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1.  Introduction

The effects of bend discontinuities on the transmission in 
double-bend quantum waveguides have been in the focus of 
researches for long time [1–9]. A Fano resonance was shown 
owing to the presence of a single bend [7, 8, 10]. The reso-
nant picture complicates in the double-bend waveguides with 
the resonance widths and positions dependent on the distance 
between bends [11, 12]. We believe that these resonances are 
still not properly understood. One of the aims of the present 
paper is to give a comprehensive description of resonant 
effects in double-bend quantum waveguides using the effec-
tive Hamiltonian approach [13–18]. The central goal is how-
ever to show that the finger gate potential selectively affects 
resonant widths resulting in the occurrence of zero width reso-
nances. That gives rise to trapping of an electron between the 
bends or bound state in the continuum (BSC).

The phenomenon of localized state with discrete energy 
level embedded in the continuum of extended states originally 
considered in 1929 by von Neumann and Wigner [19] was 
long time regarded as mathematical curiosity because of cer-
tain spatially oscillating potentials. That situation cardinally 
changed when Friedrich and Wintgen [20] in framework of 
generic two-level Fano–Anderson model formulated the BSC 
as a resonant state whose width tends to zero as, at least, one 
physical parameter varies continuously. Localization of the 
resonant states of open system, i.e. the BSC is the result of 
a full destructive interference of two resonance states which 
occurs for crossing of eigenlevels of the closed system  
[20–23]. That is accompanied by avoiding crossing of the reso-
nant states one of which transforms into the trapped state with 
a vanishing width while the second resonant state acquires the 
maximal resonance width (superradiant state [22]). Recently 
the BSCs were considered in photonics [24–26] stimulating 
intensive experimental studies in electromagnetic systems 
[27–32]. We address the reader to [32, 33] to survey the cur-
rent state of the art in the area of BSCs.

In the present paper we consider wave transmission 
through two types of double-bend waveguides, namely  
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Z- and Π-shaped quantum waveguides with a finger gate posi-
tioned across the wire as shown in figure  1. Each bend of 
the waveguides has one transmission zero [1, 7, 8] at some 
energy Ec for the first channel transmission. Therefore the 
double-bend wire can be considered as a Fabry–Perot reso-
nator (FPR) at the energy Ec. The FPR can trap an electron if 
the distance between the bends is tuned to the integer number 
of half-wave lengths. Such a tuning is however hardly experi-
mentally plausible. We propose to employ the finger gate 
potential in order to effectively tune the distance between the 
bends. We will show that multiple BSCs related to integer 
numbers of half wavelengths between the bends occur for 
positive potential. For a negative potential we will show the 
BSCs which are close to those considered by Robnik [34]. 
Although in what follows we consider the electron transmis-
sion through the quantum double-bend waveguides the con-
sideration is applicable to microwave transmission of TM 
waves owing to the equivalence between the Schrödinger 
equation and the Maxwell equations for planar electromag-
netic waveguides. The dielectric slab inserted between the 
bents of a waveguide could play the role of the finger gate 
potential.

2. Transmission through double-bend waveguides

The standard technique to reduce the resonant widths in elec-
tron transmission through a quantum dot is to implement 
quantum point contacts. In the present paper we consider a 
different approach to selectively control the coupling between 

the inner states and the propagating states of the waveguides in 
the layouts shown in figures 1(a) and (b). As shown in figure 1 
we split each double-bend waveguide into three parts. The 
inner part outlined by bold blue line in figure 1 and denoted 
by ‘B’ plays the role of a bridge between two semi-infinite 
directional waveguides denoted by ‘W’. The propagating 
states with the Fermi energy

π= + = …E p k p, 1, 2, 3,pF
2 2 2� (1)

in the waveguides are given by

ψ
π

ϕ( ) = ( ± ) ( )± x y
k

k y x,
1

2
exp i ,

p
p p� (2)

where

ψ π( ) = ( )x px2 sin .p� (3)

Here the Fermi energy is measured in terms of = ℏ
*E

m d0 2

2

2, the 

coordinates are measured in terms of the width of waveguides 
d and the wave vector kp is measured in terms of the inverse 
width of the waveguides. The eigenfunctions of the inner part 
‘B’ are given by the following Schrödinger equation

ψ ψ( ) = ( ) = −∇ + ( )H x y E x y H V xˆ , , ,    ˆ ,mn mn mn gB B
2� (4)

ψ ϕ ψ ψ π( ) = ( ) ( ) ( ) = ( )x y x y y ny, ,    2 sin ,mn m n n� (5)

ϵ π= ( ) +E V n ,mn m g
2 2� (6)

ϕ ( )xm  and ϵm are the eigenfunctions and eigenenergies of a 
quantum particle in an infinitely deep box of width L with 
the finger gate potential ( )V xg  symmetrical in the x-axis. The 
exact analytical expression for the potential profile ( )V xg  was 
derived in [35]. If, however, the finger gate is close enough to 
the 2DEG, the potential can be well approximated by a rect-
angular step-wise function [36] with height Vg and width Lg 
equal to the width of the gate.

