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a b s t r a c t

We develop the effective non-Hermitian Hamiltonian approach for open systems with
Neumann boundary conditions. The approach can be used for calculating the scattering
matrix and the scattering function in open resonator–waveguide systems. In higher
than one dimension the method represents acoustic coupled mode theory in which the
scattering solution within an open resonator is found in the form of expansion over the
eigenmodes of the closed resonator decoupled from the waveguides. The problem of
finding the transmission spectra is reduced to solving a set of linear equations with a non-
Hermitianmatrixwhose anti-Hermitian term accounts for coupling between the resonator
eigenmodes and the scattering channels of the waveguides. Numerical applications to
acoustic two-, and three-dimensional resonator–waveguide problems are considered.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The approach of the effective non-Hermitian Hamiltonian [1–3] has found numerous applications in various branches
of physics including atomic nuclei [4,5], chaotic billiards [6–11], tight-binding models [12–16], potential scattering [17],
photonic crystals [18], etc. The objective of the present paper is to revisit the concept of the effective non-Hermitian
Hamiltonian in application to open resonators with the Neumann boundary conditions. The problem of resonant scattering
typically involves a resonator (which could be an atom, atomic nucleus, quantum dot, microwave or acoustic cavity etc.)
and one, two or more scattering channels that couple the resonator to the environment. The mainstream idea is to split
the full Hilbert space into subspaces: subspace B formed by the eigenfunctions of discrete spectrum localized within the
scattering center, and subspace C which spans the extended eigenfunctions of the scattering channels. Therefore, the exact
description of open system meets a problem of matching the wave functions of discrete and continuous spectra. In 1957
Livs̀ic [19] and independently Feshbach in 1958 [20] introduced the idea to project the total Hilbert space onto the discrete
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states of subspace B. Given the Hamilton operator of the whole system asH = HB +


C

( HC + VBC + VCB) (1)

the projection onto the discrete subspace leads to the concept of the effective non-Hermitian Hamiltonian [1–3,20]

Heff = HB +


C

VBC
1

E+ − HC
VCB. (2)

Here HB is the Hamiltonian of the closed system, HC is the Hamiltonian of the scattering channel C , VBC , VCB stand for the
couplingmatrix elements between the eigenstates of HB and the eigenstates of the scattering channel C , and E is the energy
of scattered particle (wave). The term E+

= E + i0 ensures that only outgoing waves will be present in the solution after the
scattering occurs. As a result the effective Hamiltonian (2) is a non-Hermitian matrix with complex eigenvalues zλ which
determine the energies and lifetimes of the resonant states as Re(zλ), and−2 Im(zλ) correspondingly [1,3]. If the propagation
band of waveguide is infinite then the effective non-Hermitian Hamiltonian takes the most simple form widely used in the
scattering theory [1,2,4,5,11]Heff = HB − iπ


C=1

WCW
Ď
C , (3)

where WC is a column matrix whose elements account for the coupling of each individual inner state to the scattering
channel C , and the symbol Ď stands for Hermitian transpose. The scattering matrix SCC ′ is then given by the inverse of
E − Heff [2,6]

SC ′C (E) = δC ′C − 2π iW Ď
C ′

1
E − Heff

WC , (4)

where δC ′C is the Kronecker delta.
The approach of the effective non-Hermitian Hamiltonian for two dimensional resonator–waveguide systems controlled

