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We present a solution for the problem of quantum electron transport through a magnetic atom

adsorbed inside a break junction with paramagnetic metal electrodes. In agreement with experimen-

tal data, it was assumed that the conduction electrons experience inelastic scattering by the adsorb-

ate due to s–d(f)-exchange interaction. The Keldysh technique was employed to obtain a general

expression describing a current through the multilevel structure at finite temperatures in terms of

the nonequilibrium Green’s function. The use of the atomic representation allowed to exactly

account for the non-equidistant structure of the energy spectrum of a magnetic atom and to simplify

substantially the application of the Wick theorem for construction of the nonequilibrium diagram-

matic technique for the Hubbard operators. The calculation of the current-voltage characteristics of

the magnetic adatom in the tunnel regime at low temperatures revealed the presence of regions with

a negative differential conductance in a magnetic field. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4913204]

1. Introduction

Prospects of developing electronic devices operating at

the scale of individual atoms and molecules require exten-

sive studies of the kinetic processes in such systems.1,2 An

important role in the electron transport is played by the

charge and spin correlations,3,4 as well as the processes of

inelastic scattering at the nano-object with internal degrees

of freedom.5

Magnetic structures consisting of magnetic atoms or mol-

ecules (Mn, Co, Fe, phthalocyanines, etc.) belong to some of

the most actively researched systems. These objects are de-

posited in the region of the break junction between metal elec-

trodes6–8 or adsorbed on the substrate and probed with a

scanning tunneling microscope (STM).9–11 Experimental

studies have shown that the presence of spin-flip processes in

inelastic scattering of electrons transported in such systems

leads to excitation of the latter.7,9 As a result, the interaction

of atoms and molecules adsorbed onto the surface with the

transported particles and external fields allows to implement

both stable magnetic and charge states in these systems and

provide controlled switching between them.11,12 This, in par-

ticular, makes it possible to design non-volatile magnetic

memory devices based on such structures.13 In addition, due

to the dependence of the potential profile on the spin projec-

tion of a transported electron, atomic magnetic structures ex-

hibit spin-filtration properties.14

The presence of a local environment leads to a depend-

ence of magnetic and, as a result, the transport properties of

nanosystems on the geometric structure of the substrate and

the location of the adsorbate on it.15,16 First-principles calcu-

lations indicate that the same atomic magnetic structures

may exhibit different magnetic properties depending on the

substrate on which they are adsorbed.17–19 A typical example

of the anisotropy of the magnetic properties of an adsorbate

is the evolution of the Kondo peak in differential conduct-

ance upon changing the local environment.20,21

This paper presents the development of the theory of

quantum transport through a structure of atomic dimension,

which takes into account two important factors. The applica-

tion of atomic statistics22,23 allowed us not only to modify the

method of nonequilibrium Green’s functions and formulate

the Keldysh diagrammatic technique24 for a system with mul-

tiple interactions (coupling to the contacts, inelastic scattering

of conduction electrons by magnetic impurities, and the

Coulomb interaction), but also to sum the contributions to the

current by all the scattering processes over the parameters of

coupling to the contacts. In this approach, we obtained an

expression describing the electron current through a multile-

vel structure with a large number of non-equidistantly spaced

transitions at finite temperatures. As a special case, the trans-

port properties of a magnetic adatom in the regime of tunnel

coupling and low temperatures were considered. It was shown

that allowing for the multiple inelastic scattering leads to a

nonequilibrium occupation of the excited states of the system

“adatom þ electrons,” which depends on the applied voltage.

It was demonstrated that the negative differential conductivity

(NDC) in the current-voltage characteristics (CVC) can arise

not only upon changing the magnetic anisotropy parameter of

the adatom,25,26 but also upon switching on a magnetic field.

