EPJ Web of Conferences 103, 09001 (2015) DOI: 10.1051/epjconf/ 201510309001 © Owned by the authors, published by EDP Sciences, 2015

Multifunctional RFe₃(BO₃)₄ Materials: Quality Control

K. N. Boldyrev^{1a}, M. N. Popova¹, A. D. Molchanova¹, T.N. Stanislavchuk², L. N. Bezmaternykh³, and I.A. Gudim³

Rare-earth iron borates with general formula $RFe_3(BO_3)_4$ (R = Y, Pr-Er) have a structure of the natural mineral huntite (SG R32). Their magnetic properties are governed by the presence of two interacting magnetic subsystems – Fe^{3+} and R^{3+} ones. The magnetic structure of $RFe_3(BO_3)_4$ changes as a function of temperature, external magnetic field and substitutions in the rare-earth subsystem. Compounds belonging to this family display a considerable magnetoelectric coupling and their electric (magnetic) properties can be controlled by the magnetic (electric) field.

Iron borates with an ionic radius of R smaller than that of Sm undergo a structural phase transition into the space group $P3_121$ at the temperature T_S inversely proportional to the ionic radius of R^{3+} . EuFe₃(BO₃)₄ has the lowest T_S , T_S =88K and T_S =58K were reported for powder samples prepared by solid-phase synthesis [1] and for a single crystal [2], respectively. In the present work we study how and why the method of sample growth influences structural, magnetic, and spectroscopic properties of EuFe₃(BO₃)₄. We compare optical spectra of EuFe₃(BO₃)₄ crystals grown by flux-melting technique using (i) $Bi_2Mo_3O_{12}$ and (ii) Li_2WO_4 based fluxes. The spectra clearly evidence $T_8=58$ K for the sample (i) and T_S =83K for the (ii) one, whereas T_N =34K for both samples. Obviously, lower T_S for the sample (i) is connected with entering of a "big" Bi³⁺ ion from the flux into positions of Eu³⁺ [3]. Our estimate gives 7±2 % for Bi concentration in the sample (i). Bi impurity manifests itself also by a presence of extra lines in the spectra, due to Eu³⁺ located near Bi impurities. These data allowed us to estimate the Bi³⁺ concentrations in a number of rare-earth iron borates, grown using Bi-containing flux. In all investigated materials (R=Dy, Ho, Tb, Gd) the concentration of bismuth was in the range 3-10%. These results form a basis for a correct description of magnetic and magnetoelectric properties of RFe₃(BO₃)₄ and for improvement of growth technologies not only of iron borates but also of other crystals grown by flux-melting technique.

This work was supported by the Russian Science Foundation (Grant № 14-12-01033).

References

- 1. Y. Hinatsu, Y. Doi, K. Ito, M. Wakeshima, A. Alemi, J. Solid State Chem 172. P. 438 (2003)
- 2. M. N. Popova, J. Magn. Magn. Mater **321**. P. 716 (2009)
- 3. M.N. Popova, K.N. Boldyrev, et. al., J. Phys.: Condens. Matter 20. P. 455210 (2008)

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia

²Department of Physics, New Jersey Institute of Technology, 07102, Newark, NJ, USA

³Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia

^a Corresponding author: kn.boldyrev@gmail.com