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a b s t r a c t

A simple metal–insulator criterion for doped Mott–Hubbard materials has been derived. Its readings are
closely related to the orbital and spin nature of the ground states of the unit cell. The available criterion
readings (metal or insulator) in the paramagnetic phase reveal the possibility of the insulator state of
doped materials with the forbidden first removal electron states. According to its physical meaning, the
result is similar to the Wilson's criterion in itinerant electron systems. The application of the criterion to
high-Tc cuprates is discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that some of perspective doped transition-metal
oxides: cuprates [1,2] and manganites [3] show mysterious pseu-
dogap states. It is surprising that the pseudogap states in such
different oxides have common features [4,5]. Extensive dielectric
regions on the phase T/x-diagram of manganites [6,7] also attract
attention (primarily in the paramagnetic phase(PM)). If the rea-
sons for the insulator states in these different doped oxides are
general by nature, one can try to detect them directly following
the quasiparticle picture established by Hubbard [8].

The purpose of our work is to construct a metal–insulator
criterion based on Wilson's ideas [9] concerning a system of
itinerant electrons in the analytical form for the doped Mott–
Hubbard materials. Indeed, this approach includes the statement
that if the electron system consists of completely occupied and
empty bands, it is an insulator, otherwise, it is a metal. Here, there
are some features. Due to many-electron effects the spectral
density of quasiparticle states in the Mott–Hubbard materials
depends on the carrier concentration. Secondly, it does not make
much sense to apply the Wilson's criterion to the doped materials
because of the fluctuations of the impurity potential which create
new states. However, it is known that because of the similarity of
the phase T/x diagrams of the high-Tc cuprates, with the carriers
having different origins, the carrier concentration is a crucial
factor. Consideration is given to the criterion taking into account
the many-electron effects only.

2. Method

The generalized approach uses the fact that the optical intracell
transitions with their (l-orbital, S-spin)-selection rules in the
transparency window and optical charge transfer transitions in
the oxides can be observed at the same d-states [10,11]. In the first
approximation one can assume that the quasiparticles are unit cell
excitations which can be represented graphically as single-particle
transitions between different sectors Nh ¼…ðNh0�1Þ;Nh0; ðNh0

þ1Þ;… of the configuration space of the unit cell (Nh0-hole
number per cell in the undoped material, see Fig. 1) [12]. Each of
these transition forms a r-th quasiparticle band, where the root
vector r¼ ii0 in the configuration space numerates the initial i and
final i0 many-electron states in the transition. The transitions, with
the number of electrons increasing or decreasing, form the
conduction or valence bands, respectively.

For our purposes it is convenient to start with Lehmann's
representation for the Green's function Gλλ

fgσ of the intracell Hamilto-
nian H0 with respect to the family of single-particle operators cðþ Þ

fλσ
and their matrix elements in the basis of ðNh;MSÞi

�� ��eigenstates of
H0 (S andM are the spin and spin projection of the multi-electron cell
eigenstate):

Gλλ
fgσ ¼{cfλσ jcþgλσc ¼

X
rr0
γfλσðrÞγgλσðr0ÞDrr0

0fgðEÞ

¼ δfg
X
rr0
δrr0

γ2λσðrÞFr xð Þ
E�Ωr

; ð1Þ

where matrix elements

γλσ ðrÞ ¼ ðNhþ1;M0
S0 Þτ

� ��cfλσ ðNh;MSÞμ
��� E

�δ S0; S7 jσ j� �
δ M0;Mþσ
� �

; ð2Þ
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the total space of the root vectors frg ¼⋯þfr12gþfr23gþ …; ðfr12g ¼
fμτg; fr23g ¼ fτηg and so on, Fig. 1). An occupation factor FrðxÞ is the
probability to detect a cell in any of the i; i0 states participating in the
r-th transition, and Ωr ¼ EiðNh;MSÞ�Ei0 ðNh þ1;M0

S0 Þ is a quasiparti-
cle energy in the r-th band. For example, in the PM phase of the
doped material the occupation factor has the form:

Fr12 ðxÞ ¼
1�αx
2Sþ1

; ð3Þ

where α¼ 1�ð2Sþ1Þ=ð2S0 þ1Þ is proportional to the ratio of the
spin multiplets of the i, i0 states participating in the r12 - (from the
subspace fr12g) transition between the ground states ðNh0;MSÞi ¼ 0

�� �
and ðNh0þ1;M0

S0 Þi0 ¼ 0

�� �
indicated by the arrow in Fig. 1.