2. The system under study and its Hamiltonian

Let us assume that a magnetic atom with a spin S ¼ 1 is

adsorbed to the surface in the region between the paramag-

netic metal contacts (so-called break junction geometry, see

Fig. 1). As a result, due to the spin-orbit interaction with the

electrons of the substrate, there arises an anisotropy of the

magnetic properties of the adsorbate.20 Tunneling electron

1063-777X/2015/41(2)/8/$32.00 VC 2015 AIP Publishing LLC98

LOW TEMPERATURE PHYSICS VOLUME 41, NUMBER 2 FEBRUARY 2015

http://crossmark.crossref.org/dialog/?doi=10.1063/1.4913204&domain=pdf&date_stamp=2015-02-01


transport through such a system is considered in the presence

of an external magnetic field H.

The Hamiltonian of the system can be written as

Ĥ ¼ ĤL þ ĤD þ ĤR þ T̂ þ V̂u: (1)

The operators ĤL and ĤR in Eq. (1) describe the conduction

electrons in the left and right metallic contacts, respectively,

ĤL ¼
X

kr

nLkrcþkrckr; ĤR ¼
X
pr

nRprdþprdpr; (2)

where cþkrðdþprÞ is the electron creation operator in the left

(right) contact with the wave vector k(p) and spin projection

r; nL(R)kr ¼ eL(R)k � rgelBH � l is the one-electron energy

in the left (right) contact, which is referenced to the chemical

potential l and takes into account the influence of a mag-

netic field on the electron with the spin projection r ¼ 61=2;
ge is the electron g-factor in contacts, lB is the Bohr magne-

ton. For the below description of the transport properties of a

magnetic adatom, it is important that the contacts are

assumed to be fabricated of a single-band metal with the

band width W ¼ 4jtj � 1 eV (where t is the overlap integral

of the electron wave functions at the neighboring nodes in

contacts), which largely exceeds the characteristic energy

parameters of the system.

The central region (region of the device), where the

magnetic object is located, is described by the term ĤD:

ĤD ¼
X

r

ndrnr þ Un"n# þ DðSzÞ2

�SzglBH þ AðrSÞ; (3)

where ndr ¼ ed � rgelBH � l is the spin-dependent energy

(referenced to the chemical potential) of an electron located

on the outer orbital of the adsorbed atom in an external mag-

netic field H; ed is the one-electron energy on outer orbitals

of the adsorbed atom; nr ¼ aþr ar is the operator of the num-

ber of electrons with the spin projection r at the device level;

aþr is the electron creation operator, which creates an elec-

tron on the outer orbitals of the adsorbed atom with the spin

projection r; U is the parameter characterizing the Hubbard

repulsion of two electrons with opposite spin projections.

The influence of the crystal environment on the magnetic

properties of the adatom or an impurity is modeled by the

uniaxial anisotropy parameter D. The effect of magnetic

field on the energy structure of the impurity center with an

effective g-factor is described by the Zeeman term in Eq.

(3). The coupling between the spin degrees of freedom of a

transported electron and the adatom occurs through the

s–d(f) exchange coupling and is described by the last term in

Eq. (3), in which S is the vector operator of the spin moment

of the atom, and r is the vector operator of the spin of the

transported electron. The parameter A determines the inten-

sity of the s–d(f) exchange coupling.

The interaction of the three parts of the system described

above is determined by the operator T̂ defined in Eq. (1).

This term takes into account the electron tunneling between

the contacts and the device:

T̂ ¼
X

kr

tLkcþkrar þ
X

pr

tRpdþprar þ H:c:; (4)

where tLk, tRp are the coupling parameters for the left and

right contacts, respectively, and the adatom. The operator

V̂u in the total Hamiltonian of the system is due to the bias

voltage V applied to the metal contacts:

V̂u ¼
X

r

ðeV=2Þaþr ar þ
X
pr

ðeVÞdþprdpr: (5)

