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The sound speeds are measured and the elastic and piezoelectric moduli are calculated for single

crystal NdFe3(BO3)4 and SmFe3(BO3)4. These compounds are characterized by enhanced rigidity

in the base plane with respect to stress-strain deformations and by a rather strong piezoelectric

effect. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929719]

The rare earth ferroborates with the general formula

RFe3(BO3)4 (R¼Y; La-Nd; Sm-Er) belong to a group of

ferroelectric-magnetic materials (multiferronics) with com-

bined magnetic ordering and ferroelectric properties. The de-

velopment of antiferromagnetic ordering (TN ffi 30� 40 K)

leads to the simultaneous appearance of electrical polariza-

tion, i.e., nonintrinsic ferroelectricity. These materials are of

interest because of their possible practical applications.1 The

ferroborates have served as convenient model systems for

various physical studies over the last decade. An impressive

amount of information has been gathered on their structure,

magnetic, dielectric, magnetoelectric, magnetoelastic, and

optical parameters.2,3

There are, however, a number of “blank spots” in the pub-

lished information on the ferroborates. (1) There are no sys-

tematic data on the magnitudes of the elastic moduli. The

published data4,5 apply to particular cases and do not provide

a general picture. (2) All compounds in this group belong to

the non-centrally symmetric piezoelectric class D3, but almost

nothing is known about the magnitudes of the piezoelectric

moduli of the ferroborates, their temperature behavior, or their

interactions with the magnetic subsystem. There is only one

experimental paper6 in which the piezoelectric modulus of

GdFe3(BO3)4 is estimated based on measurements of the

polarization charge during static loading at room temperature.

These measurements showed that the piezoelectric modulus is

a factor of two smaller than for a-quartz, and for that reason

this compound was classified as a weak piezoelectric com-

pound. Without making any specific comments on this con-

clusion, we note the possible hidden obstacles to the use of

this6 method. Like all compounds of this crystalline class, the

ferroborates tend to form enantiomorphic phases,7 which dif-

fer in the sign of some tensor components (including the pie-

zoelectric modulus e11), and if the measured response to it is

linear, then it can be quenched in unfavorable circumstances.

Knowledge of the elastic and piezoelectric moduli is

also important as a technical characteristic of these

compounds and for testing the theoretical schemes for calcu-

lating these properties. Here we note an attempt to calculate

the lattice dynamics of holmium ferro- and alumoborates

using the density functional method.8 It is clear from that ar-

ticle8 that there were insufficient experimental data to test

the calculations, but, as will be shown below, we believe

that this attempt was highly successful.

We have attempted to make systematic measurements of

the elastic characteristics of some representatives of the fam-

ily of ferroborates to determine the complete set of compo-

nents of the elastic modulus tensor. The choice of the

neodymium and samarium compounds was dictated by the

relative simplicity of their behavior in the paramagnetic

state, i.e., the absence of structural transitions, and the easy-

plane character of the antiferromagnetic ordering.3 An addi-

tional stimulus for the study of samarium ferroborate was

the discovery9 of giant magnetostriction (magnetostimulated

features of its dielectric constant) in it. It may be assumed

that similar effects occur in its piezoelectric response.

Here we present the results of acoustic measurements of

the speeds of sound in these compounds in the para-phase. It

turned out that the piezoelectric interaction is quite strong in

them, so that not only the elastic moduli but the piezoelectric

moduli could be extracted from the data on the sound speeds.

Single crystals, from which x-ray oriented samples were

cut, were grown at the Institute of Physics of the Russian

Academy of Science (Krasnoyarsk) by the method described

in Ref. 10. The characteristic size of the samples was �2 mm.

The sound speeds were measured at liquid nitrogen tem-

perature in a pulsed mode by a phase method, which is

described in detail in Ref. 11. The working frequencies of

the measurements were �55 mHz. The potential accuracy of

the measurements in uniform samples for millimeter acous-

tic path lengths is better than 0.3%.