The Green's function in its simplest form (1) is quite insufficient
to study the k

!�physics of quasiparticles (e.g., superconductivity
properties of high-Tc cuprates). However, this approach is free
from the shortcomings of the hydrogen-like (s-)representation
and low-energy approximations, because we do not restrict
ourselves to choosing the intracell Hamiltonian H0, and we are
ready to work with all ðNh;MSÞi

�� �
states in the framework of the

Russell–Saunders scheme. The total number of the valence states
is equal to the sum over all the quasiparticle valence states:

NvðxÞ ¼
X
λσ

X
r

γ2λσ ðrÞ
Z

dE �1
π

� �
Im Dr

0ðEÞEþ i0 ¼N12
v ðxÞþN23

v ðxÞ; ð4Þ

where N12
v ðxÞ and N23

v ðxÞ are the contributions from the quasipar-
ticles with the root vectors r from the fr12g and fr23g subspaces
because the other states of j ðNh;MSÞi〉 in the doped material are
not occupied, and there is a zero probability FrðxÞ ¼ 0 to detect a
cell in these states at a low temperature. The key condition at the
insulating state, which we are interested in, is

Ne�x¼NvðxÞ; ð5Þ
where ðNe�xÞ is the total electron number per cell of the hole
doped material. That is, if the number of electrons in a cell equals
to the number of the valence states, the material is an insulator.

To obtain the Fermi level position in the degenerate doped
material at zero temperature one could carry out the integration
on the right side of the equation:

x¼
X
λσ

X
r

γ2λσðrÞ
Z
EF
dE �1

π

� �
Im Dr

0ðEÞEþ i0; ð6Þ

over the top valence band of the first removal electron states (frs)
with the lowest binding energy (see Fig. 1), and this is sufficient at
the actual concentrations x� 0:1, as a rule. However, this is not
sufficient, when the hole concentration x exceeds the number of
quasiparticle states in the top valence band xcNfrs. And this is not
due to the hole concentration being too large, but because the
number of frs quasiparticle states Nfrs may be very small, which is

to be seen later. It is not obvious that the Fermi level with doping
will be immersed into the following energy valence band in the
doped Mott–Hubbard material. To understand the features of the
solutions of Eq. (6) in the doped materials with the forbidden frs
quasiparticle states (i.e. Nfrs ¼ 0), one derives the total number of
the valence states in (5) as a function Nv x;Nfrs

� �
.

By following this approach, one obtains a simple metal–
insulator criterion, which is characterized by the condition:
Nfrs ¼ 0 (-insulator) or Nfrsa0 (-metal) irrespective of the hole
concentration x. Consideration is given to the case with one hole
per cell Nh0 ¼ 1 in the undoped materials and an arbitrary number
Nλ of the occupied λ orbitals, i.e. Ne ¼ 2Nλ�1. This is relevant for
the high-Tc cuprates. In this case of one hole per cell, the
j ðNh;MSÞi〉 cell states are a superposition of different hole config-
urations of the same orbital l-symmetry:

ðNh0;MSÞμ
��� E

¼
X
λ

βμ hλ
� �

hλ;MS
�� � ð7Þ

Thus, there are one-hole spin doublet states, C1
2Nλ

¼ 2Nλ, where Ckn

is the number of combinations. Besides, there are C2
2Nλ

¼NSþ3NT

of the spin singlets NS ¼ C2
Nλ
þNλ and triplets NT ¼ C2

Nλ
:

ðNh0þ1;M0
S0 Þτ

�� �¼X
νν0

Bτ hν;hν0ð Þ hν;hν0 ;M0
S0

�� � ð8Þ

in the two-hole sector (Fig. 1) in the Nλ�orbital approach. Using
the intracell Hamiltonian H0 in the cell function representation the
configuration weights βμðhλÞ and Bτðhλ;hλ0 Þ can be obtained by the

exact diagonalization procedure for the matrices ðĤ0 Þλλ0 and ðĤ0 Þνν
0

λλ0

in the EiðNh;MSÞ�eigenvalue problem in different sectors Nh. [12]
The sum (4) over all the r-th excited states with μa0 in the sector
Nh ¼Nh0 is omitted, and only the excited states with any τ(η)
index in the nearest Nh ¼ ðNh0þ1Þ and ðNh0þ2Þ sectors are
summed up. To calculate the matrix elements (2) the eigenfunc-
tions (7) and (8) in different sectors must be expressed through
each other. It is possible due to the rules for the addition of the
angular momenta [13].The expressions for high- and low-spin
two-hole partners (with S0 ¼ S7 jσ j ) can be combined into a
single expression:

hλ;hλ0 ;M
0
S0

�� �¼Γ↑ S0M0 ; S
� �

cλ0↓ hλ;M
0 �1

2

����
	

þsgnðΔSÞΓ↓ S0M0 ; S
� �

cλ0↑ hλ;M
0 þ1

2

����
	

ð9Þ

where ΔS¼ S0 �S¼ 7 jσ j , and the coefficients

Γ2
σ S0M0 ; S
� �¼ SþηðσÞ sgnðΔSÞM0 þ1

2
2Sþ1

ð10Þ

have a completeness property for the contributions from the
identical spin states of a doped hole to different high- and low-
spin two-hole partners:

Xþ j σ j

ΔS ¼ � j σ j
Γ2
σ S0M0 ; S
� �¼X

σ
Γ2
σ S0M0 ; S
� �¼ 1; ð11Þ

and also

XS
M ¼ �S

Γ2
σ S0M0 ; S
� �¼ Sþ1

2
ð12Þ

Taking into account relations (7), (8) and (12) one can determine
the matrix element in (4) by the sum:

ðNh0þ1;M0
S0 Þτ

� ��cνσ ðNh0;MSÞμ
��� E

¼
X
λ;λ0 ;λ″

hλ0 ;hλ″ ;M
0
S0 cνσj jhλ;MS

� �
βμ hλ

� �
Bτ hλ0 ;hλ″
� �

Γσ S0M0 ; S
� � ð13Þ
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Fig. 1. (Colour Online) Ei(Nh,MS) – energy level scheme of the Hilbert space based on
cell states (7) and (8) with hole numbers per cell Nh ¼Nh0�1;Nh0 ;Nh0þ1;‥, where
i¼ μ; τ; η and Nh0 is a hole number per cell in the undopedmaterial. The cross indicates
the occupied ground cell states of hole doped material. A solid line with arrows
corresponds to the first removal electron states with a lowest binding energy.
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After substituting expression (13), (2) and Green's function (1) into
relation (4) one obtains

NvðxÞ ¼N12
v þN23

v ¼N12
s;vþ3N12

t;vþN23
v ; ð14Þ

where instead of the “blind” sum over the root vectors r, we use
the summation over the physically meaningful indices τ,M andΔS
(i.e. the sum over all low- spin (s) and high-spin (t) two-hole
states):

N12
sðtÞ;v ¼

X
νσ

X
τ
FsðtÞr ¼ f0;τgðxÞ

X
MM0

X
λ

Γσ S0M0 ; S
� �

βμ ¼ 0 hλ
� �

Bτ hλ;hν
� �

δ

(

� S0; S7 jσ j� �
δ M0;Mþσ
� �
2

; ð15Þ
where the ðþÞ and ð�Þ on the right side are used with the indices t
and s, respectively, and the occupation factor in the PM phase
reads

FsðtÞf0;τgðxÞ ¼
1
2ð1�αsðtÞxÞ; τ¼ 0
1
2ð1�xÞ; τa0

(
; ð16Þ

with αsðtÞ ¼ 1�2=ð2S0 þ1Þ and S0 ¼ 0;1; S¼ 1=2. Let us start with
the contribution from the spin singlet frs states Ns

frs:

NvðxÞ ¼ ð2Nλ�1Þ�xð1�Ns
frsÞ ¼Ne�xð1�Ns

frsÞ ð17Þ
where the low and high spin contributions are

N12
s;v ¼ ð1=2Þ½ðNλþ1Þð1�xÞþ2xNs

frs� ð18Þ
and

N12
t;v ¼ ð1=2ÞðNλ�1Þð1�xÞ ð19Þ

respectively. The relation N23
v ¼ xð2Nλ�2Þ for the contributions

from the quasiparticle with the root vectors from fr23g subspace is
derived similar to the previous expression for contribution (15).
The number of possible singlet frs states is in the range 0rNs

frsr2,
where

Ns
frs ¼ 1�

X
λ

β2
0 hλ
� �

�
X
λ0 ;λ″

1�δλλ0 �δλλ″
� �

B2
τ ¼ 0 hλ0hλ″

� �
; ð20Þ

and τ¼ 0 corresponds to the frs-quasiparticles. In deriving (17) we

also use relation (12) and identity
P

λβ
2
μ hλ
� �P

λ0 ;λ″B
2
τ hλ0hλ″
� �¼ 1 at

any μ and τ. Since the sumX
τ

β0 hλ
� �

Bτ hλ;hν
� �� �

β0 hλ0
� �

Bτ hλ0 ;hν
� �� �¼ 0 ð21Þ

at any ν and λaλ0, the contribution from the cross-term from (15)
to the total number of the valence states is absent. In the case of
the triplet nature of frs states, one obtains a similar expression to
(17) with the contribution:

Nt
frs ¼ 1�

X
λ

β2
0 hλ
� � X

λ0 aλ″ aλ

B2
τ ¼ 0 hλ0hλ″

� �
; ð22Þ

where 0rNt
frsr1.