3. The Hamiltonian of the multilevel structure in the atomic
representation

As well known, the calculation of the transport character-

istics of a magnetic adatom using the Keldysh technique

involves construction of diagram series for the system of non-

equilibrium Green’s functions. The use of the Hamiltonian of

the unperturbed system Ĥ0 (Ĥ0 ¼ ĤL þ ĤR þ ĤD) in the

representation of the second-quantization Fermi operators for

this purpose complicates the process significantly due to the

off-diagonal structure of the operator ĤD in this representa-

tion. This problem can be overcome by writing the operator

ĤD in the atomic representation. To do this, the basis vectors

of the Hilbert space of states are defined as the eigenvectors

jwni of the device Hamiltonian ĤD, i.e., ĤDjwni ¼ Enjwni.
Then the introduction of the Hubbard operators Xnm

¼ hwnjwmi allows us to write the Hamiltonian of the magnetic

adatom in a diagonal form:

ĤD ¼
X12

n¼1

EnXnn: (6)

Let us provide the explicit form of the eigenvectors jwni and

eigenenergies En of the operator ĤD. The system under

consideration has twelve levels (n ¼ 1,…,12). Three states

have no electrons and differ by the spin projection of the

adatom Sz:

jw1i ¼ j0; 0i; jw2;3i ¼ j0;61i: (7)

Here and below ket-vectors in the right parts of the equations

determine the state with a given number of electrons (first

number) and the projection of the adatom spin (second

number).

There are six states present in the one-electron spectrum

jw4i ¼ cos Hþj"; 0i � sin Hþj#;þ1i;
jw5i ¼ cos H�j#; 0i � sin H�j";�1i;
jw6i ¼ sgnðAÞðsin Hþj"; 0i � cos Hþj#;þ1iÞ;
jw7i ¼ sgnðAÞðsin H�j#; 0i þ cos H�j";�1iÞ;
jw8i ¼ j";þ1i; jw9i ¼ j#;�1i;

(8)

FIG. 1. Magnetic adatom with a spin S located between the metal contacts

in an external magnetic field H.
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where the first index of a ket-vector shows the orientation of

the spin of an electron located on the outer orbital of the

adatom. The expansion coefficients are of the form

sin H6 ¼ sgn Að Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x6

2

r
; cos H6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x6

2

r
;

x6 ¼ D6=�6; �6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

6 þ A2=2

q
;

D6 ¼ D6
g

2
� 1

� �
h; D ¼ A

4
� D

2
; h ¼ lBH:

(9)

The effect of a magnetic field is manifested through the de-

pendence of these expressions on h. For real systems, in

most cases, the conditions are satisfied under which the

Zeeman interaction energy is less than the model parameters.

Then in the linear approximation with respect to h, it is easy

to establish an explicit dependence of the expansion coeffi-

cients on the magnetic field:

sin H6 � sin H6
g

2
� 1

� �
h

1� x

2�
sin H;

cos H6 � cos H7
g

2
� 1

� �
h

1þ x

2�
cos H;

sin H ¼ sgn Að Þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

2

r
; cos H ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� x

2

r
;

x ¼ D=�; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ A2=2

q
:

(10)

The basis vectors of the two-electron sector are defined by

the expressions

jw10i ¼ j2; 0i; jw11;12i ¼ j2;61i: (11)

The eigenenergies En of the device have the form:

E1 ¼ 0; E2ð3Þ ¼ D7gh; E4ð5Þ ¼ nd"ð#Þ � D6 � �6;

E6ð7Þ ¼ nd"ð#Þ� D6 þ �6; E8ð9Þ ¼ nd"ð#Þ þ Dþ A=27gh;

E10 ¼ 2nd þ U; E11ð12Þ ¼ 2nd þ U þ D7gh: (12)

As can be seen from the expression for the eigenenergies

En of an isolated device, in non-zero magnetic fields, there is

a splitting of some levels which differ in the sign of the pro-

jection of the total spin rz þ Sz. Consequently, we can expect

to see more features in the CVCs, which are related to the

Zeeman effect.