The piezoelectric interaction renormalizes the compo-

nents of the Kristoffel tensor that defines the magnitude of

the sound speed. In general, its elements are given by12
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Kik ¼ Cilkmnlnm þ 4p
el;minlnmð Þ ep;qknpnqð Þ

ersnrns
; (1)

where Cilkm is the elastic modulus matrix, ni are the direc-

tion cosines of the wave normal vector, ers is the dielectric

tensor, and el,mi is the piezoelectric modulus tensor which

relates the polarization to the deformation which produces

it (Pi ¼ ei,klukl). Equation (1) means that when the phase

velocities of the acoustic oscillations are measured with suf-

ficient accuracy for several directions of the wave normal,

it is possible to recover all the elements of the tensors for

the elastic moduli, as well as for the piezoelectric moduli.

This type of program has, for example, been undertaken for

lithium niobate.13

In class D3, to which all the ferroborates belong, five ele-

ments of the piezoelectric tensor are nonzero. Of these only

two are linearly independent.12 In Voigt’s notation, these are

e11 ¼ �e12 ¼ �e26; e14 ¼ �e25 : (2)

In order to carry out the program of finding all the

components of the tensors K and e, we shall be interested in

the sound speeds for wave normal directed along the x axis

(the axis of symmetry C2) and in the yz plane (zjjC3). In the

first case (n1 ¼ 1) the Kristoffel matrix equation has the

form

qs2 � C11 �
4pe2

11

e11

0 0

0 qs2 � C66 �C14

0 �C14 qs2 � C44

0
BBB@

1
CCCA

ux

uy

uz

0
@

1
A ¼ 0;

(3)

i.e., in this geometry only the longitudinal mode is

piezoactive.

For the wave normal lying in the yz plane (n1 ¼ 0), we

have

qs2� c66n2
2þC44n2

3þ 2n2n3C14

� �
� 4p e11n2

2þ e14n2n3

� �2

e11n2
2þ e33n2

3

0 0

0 qs2� C11n2
2þC44n2

3� 2n2n3C14

� �
C14n2

2� C13þC44ð Þn2n3

0 C14n2
2� C13þC44ð Þn2n3 qs2� C44n2

2þC33n2
3

� �

0
BBBBB@

1
CCCCCA

�

ux

uy

uz

0
BB@

1
CCA¼ 0: (4)

Except for the degenerate case (n3 ¼ 1), only the

purely transverse mode with polarization parallel to the C2

axis is piezoactive. For qjjz, none of the modes are

piezoactive.

The polarization in the sample can also be determined

through a stress rkl applied to the sample: Pi ¼ di;klrkl. The

components of the tensor di,kl obey the same Eq. (2). It is

easy to show that for hydrostatic compression (rkl ¼ pdkl),

polarization does not develop in a sample. Physically, this is

because hydrostatic compression does not change the lattice

symmetry. As a result, the piezoelectric interaction does not

affect the bulk compressibility and, independently of the

boundary conditions (the crystal is shorted or open), the par-

tial compressibilities are given by

Kx ¼ Ky ¼
C33 � C13

C11 þ C12ð ÞC33 � 2C2
13

;

Kz ¼
C11 þ C12 � 2C13

C11 þ C12ð ÞC33 � 2C2
13

:

The isotropic compression modulus is given by

B ¼ C11 þ C12ð ÞC33 � 2C2
13

C11 þ C12 þ 2C33 � 4C13

: (5)

The measurement algorithm consists of the following:

(1) From the longitudinal and transverse acoustic velocities

s for qjjz (n3 ¼ 1), we determine C33 and C44 (Eq. (4));

(2) With the known C44, the velocities of the quasilongitudi-

nal and quasitransverse modes for qjjy (n2 ¼ 1) can be

used to find C11 and jC14j (Eq. (4));

(3) From the velocity of the longitudinal mode for qjjx (for

known C11 and exx) we find e11 (Eq. (3));

(4) We find the value of C66 or C12 (C12 ¼ C11 � 2C66)

using the velocity of the transverse mode for qjjy (with

known e11);

(5) We calculated the remaining constants, C13 and e14, from

the measurements in turned y-cuts (n3 ¼ n2 ¼ 1=
ffiffiffi
2
p

or

n3 ¼ �n2 ¼ 1=
ffiffiffi
2
p

; Eq. (4)).