by the Schrödinger equation was previously addressed in Refs. [6,8,9]. In particular in Ref. [8] the authors derived exact
formulas for the coupling matrices WC for both Dirichlet and Neumann Boundary conditions on the boundary of the
resonator. What is more interesting, however, it was shown [8] that only in the case of the Neumann boundary condition
the approach is stable with respect to truncation of the discrete basis to a finite number of eigenstates thanks to the absolute
convergence of the spectral sum for the reaction matrix. In the above Refs. [6,8,9] the resonator–waveguide problem was
considered in the context of quantumscattering. This imposes restrictions on the applicability of the effective non-Hermitian
Hamiltonian because one normally requires the Dirichlet boundary conditions on the infinitely high hard–wall boundary.
Although, there are techniques to improve the convergence of the spectral sum [21,22] in the Dirichlet case, in general one
would resort to themixed boundary conditions applying theDirichlet boundary conditions on the physical boundarieswhile
the Neumann boundary condition is applied on the waveguide–resonator interface [8]. One the other hand, the Neumann
boundary conditions are the boundary conditions for the pressure field on a sound hard boundary. That prompts us to
apply the effective non-HermitianHamiltonian formalism to acoustic scattering problem. In essence, the proposed approach
relying on the spectral properties of a closed resonator decoupled from the environment is analogous to the coupled mode
theory [23,24] which is a very popular tool for analyzing resonant scattering in optics. Technically, the optical coupled
mode theory [23,24] represents a method for finding transmission spectra from a set of linear equations with a matrix
analogous to Eq. (3) inwhich the diagonal Hermitian term consists of the eigenfrequencies of the resonator, while the second
anti-Hermitian term accounts for the coupling between the eigenmodes of the resonator with the scattering channels. In
this paper we will focus on developing acoustic coupled mode theory including applications to discretized systems which
render themethod applicable to open acoustic resonators of arbitrary shape in which the eigenfunctions could not be found
analytically.

The article is organized as follows. In Section 2 we consider a simple one-dimensional tight-binding model which is
aimed to illustrate our approach to derive the effective non-Hermitian Hamiltonian. In Section 3 we extend our results to
2D case and demonstrate the connection between the discrete model based on the finite-difference representation of the
Helmholtz equation and the continuous model based on the eigenfunctions of the partial differential equation. In Section 3
we demonstrate an application of the acoustic coupled mode theory for finding the transmission spectra and scattering
functions in a realistic 3D structure. Finally, we conclude in Section 5.

2. The effective non-Hermitian Hamiltonian for one-dimensional system with the Neumann boundary conditions

There are many approaches to establish the effective non-Hermitian Hamiltonian formalism [1–3,6,12,13,17]. In this
paper we adopt a variation of the method recently developed for two-particle Bose–Hubbard lattice model [25]. To describe
the method we begin with the simplest possible one-dimensional tight-binding model which consists of one-dimensional
resonator coupled to one or two half-infinite wires (waveguides). The systems under consideration are sketched in Fig. 1
Wewill see later that this approach can be easily generalized to higher dimensions as well as applied to the continuous limit
which corresponds to 2D and 3D acoustic problems.
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Fig. 1. One-dimensional tight-binding chain (resonator) of N sites (red circles) coupled to one (a) or two (b) semi-infinite waveguides (blue stars). The
coupling between the resonator and the waveguides (dashed lines) is controlled by hopping matrix element t . All other sites are coupled via unit hopping
matrix element (solid lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.1. Tight-binding chain coupled to a single waveguide

For the model depicted in Fig. 1(a) the 1D stationary Schrödinger equation takes the following formHψj = −tLj ψj−1 − tRj ψj+1 + (2 − δ
j
N−1)ψj = Eψj; j = −∞, . . . ,N (5)

where

t(L)j =


t if j = 0;
1 otherwise, (6)

while

t(R)j =

t if j = −1;
0 if j = N − 1
1 otherwise.

(7)

One can see that the parameter t in this model controls the coupling between the resonator and the waveguide. Meanwhile,
because the Neumann BC at site N in the discrete case are written as

ψN − ψN−1 = 0, (8)

the term δ
j
N−1 is introduced at the end of the tight-binding chain to account for the Neumann boundary condition.

The key idea of our approach is to split the total space into two subspaces. The first subspace corresponds to the resonator
with j = 0, 1, . . . ,N − 1 while the second subspace corresponds to the waveguide with j < 0. Respectively we present the
solution of Eq. (5) in the following form

ψ(j) =


ψB(j) if j = 0, 1, . . . ,N − 1;
a(+)L ψ+(j)+ a(−)L ψ−(j) j ≤ 0,

(9)

where ψB(j) is the solution within the resonator

ψB(j) =

N
m=1

χmψm(j), (10)

with ψm(j) as the eigenfunctions of the resonator. Notice, that here χm are unknown coefficients which are yet to be found
for Eq. (9) to be the solution of the discrete Schrödinger equation (5). The eigenfunctions ψm(j) are given by the following
equation.