3. Results and discussion

From relation (17) it follows that the doped material can show
both the metallic NvðxÞ4 ðNe�xÞ, and dielectric properties
NvðxÞ ¼ ðNe�xÞ at NsðtÞ

frs 40 or NsðtÞ
frs ¼ 0, respectively. This result is

similar to the Wilson's criterion for the itinerant electron systems
[9]. The frs states can be prohibited at δðS0; S7 jσ j Þ ¼ 0 (the s-
forbidden frs states) as well as when the doped hole changes the
initial orbital configuration of j ððNh0;MSÞμ ¼ 0Þ〉 ground cell states
as a whole (l-forbidden frs states). Surprisingly, only one forbidden

transition in the cell leads to the insulating state of the whole
material. How this transition is different from many others?
Nothing changes in the undoped material. The transition is
distinguished only in the doped material by a specific symmetry
of the ground states of doped carriers.

Under the conditions Nλ ¼ 1 and Ne ¼ ð1�xÞ one always obtains
a simple metal with the Ns

frs ¼ 2 and NvðxÞ ¼ ð1þxÞ valence states,
as in the Hubbard model, where the high-spin (triplet) states are
simply not available. Note, from the derivation of expression (17) it
is clear that the orbital and spin degeneracy of the ground cell
state in the sector Nh ¼Nh0 does not result in the metallic
character of the undoped material.

To apply the criterion to the high-Tc cuprates we choose the
intracell Hamiltonian H0 in accordance with the LDAþGTB
approach [12]. This method generalizes the Hubbard's concept to
real materials by using the Wannier cell function representation
[14–17]. Let us calculate the magnitude of NsðtÞ

frs in the high-Tc
cuprates, where r¼ f2b1;A1g�root vector which is relevant for (15)
at μ¼0 and τ¼0 [15,17], i.e. it corresponds only to the A1 singlet
frs state. Using the exact diagonalization procedure with LDA
parameters [18], one obtains the relation:

Ns
frs ¼ 1þ½β2

0ðhbÞ�β2
0ðhdx Þ�

�½B2
0ðh2bÞ�B2

0ðh2dx Þ� � 0:97 ð23Þ

for the singlet frs states, where doublet and singlet ground states
(7) and (8) are

j 2b1〉0 ¼ β0ðhbÞjhb;σ1
2
〉þβ0ðhdx Þjhdx ;σ1

2
〉

jA1〉0 ¼ B0ðh2bÞjh2b ;00〉þB0ðh2dx Þjh
2
dx ;00〉

þB0ðhdx ;hbÞjhdx ;hb;00〉; ð24Þ

hb and hdx are the holes in the b-symmetrized cell states of oxygen
and dx2 �y2 cooper states of the CuO2 layer, respectively. There are
no forbidden states, and the number of the valence states is almost
constant: NvðxÞ �Ne�0:03x. However, if the doped holes for any
physical reasons, avoid the states of the sector Nh ¼ ðNh0þ1Þ and
all of them are in the ground cell state as the hole pairs in the
sector ðNh0þ2Þ (see Fig. 2), one has NvðxÞ ¼ ð1�x=2Þð2Nλ
�1Þþð2Nλ�3Þðx=2Þ ¼Ne�x, and, therefore, the material should
be an insulator. In fact, at T4Tc in the high-Tc cuprates there is a
mysterious pseudogap state not associated with the fluctuations of
the superconducting order [1,2,4]. The number of the frs states Nfrs

is determined by the ability to correctly describe the interaction of
the doped holes in the intracell Hamiltonian H0. In particular, to
numerically evaluate the number of the valence states in (23) it is
possible to choose an approach different from LDA.

We also believe that it is necessary to investigate doped
manganites with the high temperature pseudogap in the PM
phase [3] and cobaltites with the spin forbidden frs states
δðS0; S7 jσ j Þ ¼ 0 (S¼0 and S0 ¼ 2) at the Co3þ and Co4þ ground
states [19] in connection with the subject under discussion.

0
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...

1

00

1

...

0hN 10hN 20hN 30hN

2x21 x

Fig. 2.
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4. Conclusions

Formally, the criterion Nfrs ¼ 0 is valid at any hole concentration
x and, unlike the Mott–Hubbard transition, a band crossover can
occur at the ratio tλλ0=U{1 between the hopping and the Coulomb
interaction �UðC2

Nh0 þ1þC2
Nh0 �1�2C2

Nh0
Þ. A source of the metal–

insulator transition could be any external effect resulting in the
crossover between the top valence band and the forbidden frs
state level, with the insulator becoming a metal. And we do not
expect any effects from new quasiparticle states [20] in this range
of Hamiltonian's parameters.
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