Let us introduce a representation of the Fermi operator

ar through the Hubbard operators:

ar ¼
X
n;m

hwnjarjwmiXn;m

�
X
n;m

crðn;mÞXn;m �
X

a

crðaÞXa; (13)

where cr(a) are the parameters of the representation of the

operator ar through the Hubbard operators Xa. For conven-

ience of writing the following equations, the summation

over two indices (n, m) was changed to that over the root

vector a(n, m).23 Finding the parameters of the representa-

tion using Eqs. (7)–(11), we obtain:

a" ¼ ½sgnðAÞX1;6�X4;11�sinHþþ½X1;4þ sgnðAÞX6;11�cosHþ

þX2;8þ½sgnðAÞX7;10�X3;5�sinH�

þ½X5;10þ sgnðAÞX3;7�cosH�þX9;12;

a# ¼�½X2;4þ sgnðAÞX6;10�sinHþ

þ½sgnðAÞX2;6�X4;10�cosHþ

þX3;9þ½sgnðAÞX1;7þX5;12�sinH�

þ½X1;5� sgnðAÞX7;12�cosH��X8;11: (14)

As can be seen from Eq. (14), in the system under study

there are ten possible transitions where the number of elec-

trons with the projection of spin r ¼ þ1=2 is changed by

unity. The same number of transitions are possible for elec-

trons with r ¼ �1=2. The energies of the transitions for r
¼ þ1=2 are (up to linear terms in h):

E1;4 ¼ E1 � E4 � Dþ � � nd þ gþh;

E1;6 � D� � � nd þ g�h;

E3;5 � Dþ � þ D� nd þ g�h;

E3;7 � D� � þ D� nd þ gþh;

E2;8 ¼ �ðA=2þ nd � hÞ;
E4;11 � �ðDþ � þ U þ Dþ ndÞ þ g�h;

E5;10 � �ðDþ � þ U þ ndÞ þ gþh;

E6;11 � �ðD� � þ U þ Dþ ndÞ þ gþh;

E7;10 � �ðDþ � þ U þ ndÞ þ g�h;

E9;12 � �ðU � A=2þ nd � hÞ;

(15)

where g6 ¼ g=26 D
� g=2� 1Þð . The energies of the transi-

tions for r ¼ �1=2 are written similarly.

4. Expression for the current through a multilevel structure.
Application of the atomic representation in the Keldysh
technique

Application of an external electric bias eV leads to non-

equilibrium processes in the system. To obtain the diagram-

matic form of the perturbation theory, let us perform a uni-

tary transformation of the system Hamiltonian using the

unitary operator27

Û ¼ exp i
eV

2
t
X

r

nr

 !
exp ieVt

X
pr

npr

� �
:

The new tunneling operator has a time-dependent form now:

T̂ eff ¼
X
kr;a

tkcrðaÞ½e�ieVt=2cþkrXa þ eieVt=2X�ackr�

þ
X
pr;a

tpcrðaÞ½eieVt=2cþprXa þ e�ieVt=2X�acpr�: (16)

The expression for the electric current can be obtained

from the ratio I ¼ ehdNL/dti. Then

I ¼ ie
X
kr;a

tkca að Þ
h
eieV

2
thT̂CX�a tþ dð Þckr tð ÞSCi0

�e�ieV
2

thT̂Ccþkr tþ dð ÞXa tð ÞSCi0
i
; (17)

where d!þ0;
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T̂C; SC ¼
X1
n¼0

�ið Þn

n!

ð
C

ds1…dsnT̂ ef f s1ð Þ…T̂ ef f snð Þ;

are the operators of T-ordering and evolution on the Keldysh

contour C, respectively (see Fig. 2). The index 0 at the aver-

ages in Eq. (17) denotes averaging over the states of the

unperturbed system. Equation (17) takes into account that

upon the passage of current, when an electron propagates

from the contact into the device, the latter changes its state,

moving from one sector of the Hilbert space into another

sector with an incremented or decremented number of elec-

trons. There can be many transitions like that and all of

them, generally, produce a non-zero contribution. This is

accounted for by the summation over the variable a in Eq.

(17). Here and below �h ¼ 1.