ψ1(j) =


1
N
,

ψm(j) =


2
N

cos(km(j + 1/2)), km =
π(m − 1)

N
, m = 2, 3, . . . ,N

(11)

with the corresponding eigenenergies given by
Em = 2 − 2 cos(km). (12)

We note in passing that ψm(j) Eq. (11) are the eigenvectors of the N × N matrix Hamiltonian operator with the Neumann
boundary conditions (8) at j = 0 and j = N − 1

HN =



1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1


. (13)
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The solution in the waveguide is written as a superposition of ingoing and outgoing waves

ψ(±)(j) =
1

√
4π sin(k)

e±ikj, (14)

with a(±)L as the incoming and outgoing amplitudes. The waves ψ±(j) are eigenfunctions of the tight-binding infinite wire
−ψ(±)(j − 1)− ψ(±)(j + 1)+ 2ψ(±)(j) = Eψ(±)(j)with the dispersion relation

E = 2 − 2 cos(k). (15)

Obviously, in this present model the S-matrix contains only reflection coefficient S = r with |r| = 1, i.e., only the phase of
the wave changes in the scattering.

In order to find the equation for coefficients χm, we evaluate the scalar product ⟨ψm| H − E|ψ⟩ = 0 with operatorH implicitly defined through Eq. (5). We mention in passing that the bra–ket notation will be adopted throughout the
paper for vector quantities to comply with the previous works [2,14,17]. Specifically, | . . .⟩ stands for a column vector, while
⟨. . . | = | . . .⟩Ď is the corresponding Hermitian conjugate row vector.

⟨ψm| H − E|ψ⟩ = (2 − E)χm −

N−2
j=0

ψm(j)ψ(j + 1)−

N−1
j=1

ψm(j)ψ(j − 1)− ψm(N − 1)ψ(N − 1)− tψm(0)ψ(−1)

= (2 − E)χm − tψm(0)ψ(−1)−

N
n=1

χn


N−2
j=0

ψm(j)ψn(j + 1)

+

N−1
j=1

ψm(j)ψn(j − 1)− ψm(N − 1)ψn(N − 1)



= −Eχm +

N
n=1

χn⟨ψm| HN |ψn⟩ +

N
n=1

χnψm(0)ψn(0)− tψm(0)ψ(−1)

= (Em − E)χm +

N
n=1

χnψm(0)ψn(0)−
t

√
4π sin k

ψm(0)

a(+)L e−ik

+ a(−)L eik

. (16)

On the other hand the scalar quantity ⟨ψ(−)| H − E|ψ⟩ = 0 could be evaluated as

⟨ψ(−)| H − E|ψ⟩ = −ψ(−)(−1) [ψ(−2)+ tψB(0)− (2 − E)ψ(−1)]

−

−2
j=−∞

ψ(−)(j) [ψ(j − 1)+ ψ(j + 1)− (2 − E)ψ(j)]

=
1

4π sin k


a(+)L + a(−)L


e−ik

−
t

√
4π sin k

e−ik
N

n=1

χnψn(1). (17)

The resulting expressions could be presented in a matrix form as
Em − E + WLW

Ď
L −

t
√
4π sin k

eikWL

−
t

√
4π sin k

e−ikW Ď
L

1
4π sin k

e−ik




|χ⟩

a(−)L


=


t

√
4π sin k

e−ikWLa
(+)
L

−
1

4π sin k
e−ika(+)L

 , (18)

where |χ⟩ is the column vector of coefficients χm which define the scattering functionψB(j) through Eq. (10), whileWL is a
column vector with its elements given by

{WL}m = ψm(1). (19)

From the second row of Eq. (18) we have

a(−)L = −a(+)L + t

4π sin(k)W Ď

L |χ⟩.

Substituting this in the first row of Eq. (18) we obtain

( Heff − E)|χ⟩ = −it


1
π

sin(k)WLa
(+)
L , (20)

where operator Heff could be easily recognized as the effective non-Hermitian HamiltonianHeff = Emδmn + (1 − t2eik)WLW
Ď
L . (21)
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2.2. Transmission through one dimensional system

The model considered in the previous subsection was introduced with the only goal to illustrate our approach to derive
the effective non-Hermitian Hamiltonian. Let us now consider a less trivial example, namely, the tight-binding model
depicted in Fig. 1(b). Repeating the calculations from the previous subsection one can easily find that the effective non-
Hermitian Hamiltonian now takes the following formHeff = Emδmn + (1 − t2eik)


