnetic impurities. The
electronic structure of graphene is described using the tight binding method in the
Shubin–Vonsovsky model taking into account not only the Hubbard repulsion, but
also the intersite Coulomb interactions. It is shown that an account of Kohn–Luttinger
renormalizations up to the second order of perturbation theory inclusively and the
allowance for the Coulomb repulsion between electrons located at the neighboring
and the next-nearest neighboring carbon atoms determines a considerable extent the
competition between the f -, p+ i p-, and d + id-wave superconducting phases. Their
account leads also to a significant increase in the absolute values of the effective
interaction and, hence, to the higher superconducting transition temperatures for the
idealized graphene monolayer.

Note that for p-, d-, f -wave, as well as for the s-wave pairing with nodal points on
2D hexagonal lattice (�s(φ) ∼ cos 6nφ, �sext (φ) ∼ sin 6nφ, n ≥ 1), the Anderson
theorem for non-magnetic impurities is violated and anomalous superconductivity is
totally suppressed for γ ∼ T clean

c , where γ is an electron damping due to electron
scattering on impurities (γ = 1/(2τ) = πnimp|Vel-imp(0)|2ρ2D(μ) where ρ2D(μ) is
2D density of states [12]).
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