The averages in Eq. (17) are expressed through the non-

equilibrium mixed Green’s functions:

Gþ�kr;aðt; tþ dÞ ¼ �ihT̂CckrðtÞX�aðtþ dÞSCi0;
Gþ�a;krðt; tþ dÞ ¼ �ihT̂CXaðtÞcþkrðtþ dÞSCi0;

where time t is located on the lower branch of the Keldysh

contour C (t � sþ).24 After expanding the evolution operator

SC, we obtain

Gþ�kr;aðt; tþ dÞ ¼
X
�

tkcrð�Þ
ð
C

dsGkrðt� sÞD�aðs� t� dÞ;

Gþ�a;krðt; tþ dÞ ¼
X
�

tkcrð�Þ
ð
C

dsD�rðtþ d� sÞGkaðs� tÞ;

(18)

where Gab
krðs� s0Þ is the seed Green’s function of the left

contact. Its components after Fourier transformation have

the form

GþþLkr xð Þ ¼ nLkr

x� nLkr � id
þ 1� nLkr

x� nLkr þ id
;

Gþ�Lkr xð Þ ¼ 2pinLkrd x� nLkrð Þ;

G��Lkr xð Þ ¼ � nLkr

x� nLkr þ id
� 1� nLkr

x� nLkr � id
;

G�þLkr xð Þ ¼ 2pi nLkr � 1ð Þd x� nLkrð Þ:

(19)

The function Dab
ab in Eq. (18) is the complete Green’s function

of the magnetic adatom. Thus, after the Fourier transform, an

intermediate expression for the current takes the form

I ¼ e
X

kr

t2
Lk

ðþ1
�1

dx
2p

G�þLkr xð ÞWþ�r x� eV

2

� �� �

�Gþ�Lkr xð ÞW�þr x� eV

2

� �
; (20)

where the spectral functions of the device are introduced

Wab
r ðxÞ ¼

X
ab

crðaÞcrðbÞDab
rbðxÞ:

Derivation of the equations for Dab
ab is simplified if two

factors are accounted for. The first is related to the fact that

the operator H0 is additive with respect to the subsystems of

the two contacts and the device. Therefore, the average of the

product of the Fermi and Hubbard operators can be decom-

posed into the product of the averages, each of which contains

only the operators of one type. The second factor follows

from the fact that the terms in the series for Dab
abðs� s0Þ, aris-

ing from the decomposition of the scattering matrix SC, vanish

as soon as the operator T̂ eff under the averaging sign appears

an odd number of times. Moreover, in the terms of even order,

the averages of the appearing products of Fermi operators are

straightforward to calculate. As a result, the infinite series can

be collapsed into an exponent so that the definition Dab
ab

includes a renormalized scattering matrix ~SC:

Dab
abðs� s0Þ ¼ �ihTCXaðsaÞX�bðs0bÞ~SCi0; (21)

which is determined through the effective interaction, which

is related only to the device subsystem and is expressed

using Hubbard operators

~SC¼TC exp

(
�i

ð
C

ds1

ð
C

ds2

X
ab

~V abðs1� s2ÞX�aðs1ÞXbðs2Þ
)
:

(22)

It should be noted that a similar procedure has been used

previously for obtaining the Green’s functions of quasilocal-

ized electrons in the Anderson model.28

The matrix elements of the effective interaction have the

form:

~Vab s1� s2ð Þ¼
X

r

cr að Þcr bð Þ
�X

k

t2LkeieV
2

s1�s2ð ÞGLkr s1� s2ð Þ

þ
X

p

t2
Rpe�ieV

2
s1�s2ð ÞGRpr s1� s2ð Þ

�
: (23)

The carried out transformations show that for finding the

nonequilibrium Green’s functions Dab
ab the diagrammatic

technique for Hubbard operators,22,23 modified in accord-

ance with the Keldysh technique,24 can be used. As a result,

the equations can be written which take into account the con-

tributions to Dab
ab in all orders with respect to the coupling pa-

rameters for contacts tLk and tRp. As a matter fact, this means

that the problem of electron transport through a multilevel

structure is solved, taking into account not only the processes

of sequential tunneling, but also all possible processes of

multiple inelastic cotunneling.