C=L,R

WCW
Ď
C (22)

with

{WR}m = ψm(N − 1). (23)

The equation for the scattering function now reads

( Heff − E)|χ⟩ = −it


1
π

sin(k)

C=L,R

WCa
(+)
C , (24)

while the reflection amplitudes can be found as

a(−)C = −a(+)C +


4π sin(k)W Ď

C |χ⟩. (25)

The S-matrix is implicitly defined through the following equation connecting incoming and outgoing amplitudes
a(−)L

a(−)R


=


r t ′

t r ′


a(+)L

a(+)R


(26)

where a(−)L , a(−)R are the right and left outgoing amplitudes, r, r ′ are the reflection coefficients, and t, t ′ are the transmission
coefficients. Combining the above equation we find the S-matrix in the following form [2,13]

SC,C ′ = −δC,C ′ − it

2 sin(k)W Ď

C
1Heff − E

t

2 sin(k)WC ′ . (27)

After some algebra it could be easily found that in the coordinate representation Heff takes the following form

⟨j| Heff |j′⟩ = HN + (1 − t2eik)(δj,N−1δj′,N−1 + δj,0δj′,0)

= HD − t2eik(δj,N−1δj′,N−1 + δj,0δj′,0) (28)

where HD is the tight-binding Hamiltonian of the chain of length N with the Dirichlet boundary conditions [12,13]

HD =



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


. (29)

It is also worth mentioning that the effective non-Hermitian Hamiltonian in the Dirichlet representation has the following
form [13]Heff = Emδmn − t2eik


C=L,R

W CW
Ď

C (30)

where {W L}m = ψm(0), {W R}m = ψm(N − 1) with ψm(j) as the eigenfunctions of the Dirichlet eigenvalue problem. One
can see that Eq. (28) is fully consistent with the earlier findings [12,13]. However the present approach is much simpler, in
particular it is free from evaluation of principal value integrals [12,13].

Finally, to illustrate the effective non-Hermitian Hamiltonian approachwe plot transmission probability T vs. energy E in
Fig. 2. To obtain the transmission probability T one can directly apply Eq. (27). However, this approachwould be numerically
inefficient because it involves evaluation of the inverse of the matrix Heff − E. In practice to speed-up the performance one
would first use Eq. (24) to find the interior wave function |χ⟩ and then use Eq. (25) for finding the reflection amplitudes.
The data in Fig. 2 obviously coincide with the transmission probability through tight-binding chain with the Dirichlet BC
according to [13]. The reason for this is that the resonator–waveguide boundary is artificial and, thus, one has freedom
in choosing the boundary conditions [17] as long as the resulting Eqs. (22) is consistent with the total Hamiltonian of the
system (5). However, as it will be seen below, the transmission coefficient depends on the choice of the boundary conditions
at physical boundaries of the resonator.
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Fig. 2. (Color online) Transmission spectra of tight-binding chains of 5 (a) and 7 (b) sites, t = 0.4.

3. Two-dimensional model

Before proceeding to the effective non-Hermitian Hamiltonianwewould like tomake some remarks to draw an analogue
between the tight-binding model and acoustics. The stationary acoustic field satisfies the Helmholtz equation

∇
2ψ +

ω2

c2
ψ = 0, (31)

whereψ is the pressure, c—the speed of sound, andω is the frequency. In what follows c is set equal to unity. The condition
on the sound hard boundary is the Neumann boundary condition which requires the normal derivative of the pressure field
to be equal to zero on the boundary S

∂ψ

∂n


S

= 0. (32)

In this section we consider the resonator shown in Fig. 3. This system can be seen as a limiting case of three-dimensional
planar duct-cavity-duct acoustic system with a rectangular cross-section if the thickness of the resonator along the z-axis
is substantially smaller than the length and the width in the x and y-dimensions.
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resonator

Fig. 3. (Color online) 2D acoustic resonator coupled two waveguides.

To find the numerical solution the Helmholtz equation (31) could be written through the centered second difference
scheme as

1
a20


ψl+1,j + ψl−1,j + ψl,j+1 + ψl,j−1 − 4ψl,j


+
ω2

c2
ψl,j = 0, (33)

where a0 is the step-size in space. The resulting expression (33) could be viewed as an eigenvalue problemHψ = Eψ,

for the tight-binding ‘‘Hamiltonian’’ H with four off-diagonals which carry the nearest neighbor hopping matrix element
1/a20, while the ‘‘energy’’ is given by

E = ω2/c2.