As noted above, the potential accuracy of the method

used here in millimeter sized samples is better than 0.3%.

However, despite our expectations, the program was hard to

carry out in this case because of the strong inhomogeneity of

the samples, especially of the samarium compound. Mode

conversion on inhomogeneities leads to the appearance of

secondary waves that interfere with the useful signal, so that

the phase shift characteristic of the latter depends on the

time of its arrival at the receiver interface. The major diffi-

culty with the method used here11 is determining the total

number of wave lengths n superimposed on the sample

length. We now discuss this point in more detail.
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In this approach,11 because a differential method is used,

in its pure form it determines a fragment of the frequency de-

pendence of the phase shift (du ¼ �dqL, q is the wave num-

ber, and L is the acoustic path length) introduced by the

sample. This dependence is approximated by a straight line

(see Fig. 1), the slope of which is determined by the sound

speed, but its actual position on the ordinate is only known

to within 2pn (n is an integer). The velocity can be calcu-

lated from the slope of the line, but, because the frequency

interval df is small and set by technical limits, the accuracy

of this estimate is sometimes not high enough. It can be

increased by additionally requiring that the approximation

line should intersect the ordinate at 2pn. The optimum value

of n is then determined by the condition that 2pn be as close

as possible to the coordinate of the intersection of the initial

(without the additional condition) approximation with the

ordinate. This choice was tested by a statistical analysis.

These arguments are, of course, only applicable to single-

phase signals, for which the phase shift is linear with respect

to frequency. Otherwise, the resultant phase depends on the

ratio of the amplitudes of the signals participating in the pro-

cess and its frequency dependence is more complicated; this

is observed in nonuniform samples.

We now illustrate these remarks with some examples.

Figure 1(a) shows phase-frequency characteristics of a fairly

perfect single crystal of Ge. These data were obtained for

two readout positions of a strobe pulse separated by 10�7 s.

In the figure the curves are separated vertically by 20� for

ease of perception. The deviation of the intersection points

of the approximation curve with the ordinate from a multiple

of 2p does not exceed hundreds of degrees, so there is no

doubt about the validity of the choice of n ¼ 43. The optimal

nature of this choice is confirmed by the inset in this figure:

the mean square deviation is minimal for the chosen value of

n, regardless of the position of the strobe-pulse counter.

Because of the actual spread in the frequency interval, the

accuracy of the velocity determination is better by more than

an order of magnitude.

The typical situation for Nd ferroborate (not the worst

version) is shown in Fig. 1(b). These data were obtained for

the same shift in the strobe-pulse readouts. In this case, the

mutual shift of the phase-frequency characteristics had al-

ready shown up in the measurements, and the discrepancy in

the slopes is evident even to the naked eye. The inset in this

figure indicates that the position of the minima of the mean

square deviation depends on the position of the strobe pulse,

so the value of n cannot be chosen with good justification.

These experiments showed that the degree of inhomoge-

neity depends on many factors that are not adequately moni-

tored, such as the degree of squeezing of the crystal, the

cooling rate, number of thermal cycles, etc. The phase dis-

tortions were especially strong in measurements of rotated

y-cuts; this may be related to enantiomorphism of these com-

pounds. Because of this, it was necessary to collect statistics

and compare the results for samples with different lengths.

In the latter case, there were two different sets of possible

velocities which were assumed to be close to the true values.

The limitations imposed by Eq. (4) were also taken into

account: (a) the velocity of the QT-mode for qjjy must be

lower than the velocity of the T-mode for qjjz; (b) the

squares of the velocities of the T-mode in y-cuts rotated by

6p/4 must be greater than

1

q
C44 þ C66

2
þ sign n2ð ÞC14

� �
:

We emphasize, however, that inhomogeneity had essentially

no effect on the accuracy of measuring the velocities of lon-

gitudinal oscillations during data acquisition near the leading

front of the first transmitted pulse, since all secondary waves

are then slowed down relative to the primary signal. Since

the signal at the pulse front depends fundamentally on the

readout site, the measurement procedure has the distinctive

feature described in Ref. 11.