Fig. 3 shows in graphical form the system of equations

for Dab
abðxÞ (double solid line). The solid lines denotes the

seed functions Dab
0aðxÞ which are given by the expressions

FIG. 2. Keldysh time-contour C.

FIG. 3. Dyson equation for the Green’s function Dab
abðxÞ.
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Dþþ0a xð Þ ¼ Nn

xþ Ea þ id
þ Nm

xþ Ea � id
;

Dþ�0a xð Þ ¼ 2piNmd xþ Eað Þ;

D��0;a xð Þ ¼ � Nn

xþ Ea � id
� Nm

xþ Ea þ id
;

D�þ0a xð Þ ¼ �2piNmd xþ Eað Þ:

(24)

The quantity Ea denotes the difference between the energy

levels n and m, i.e., Ea ¼ En � Em for a ¼ a(n, m). It is im-

portant to note that the occupation numbers of the eigen-

states of the adatom, Nn and Nm, in the expressions for

Dab
0aðxÞ are non-equilibrium, i.e., depend on both the cou-

pling with contacts and the applied bias. This is reflected in

Fig. 3 as circles. The wavy line corresponds to the Fourier

transform of the effective interaction, Eq. (23)

~V
ab

abðxÞ ¼
X

r

crðaÞcrðbÞMab
r ðxÞ; (25)

where

Mab
r xð Þ ¼

X
k

t2
LkGab

Lkr xþ eV

2

� �
þ
X

p

t2
RpGab

Rpr x� eV

2

� �
:

(26)

As can be seen from Eq. (25), the dependence of the matrix

interaction elements on the root vectors a and b has the split

character. This allows us to apply the approach of Ref. 29

for solving the system of Dyson equations by the Keldysh

technique.24 Thus, we find

Wþ�r xð Þ ¼ �Mþ�r xð Þ
Dr xð Þ ; W�þr xð Þ ¼ �M�þr xð Þ

Dr xð Þ ; (27)

where

DrðxÞ ¼
��X

a

c2
aðaÞDþþ0a ðxÞ

��1

�Mþþr ðxÞ
�

�
��X

a

c2
rðaÞD��0a ðxÞ

��1

�M��r ðxÞ
�
�Mþ�r ðxÞM�þr ðxÞ: (28)

As a result, the general expression for the current through a

multilevel structure is written as follows:

IL ¼ 2e
X

r

ðþ1
�1

dx
p

n x� eVð Þ � n xð Þ
	 


� CLr xð ÞCRr xð Þ
L�1

r xð Þ � Kr xð Þ
	 
2 þ C2

r xð Þ
; (29)

where

Lr xð Þ ¼
X

a

bac2
r að Þ

xþ Ea � eV=2
;

Kr ¼
X

k

t2Lk

x� nLkr
þ
X

p

t2
Rp

x� nRpr � eV
:

(30)

Obtained Eq. (29) is proportional to the product t2Lt2
R and satis-

fies the symmetry requirements.30 In this paper, as already

noted, the approximation of wide-band metal contacts is used

for the actual calculations. Later on, this will allow us to

neglect both the shift Kr and the frequency dependence of the

level broadening functions Cr¼CLrþCRr ¼pðt2
LgLrþ t2

RgRrÞ,
where tL(R) is the parameter of electron hopping from the last

node of the left (right) contact to the level of the magnetic ada-

tom; gL(R)r is the spin-dependent density of states of the left

(right) contact.31 For simplicity, in the numerical calculations

we assume gL(R)r ¼ 1/W as W� h.

As was noted above when discussing the Dyson equa-

tion, the occupation numbers in this system are nonequili-

brium, and their dependence on the electric bias is

determined by solving the system of quantum kinetic equa-

tions with the condition
P12

i¼1 Ni ¼ 1,

Nm ¼
1

2pi

ðþ1
�1

dxDþ�aa xð Þ ¼
ðþ1
�1

dx
p

b2
ac

2
r að Þ

xþ Ea � eV=2ð Þ2

� CLr xð Þn xð Þ þ CRr xð Þn x� eVð Þ
1� Kr xð ÞLr xð Þ½ �2 þ C2

r xð ÞL2
r xð Þ

: (31)

Equation (31) does not include a summation over the spin

variable. This is due to the fact that the magnetic field and

the anisotropy axis are collinear. Therefore, for each single-

fermion transition a ¼ a(n, m), out of two presentation pa-

rameters, c"(a) and c#(a), only one is different from zero.