Notice that Eq. (33) preserves all symmetries of the system in Fig. 3 in the discretized coordinates xj = a0j, yl = a0l. Therefore
one can easily introduce the discretized Neumann boundary conditions (8) as

ψ±Nl,j − ψ±(Nl−1),j = 0, ψl,±Nl − ψl,±(Nl−1) = 0

on the vertical and horizontal boundaries correspondingly (see Fig. 3) with Nl and Nj being the indexes of the edge sites. At
this pointwewould like to notice that our choice of the system and the discretizationmethod are solely aimed at simplifying
the ensuing algebra. If the configuration of the system is more involved then the finite-difference scheme would not be the
method of choice. We will see, however, that in the continuous limit a0 → 0 the resulting expressions are not dependent
on the orientation of the grid. On the other hand if a more sophisticatedmeshing procedure, like hp-adaptive finite-element
method [26], is applied onewould use the same technique to derive the effective non-Hermitian Hamiltonian under the only
conditions that the grid is locally regular on each waveguide–resonator interface and preserves the translational symmetry
in the waveguides.

3.1. The effective non-Hermitian Hamiltonian for 2D lattice model

The technique described in the previous section can be easily generalized for 2D case. Let P be the number of sites across
the waveguide and N the number of sites along the resonator, then the channel functions are given by

ψ
(±)
L,p (j, l) = φp(l)φ

(±)
L (j), j < 0 (34)

and

ψ
(±)
R,p (j, l) = φp(l)φ

(±)
R (j), j > N − 1, (35)

where φq(l) is the transversal wavefunction of the waveguide

φ1(l) =


1
P
, φp(l) =


2
P
cos


π(p − 1)(l + P/2)

P


, p = 2, 3, . . . , P, (36)

while the travelling waves φ(±)R (j) and φ(±)L (j) are

φ
(±)
R (j) =

a0
4π sin(kpa0)

exp(±ikpa0j),

φ
(±)
L (j) =

a0
4π sin(kpa0)

exp(±ikpa0j ∓ ikpa0N).
(37)
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The corresponding dispersion relationship is given by

Ep =
1
a20


4 − 2 cos(a0kp)− 2 cos


π(p − 1)

P


. (38)

Using (38) one can easily check that the waves (37) obey the normalization condition

⟨j|j′⟩ =

 Emax

Emin

dEψ (±)
p (j)∗ψ (±)

p (j′) =
1
2π

 π

−π

dαeiα(j−j′)
= δjj′ . (39)

The scattering domain is a rectangular box with N sites in the direction parallel to the transport axis and M sites in the
transversal direction. Then the eigenenergies of the box with the Neumann boundary conditions are given by

Em,n =
1
a20


4 − 2 cos


π(n − 1)

N


− 2 cos


π(m − 1)

M


, (40)

while the eigen-functions ψn,m(j, l) are the products of two factors each given by Eq. (11)

ψn,m(j, l) = ψn(j)ψm(l). (41)

After evaluating expressions analogous to Eqs. (16) and (17) one finds that the coupling between m, p mode of the box
and q channel in the left waveguide is accounted for through the matrixWL,p(n,m)

WL,p(m, n) =
ψn(0)
√
a0


l

ψm(l)φp(l) (42)

while for the right waveguide we have

WR,p(m, n) =
ψn(N − 1)

√
a0


l

ψm(l)φp(l). (43)

The effective non-Hermitian Hamiltonian reads

Heff = En,mδnn′δ
m
m′ +

P
p=1

(1 − eikpa0)
a0


C=L,R

WC,pW
Ď
C,p. (44)

The equation for the interior wave-function |χ⟩ is

( Heff − E)|χ⟩ = −i
P

p=1


sin(kpa0)

a0π


C=L,R

WC,pa
(+)
C,p , (45)

and, finally, for reflection amplitudes a(−)C,p we have

a(−)C,p = −a(+)C,p +


4π sin(kpa0)

a0
W Ď

C,p|χ⟩. (46)