The results of the velocity measurements are listed in

Table 1.

To within the attainable accuracy, the sound speeds in

the neodymium and samarium compounds were the same, so

that measurements were not made in rotated y-cuts of the sa-

marium ferroborate, where the effect of inhomogeneities

was maximal.

The elastic and piezoelectric moduli are compared with

calculated values for HoFe3(BO3)4 (Ref. 8) in Table 2.

Here we clarify some points about Table 2.

FIG. 1. Illustrating the method used to measure the sound speeds. (a) Phase-

frequency characteristics of a fairly perfect single crystal of Ge taken from

the positions of a strobe-pulse counter shifted by 10�7 s. The characteristics

are shifted relative to one another by 20�. The inset shows the dependence

of the standard deviations from the assumed number of integer wave lengths

superimposed in the sample and determines the ordinate of the intersection

of the approximation line (with the y axis). (b) The same for a single crystal

of NdFe3(BO3)4. The shift in the characteristics and the discrepancy in the

minima of the standard deviations are caused by the variability of the phase

shift introduced by the sample over the length of the measurement pulse.
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1. The numerical values of the moduli in Table 2 were

obtained for a density of q ¼ 4.5 g/cm3.

2. The sign of C14 depends on the choice of coordinate sys-

tem. The theory of the elastic properties of crystals for

class D3 assumes a coordinate axis x directed along the

C2 axis,14 but the choice of its positive direction is not set

by any symmetry considerations and requires additional

supporting arguments. It is easy to see that for the two

possible directions of the x axis the modulus C14, like the

piezoelectric modulus e11, has a different sign. In a-

quartz, which is symmomorphic to the ferroborates, a pos-

itive emergence of the x axis is associated with the facet

at which a positive polarization charge develops during

strain deformation. The positive direction is also charac-

terized by a certain sign of the rotation of the plane of

polarization of light.15 Randomly or otherwise, for the

additional assumption made here and the choice of x axis,

the sign of C14 (in a-quartz) turns out to be positive. We

have also taken the positive direction of the x axis to be

that for which C14 is positive. This direction can be distin-

guished experimentally, and from the acoustic measure-

ments, as Eq. (4) implies, in this case the sum of the

squares of the velocities of the quasilongitudinal and qua-

sitransverse modes in the rotated y-cut for n2 > 0 is less

than for n2 < 0. In fact, this rule reduces to the following:

for a correct choice of the direction of the x axis the ve-

locity of the quasilongitudinal mode in these media is less

when n2 > 0. These experiments cannot be used to deter-

mine the sign of e11; it can only be said that for this

choice of the direction of the x axis, the signs of e11 and

e14 are the same in these compounds.

3. Calculating the piezoelectric moduli requires knowledge of

the components of the dielectric tensor. For the samarium

ferroborate, it was assumed that e11¼ 13.5 (Ref. 9) and for

the neodymium ferroborate, we used the values obtained

from our own measurements (e11¼ 15, e33¼ 22.5).

4. The values of e11 for these compounds are essentially an

order of magnitude greater than their analogs for quartz

(4.3 � 105 CGSE vs. 5 � 104 CGSE for SiO2 (Ref. 16)).

We believe that this number is sufficiently reliable, since

it is mainly derived from the reliably measured difference

in the velocities of the longitudinal modes in the x- and y-

directions. In addition, since e11
2 appears in Eq. (3), enan-

tiomorphism introduces no errors in these measurements.