In carrying out numerical calculations let us take into

account that experimentally at low temperatures, the regime

of weak (tunnel) coupling between the magnetic adatom and

contacts is most often realized.7,8 Mathematically this is

expressed as smallness of the temperature and the energy

levels broadening as compared to the distance between these

levels: T, Cr 	 Ea. Taking into account the above relations

we obtain

Nm ’
ba

p
p
2
þ CLr

Cr
arctan

x0a � eV=2

ja

� ��

þCRr

Cr
arctan

x0a þ eV=2

ja

� ��
;

where

x0a ¼ Eaþ kaja; ja ¼
bac2

a að ÞCr

1þ k2
a

; ka ¼
X
b6¼a

bbc2
r bð ÞCr

Eb�Ea
:

In this mode, the main contribution to the tunneling current

comes from the diagonal terms I ’
P

a Iaa so

I ’ 2e

p
CLrCRr

Cr

X
a

bac
2
r að Þ

� arctan
x0a þ eV=2

ja

� �
�arctan

x0a � eV=2

ja

� �� �
:

(32)

5. Analysis of the results

Figure 4 shows the dependence of the non-equilibrium

occupation numbers Ni(eV) (i¼ 1,…, 12) in the system

“magnetic adatom þ electrons” on the electric field in the
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tunneling regime at low temperatures. It can be seen that the

Ni(eV) behave similarly: an increase in voltage is accompa-

nied by alternating steps, when Ni undergo significant

changes, and plateaus, where these changes are negligible.

Moreover, each step corresponds to activation of the corre-

sponding transition, as can be seen from the comparison of

Fig. 4 with the schematics of possible transitions, shown in

Fig. 5. For the selected parameters, which are of the same

order of magnitude as those obtained in experiments15 and

used in numerical calculations,32,33 the ground state of the

device is the single-fermion spin doublet with the projection

of the total spin 63/2 (states jw8,9i ¼ j1, 63/2i). As a conse-

quence, N8,9(eV � 0) � 0.5 in Fig. 4 (purple solid curve).

The fact that the probabilities N8,9 differ from 1/2 and also

the residual population of other states are a direct conse-

quence of the non-equilibrium character of the system. With

increasing energy of the electric bias field, there is an

increase in the energy of an electron tunneling to the outer

orbitals of the adatom. As a result, transitions into the

excited states become available. First, two zero-electron

states with Sz ¼ 61, N2,3 (black dotted line) become occu-

pied, and the occupation numbers N8,9 are reduced. The cor-

responding sharp change in the population is marked as 1a.

The actual transition in Fig. 5 has the same index. As seen in

Fig. 4, together with an increase in the occupation number

N2,3, there is also an increase in the numbers N4,5 (dashed

curve 2), which describe the one-electron states with rz þ Sz

¼ 61/2 and have an antisymmetric wave function Eq. (8).

This is due to the fact that E3,5(E2,4) < E2,8 (E3,9), and,

because the numbers N2,3 are very small for eV/2 < E2,8

(E3,9), the transition denoted as 1b does not occur for these

voltages. In accordance with the above, it is expected that

each transition induces a corresponding sharp change in the

population of the system levels.

Fig. 6 shows the CVC of a magnetic adatom in the re-

gime of tunnel coupling at low temperatures. Since the cur-

rent Iaa in the channel a depends on the occupation numbers

[see Eq. (32)], the specific features similar to those discussed

above also appear in the CVC. The observed dependence is

well known and is a sequence of the Coulomb steps.7,8 Each

step corresponds to the appearance of a new current channel,

the contribution of which to the total current Iaa is

2eCLrCRrbac2
rðaÞ=Cr.