3.2. Continuous limit

In the continuous limit a0 → 0 the eigenfunctions of the resonator

ψn,m(x, y) = ψn(x)ψm(y)

are given by

ψ1(x) =


1
Lx
, ψn(x) =


2
Lx

cos

πnx
Lx


, n > 1, x ∈ [0 Lx],

ψ1(y) =


1
Ly
, ψm(y) =


2
Ly

cos

πm(y + Ly/2)

Ly


, m > 1, y ∈ [−Ly/2 Ly/2], (47)

where we assumed that the x-axis coincides with the center-line of the waveguides. The corresponding eigenvalues are

En,m =


πn
Lx

2

+


πm
Ly

2

. (48)
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The solutions in the waveguides are

ψ
(±)
L,p (x, y) =

1
4πkp

e±ikpxφp(y), x < 0, (49)

and

ψ
(±)
R,p (x, y) =

1
4πkp

e∓ikpx±ikpLxφp(l), x > Lx, (50)

where φq(y) is the transversal wavefunction of the waveguide

φ1(y) =


1
d
, φp(y) =


2
d
cos


πp(y + d/2)

d


, p = 2, 3, . . . ,Q . (51)

The corresponding dispersion relation reads

Ep = k2p +

πp
d

2
. (52)

Taking into account that the step-size a0 is found as

a0 =
d
P

=
Ly
M

=
Lx
N

(53)

the continuous limit from Eqs. (34), (35), and (41) to Eqs. (47), (49), and (50) is reached as

ψ
(±)
C,p (x, y) = lim

a0→0


1

√
a0
ψ
(±)
C,p (j, l)


, ψn,m(x, y) = lim

a0→0


1

√
a0
ψn,m(j, l)


. (54)

Thus, the continuous limit of coupling matrices WC,q(m, p) could be found as

WL,p(n,m) = ψn(0)
 d/2

−d/2
dyψm(y)φp(y) (55)

while for the right waveguide we have

WR,p(n,m) = ψn(Lx)
 d/2

−d/2
dyψm(y)φp(y), (56)

then the effective non-Hermitian Hamiltonian reads

Heff = En,mδnn′δ
m
m′ −

∞
p=1

ikp

C=L,R

WC,pW Ď
C,p. (57)

The equation for the scattering function takes the following form

( Heff − E)|χ⟩ = −i
∞
p=1


kp
π


C=L,R

WC,pa
(+)
C,p , (58)

while the reflection amplitudes are given by

a(−)C,p = −a(+)C,p +

4πkp W Ď

C,p|χ⟩. (59)

The interior wave function ψb(x, y) could be found as

ψb(x, y) =


n,m=1

χn,mψm,n(x, y). (60)

The above presented approach is valid not only for the system shown in Fig. 3. In general the resonator eigenfunctions
could not be found through separation of variables as in Eq. (35). However, on any zero curvature waveguide–resonator
interface of length d one can introduce a local set of coordinates with the y-axis directed along the interface while the x-axis
is directed along the waveguide. Then the same calculations give us the following expression for the coupling matrix

Wp(m) =

 d/2

−d/2
dyψm(y, x)φp(y), (61)

where we have a single index m to enumerate the eigenfunctions of the resonator. The rest of the formulas (58), (59),
(60) remain correct with the only difference that index C could run over arbitrary number of waveguides attached to the
resonator. This resulting expressions are consistent with the earlier findings in Ref. [8].
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Fig. 4. Transmission spectra of 2D acoustic resonator with the incoming wave in the first (a) and second (b) channels; discrete model—solid blue line,
continuous model—dashed red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

3.3. Numerical results

To perform a numerical test we calculated the transmission coefficient T using both discrete (44) and continuous (58)
approaches. The geometric parameters of the systemwere chosen as d = 1, Ly = 1.8, Lx = 1. In the discrete model we took
N = 20,Q = 20, P = 36 which corresponds to a0 = 0.05. In the continuous model where we have an infinite number of
modes in the resonator as well as in the waveguide Eq. (58) was truncated to a finite number of unknowns. To be consistent
with our discrete model we took 20 modes in each waveguide while the indicesm and p in Eq. (58) run asm = 1, 2, . . . ,M
and n = 1, 2, . . . ,N . Thus, we guaranteed that in both approaches we have the same number of degrees of freedom. For
our system the coupling matrices WL,p(n,m) and WR,p(n,m) could be found analytically through Eqs. (55) and (56). The
resulting expressions are

WL,p(n,m) =


2 − δ0n

Lx
Vp,m; WL,p(n,m) =


2 − δ0n

Lx
(−1)n−1Vp,m, (62)
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Fig. 5. Scattering function at ω = 3π/2 with the incoming wave in the first (a) and second (b) channels.