5. The modulus C13 can, in principle, be determined (for al-

ready known C11, C33, C44, and C14) using any value of

the velocity for 45-degree rotated y-cuts taken from col-

umns 8, 9, 11, and 12 of Table 1. The average of all the

values obtained in this way is given in parentheses in col-

umn 6 of Table 2, where the confidence interval is repre-

sented by the spread in these values. It clearly goes

beyond the possible errors and may be related to various

factors: (a) to “unsuccessful” combination of enantiomor-

phic forms leading to mutual compensation of the contri-

butions from regions with opposite signs for C14; (b) as in

Ref. 17, to inaccurate orientation of the normal to the

working facets of the sample in the yz plane. In the

“ideal” case, for each cut the sum of the squares of the

QL- and QT-modes times the density must be equal to

C11 þ C13

2
þ C44 � sign n2ð ÞC14:

The first factor should lead to a reduction in the effective

C14, so that these sums should lie within a designated

interval (2C14). It can be seen from Tables 1 and 2 that

this rule is not satisfied for n2 ¼ �1=
ffiffiffi
2
p

. The correction

associated with imprecise orientation can have an arbi-

trary sign for the deviation from the ideal case. For a

small deviation w from the ideal direction, its value can

easily be found using Eq. (4):

q s2
QL þ s2

QT

� �
¼ C11 þ C33

2
þ C44 � sign n2ð ÞC14

þwsign n2ð Þ C33 � C11ð Þ:

Of course, introducing the w-correction in the calculation

of C13 yields one (the only) value when both modes are

used for each cut. However, it turns out that the values of

C13 found in this way for both cuts are essentially the

same (column 6 of Table 2), so the values given there can

be regarded as close to true. The deviations of the angles

from 45� for these cuts were at a level of 4�–5�, entirely

consistent with the possible errors in the method for pre-

paring them in millimeter-sized samples. The resulting

TABLE 1. Velocities of sound (105 cm/s) in neodymium and samarium ferroborates.

n1; n2; n3

0,0,1
1,0,0

0,1,0 0; 1=
ffiffiffi
2
p

; 1=
ffiffiffi
2
p

0;�1=
ffiffiffi
2
p

; 1=
ffiffiffi
2
p

Mode L T L QL QT T QL QT T QL QT T

NdFe3(BO3)4 6.9 3.3 8.62 8.46 3.19 4.42 6.8 3.95 4.6 8.08 3.64 2.68

SmFe3(BO3)4 6.9 3.35 8.7 8.52 3.25 4.27

Note: L, T, QL, and QT denote the longitudinal, transverse, quasilongitudinal, and quasitransverse modes. The measurement accuracy for the longitudinal

velocities is 60.5%. For the transverse velocities the most probable values are listed; these are estimated with an accuracy of 61.5% but, because of possible

errors in determining the total number of wavelengths superimposed on the sample length, deviations of 5%–7% are possible.

TABLE 2. Elastic moduli (GPa) and piezoelectric moduli (C/m2) of the ferroborates.

Compound C11 C33 C44 C12 C13 C14 B e11 e14

NdFe3(BO3)4 319 214 49 174 117 6 3 (129 6 21) 29.6 172 1.4 6 0.3 0.4 6 0.2

SmFe3(BO3)4 324 214 50.5 194 28.6 175 1.4 6 0.3

HoFe3(BO3)4 (Ref. 8) 370 159 68 125 72 30 130 0.99 0.11
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corrections for inaccurate orientation were also used in

the estimates of e14.

6. A theoretical calculation for holmium ferroborate8 pro-

vides a qualitatively correct description of the basic fea-

tures of the elastic characteristics of this class of

compounds: enhanced rigidity in the base plane with

respect to stress-strain deformations and a rather strong

piezoelectric interaction.

We conclude with a summary of the basic results of this pa-

per. The velocities of sound in single crystals of neodymium

and samarium ferroborates in the paramagnetic state have

been measured for a representative set of directions, which is

sufficient to recover the elements of the tensors of the elastic

and piezoelectric moduli. The elastic system is characterized

by enhanced rigidity in the base plane with respect to stress-

strain deformations. The intensity of the piezoelectric inter-

actions is rather high and the piezoelectric moduli are an

order of magnitude greater than the corresponding values for

a-quartz.
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