Zeeman splitting of the levels in the system in nonzero

magnetic fields causes the appearance of additional

Coulomb steps in the CVC upon switching on a magnetic

field (curve 1 in Fig. 7). Especially interesting is the fact that

for h 6¼ 0, regions with negative differential conductivity

(NDC), dG/dV < 0 [dashed line in Fig. 8(a)], appear in the

CVC.7,8 A drop in current with increasing voltage in this

FIG. 5. Energy spectrum and possible electronic transitions between the lev-

els of the system, drawn for the parameters of Fig. 4.

FIG. 6. Current-voltage characteristic of a magnetic adatom, plotted for the

parameters of Fig. 4.

FIG. 7. Effect of a magnetic field on the current-voltage characteristics for

symmetrical and asymmetrical coupling with the contacts, plotted for the pa-

rameters of Fig. 4 with h ¼ 5 � 10�4jtj and g ¼ 2.

FIG. 4. Dependence of the nonequilibrium occupation numbers on the

energy of an electric field, plotted for tL ¼ tR ¼ t/100, ed ¼ 0.001jtj, A
¼�0.005jtj, U ¼ 0.01jtj, D ¼ �0.003jtj, T ¼ 0.1 K, h ¼ 0.
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system is due to the processes of multiple inelastic scatter-

ing, which lead to the appearance of transitions from excited

states to even higher lying states. In this case a situation may

be realized when the contribution of a new channel Iaa to the

total current I is small due to smallness of the factor bac2
rðaÞ.

Therefore, the extra current that appears is insufficient to

compensate for the current reduction in other channels. An

important role is played here by an additional non-linear fac-

tor, which depends on the condition of completeness:P12
i¼1 Ni ¼ 1.

Previously, it has been shown that the NDC of a mag-

netic adatom arising upon a change in the anisotropy param-

eter D increases when the coupling between the structure

and the contacts becomes asymmetric.25,26 A similar pattern

is observed in the case of the feature induced by a magnetic

field [red dotted line 1 in Fig. 8(a)]. On the other hand, the

magnetic field can also act as a mechanism of attenuating

the NDC. As can be seen in Fig. 8(b), the conductivity mini-

mum, which appears for tL 6¼ tR (black dot-dashed line, 2),

moves higher for h 6¼ 0 (red dotted line 1).

6. Conclusion

This paper presents the development of the theory of

quantum transport through a multilevel structure, adsorbed

inside a break junction between paramagnetic metal elec-

trodes in nonzero magnetic fields at finite temperatures.

An important aspect of this study is that the effects of

multiple inelastic scattering of conduction electrons by a

magnetic adatom under non-equilibrium conditions were

accounted for. As a result of the above processes, the

excited states of the system “magnetic adatom þ electro-

ns” become included in quantum transport. Moreover,

allowing for the effects of multiple scattering makes possi-

ble the subsequent transitions from excited states to higher

lying energy states.11 When constructing the perturbation

theory for systems with multiple interactions and a large

set of nonequidistant transitions between levels, the atomic

representation was used. Through the application of the

Keldysh diagrammatic technique, constructed also using

the Hubbard operators, it was shown that the CVC of a

magnetic atomic structure in the tunneling regime at low

temperatures exhibits typical features of the Coulomb

blockade phenomenon in the form of steps. The effect of

a magnetic field on the system is also manifested by lift-

ing the degeneracy in energy for the transitions of elec-

trons with spin þ1=2 and �1=2. This in turn leads to an

increase in the number of the Coulomb steps in the CVC.

It was found that the magnetic field can both induce the

NDC on an adatom and suppress this effect. The origin of

the NDC, which is also observed in experiments,7,8 is due

to allowing for the multiple inelastic scattering and the

coherent behavior of nonequilibrium occupation numbers

of the system, determined by the condition of complete-

ness. It was also noted that in practice the NDC can be

enhanced by asymmetric coupling to the contacts.
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