Fig. 6. Cylindric resonator of radius R and length L connected to coaxial waveguides with radius a.

where

Vp,m =




d
Ly

if p = 1,m = 1;

0 if p > 1,m = 1;

1
πm


2Ly
d


sin

πm

Ly + d
2Ly


− sin


πm

Ly − d
2Lx


if p = 1,m > 1;

2

Lyddm

π

(md)2 − ((p − 1)Ly)2

 (−1)p−1 sin

πm

Ly + d
2Ly


− sin


πm

Ly − d
2Ly


if p > 1,m > 1.

(63)

The numerical data are shown in Fig. 4 where one can see a very good agreement between twomethods. This, in accordance
with Ref. [8], proves that the effective non-Hermitian Hamiltonian is stable with respect to truncation of the number of
modes. Finally, in Fig. 5 we present two typical configurations of the real part of the pressure field with the resonator excited
through both first and second scattering channels.

4. Transmission through cylindrical acoustic resonator

In this sectionwe consider sound transmission in three dimensional system, namely a cylindrical resonator coupledwith
two cylindrical waveguides as shown in Fig. 6. We restrict ourself to the coaxial case where the angular momentum −i ∂

∂φ

is a constant of motion φ being the azimuthal variable. Therefore the Hilbert space of the total system is a direct sum of
the subspaces specified by the angular momentum. Below we present the effective non-Hermitian Hamiltonian approach
in case of zero angular momentum. The generalization to non-zero angular momentum is straightforward.

4.1. The effective non-Hermitian Hamiltonian

The eigenfrequencies of the closed cylindrical resonator with the Neumann boundary conditions are given by

ω2
mn = c2


µ2

m

R2
+
πn2

L2


(64)

where R and Lz are the radius and length of the cylindrical resonator, and µm is the m-th root of the equation J ′0(µm) =

J1(µm) = 0, m = 1, 2, . . . for the derivative of the first order Bessel function. The corresponding eigenfunctions are

ψmn(r, φ, z) =
1

√
πRJ0(µm)

J0
µmr

R


ψn(z),

ψ1 =


1
Lz
, ψn(z) =


2
Lz

cos

π(n − 1)z

Lz


, n = 2, 3, . . . .

(65)
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j = 1, 2,... N

Fig. 7. Cylindric resonator discretized in the axial coordinate.

Similar to the 2D acoustic case considered in the previous section in the continuous limitwe obtain the effectiveHamiltonian
in the same form as Eq. (57) with the coupling matrices given by

WL,p(n,m) =


2 − δ0n

L
Vp,m; WL,p(n,m) =


2 − δ0n

L
(−1)n−1Vp,m, (66)

with

Vp,m =
1

πaRJ0(µm)J0(µp)

 a

0

 2π

0
drdφrJ0(µmr/R)J0(µpr/a), (67)

where a is the radius of the cylindrical waveguides. Integration in Eq. (67) can be done analytically [27]

Vp,m =
2a2µm

(µma)2 − (µpR)2
J1(µma/R)
J0(µm)

. (68)

Finally, the dispersion relation for the scattering channels reads

ω2
= c2(µ2

p/a
2
+ k2p), p = 1, 2, . . . . (69)

The numerical procedure for finding the reflection amplitudes a(−)p,c and the interior scattering function is identical to the 2D
case considered in the previous section Eqs. (57), (58), (59), and (60)

4.2. Mixed representation

Another interesting opportunity for separable systems is to use the discretized representation in one coordinate while
the continuous representation is used in the other coordinates. Let us write the Helmholtz equation (31) in the following
form

1
a20


∂2

∂r2
+

1
r
∂

∂r


ψj − 2ψj + ψj−1 + ψj+1


+ Eψj = 0, (70)

where we used the continuous representation for the radial and azimuthal coordinates and the discrete representation for
the axial coordinate z. The idea of the approach is sketched in Fig. 7. The resulting expressions are the same as those found
in 3.1 for both scattering function Eq. (45) and reflection amplitudes Eq. (46) with the only difference that the coupling
matrices are now given by

WL,p(m, n) =
ψn(0)
√
a0

Vp,m, WR,p(m, n) =
ψn(N − 1)

√
a0

Vp,m, (71)

where Vp,m are defined through Eq. (68). The eigenfrequencies of the resonator are now found as

ω2
mn = c2


µ2

m

R2
+

2 − 2 cos(kna0)
a20


, kn =

π(n − 1)
L

, n = 1, 2, . . . ,N, (72)

while the dispersion relation for the channel function is

ω2
= c2


µ2

p

a2
+

2 − 2 cos(kpa0)
a20


, p = 1, 2, . . . . (73)

4.3. Numerical results

Numerically computed scattering function are shown in Fig. 8. Here, to perform the numerical test we took 10 modes
in each waveguide while in the resonator 20 modes were taken in each radial and axial variables. The same numbers were
chosen in the mixed representation. In Fig. 9 we demonstrate the transmission spectra of the cylindrical resonators with
two differing aspect ratios a/R. One can see a good agreement between continual and mixed approaches even for relatively
small number of slices N = 20 (see Fig. 7).
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Fig. 8. Scattering function (real part) in a cylindrical resonator coupled with two coaxial waveguides. The wave is incident through the first channel.
L = 3.5, ω = 6.6845. (a) R = 1.5a and (b) for R = 2a.

 

 

 

 

Fig. 9. Transmission spectra of cylindric acoustic resonator with two differing aspect ratios: (a) R/a = 1.5 and (b) R/a = 2. Continuous representation—
solid blue line, mixed representation—dashed red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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5. Summary

In this paper we developed the approach of the effective non-Hermitian Hamiltonian to resonator–waveguide systems
with theNeumannboundary conditions. To derive the effective non-HermitianHamiltonianweused an alternative approach
which dates back to the seminal paper by Fano [28] and was recently adapted for the discrete Schrödinger equation [25]. In
contrast with the standard Feshbach projection technique [20] our approach does not face a problem of principal value
integration. It was shown that the method of the effective non-Hermitian Hamiltonian can be used to calculate the S-
matrix and the scattering function of sound-hard boundary acoustic scattering problem. Thanks to the projection of the
total Hilbert space onto the inner states of the resonator the method is free of the discontinuity problem typical for the
mode-matching techniques [29–36]. It was shown that in the continuous case the effective Hamiltonian can be truncated
to a reasonable small number of eigenmodes of the closed system whose eigenfrequencies are concentrated around the
frequency of the incident wave. In that sense the method of effective non-Hermitian Hamiltonian is analogous to the
coupled-mode theory [23,24] which however neglects the radiation shifts caused by a finite lower band edge and dispersive
properties of the waveguides. Therefore we can refer to the approach of the effective non-Hermitian Hamiltonian as an
advanced form of the coupled mode theory. In this paper the effective non-Hermitian Hamiltonian was formulated in both
continuous and discrete forms. The former is shown to be consistent with the earlier findings in Ref. [8] while the latter
seems to be more feasible for numerical implementation along with finite-difference and finite-element discretization
schemes. In fact, the developed approach represents a tool for modeling systems with open boundaries. Alike to the
recently developed wave finite-element methods [37,38] it explicitly utilizes the translation invariance in the waveguide
to formulate numerically exact transparent boundary conditions [39]. It should be noted, however, that the resulting Eqs.
(24), (45), and (58) contain dense rather then sparse matrices typical for the lattice methods. This to a certain degree
degrades the numerical performance. Nevertheless, thanks to a clear physical picture of the wave transmission one may
think of developing techniques based on truncation of the inner space to a small number of modes which are relevant to
a particular case of the scattering problem. This represents a goal for the future studies. Finally, the effective Hamiltonian
has an advantage in physical interpretation of it complex eigenvalues z. The real parts Er = Re(z) define the positions
of resonances with the resonance widths defined by −2 Im(z) [3]. That advantage becomes important in study of wave
trapping [40–42] by tracing the imaginary parts of complex eigenvalues of the effective non-Hermitian Hamiltonian.
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