The conductance of double-bent waveguides could be 
calculated with the use of the effective non-Hermitian 
Hamiltonian [13–18]

π= −H H WWˆ ˆ i ˆ ˆeff B
†� (7)

which is the result of projection of the total Hilbert space onto 
the inner space of the bridge using the Feshbach technique [37, 
38]. In this approach the waveguides are coupled to the bridge 
by the matrix Ŵ whose elements are the coupling constants of 
the first channel propagating state (2) with the inner states (5) 
calculated via overlapping integrals of the form [17, 18, 39]

∫

∫

ψ
ψ

π ψ ϕ

= ( )
∂ ( = )

∂

= ( ) ( )

W
k

x x
x y

y

n

k
x x x

1
d

, 0, 1

2
d .

m n
m n

m

,
1 0

1

1
,

1 0

1

1

�

(8)

Then the transmission amplitude is given by [13–16, 18]

π= −
−

t W
H E

W2 i ˆ 1
ˆ

ˆ .
†

eff
� (9)

Figure 1.  Double-bend waveguides, Z-shaped (a) and Π-shaped 
(b) with finger gate on the top. Subplot (c) shows a directional 
waveguide with a finger gate placed across the waveguide axis. 
Arrows show electron flows.
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Computationally the method of the effective non-Hermitian 
Hamiltonian becomes efficient when adapted to a discretized 
form [18, 40] equivalent to the finite-difference approach to 
the Schrödinger equation that is free from issues of poor con-
vergence [17]. The above approach is equivalent to the tech-
nique by Ando [41] that is somewhat less time-consuming 
and therefore was used in this work for finding scattering 
and BSC wave functions. We mention in passing that both 
method yielded the same results for transmission coefficients. 
In figure 2 we plot the conductance =G t 2 in the Z-shaped 
waveguide in comparison to the conductance in the Π-shaped 
waveguide for =V 0g  for different lengths L.

First, one can observe resonant peaks which become nar-
rower with the growth of L. That observation was reported 
in [1, 2, 4, 5] however it did not receive a clear explanation. 
Second, below the threshold of the second channel π=E 4F

2 
but >E 30F  we see sharp asymmetric Fano resonances where 
the transmission can be either zero or unit depending on 
the type of the waveguide. For comparison we presented in 
figure  2 the conductance of the single bend waveguide by 
dash–dot line which does not exhibit resonances but has a 
transmission zero at energy ≈E 31.62F . Third, the conduct-
ance in the Z-shaped waveguide differs from the conductance 
in the Π—shaped waveguide when the second channel of the 
bridge B participates in the electron transmission. The differ-
ence between waveguides tends to zero with the extension of 
the length L of the bridge. The transmission resonances for 
energies far below the second channel threshold π<E 4 2 are 
typical for the transmission through double barrier structure 
where peaks of the transmission correspond to standing waves 
between the barriers. Figure 3 shows the probability distribu-
tions which indeed demonstrate standing waves at the trans-
mission resonances.

Figure 3(a) shows that mainly the eigenfunctions ψ ( )x y,m,1  
contribute to the scattering wave function for long waveguides 
with =L 4 with the Fermi energy far from the second channel 
band edge. In the other words, the waveguides can be con-
sidered as one-dimensional in which there is no difference 
between the chirality sequence of the bends. The current flows 
demonstrate laminar regime respectively. When the energy is 
approaching the second channel edge π=E 4 2 the contribution 
of the second channel functions ψm,2 becomes relevant giving 
rise to vortical motion as it was first observed by Berggren 
and Ji [42] for electron transmission through a single bend 
waveguide. The direction of current circulation at the vortices 
depends on the chirality of the bend. Therefore the Π-shaped 
waveguide with the bends of the same chirality have vortices 
with the same clockwise or counter-clockwise current circula-
tion while the Z-shaped waveguide with the bends of opposite 
chirality has vortices of opposite current circulation as seen 
from figure 3(b). As a result the current flows and respectively 
the transmission depends on the type of the double-bent wave-
guide. Figure 4 shows that for the shortest bridge =L 2 the 
current flow is vortical even for energies far from the second 
channel band edge which gives rise to a difference in con-
ductance for the whole energy band as seen from figure 2(a). 
In figure  5 we show the first channel conductance for both 
types of waveguides versus the Fermi energy and the finger 
gate potential for a long bridge =L 3. The waveguides show 

Figure 2.  Conductance of double bent Z-shaped waveguide (red 
dash line) and Π-shaped waveguide (blue solid line) for =V 0g  
and four different lengths L. The conductance of the single bent 
waveguide is shown by green dot–dash line.
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Figure 3.  Probability density distributions and current flows (red 
arrows) in double bent Z- and Π-shaped waveguides for energies 

=E 18.11F  (a) and =E 32.33F  (b) which correspond to the second 
and fourth resonant peaks in figure 2 (c) with =L 4.

Figure 4.  The same as in figure 3 for =L 2 and =E 25F .
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generally very similar conductance although with cardinally 
different pattern of the avoided crossings. As will be shown 
below that is reflected in the number and types of the BSC 
which denoted by open white circles in figure 5.

The resonant widths are controlled by the value of the 
coupling matrix elements (8). Because the longitudinal wave 
functions ϕ ( )xm  are normalized to have L1/2 in the denominator 
we obtain that the resonant widths are inversely proportional 
to L according to equation (7). That observation explains the 
tendency of narrowing of resonant peaks with the growth of 
the bridge length L as shown in figure 2. Moreover, that opens 
an opportunity to control the resonant widths by the potential 
of the finger gate. This point has a key importance for the BSC 
and will be considered in the next section.

3.  Bound states in the continuum

The complex eigenvalues z of the effective Hamiltonian Ĥeff 
have a simple physical meaning [13, 14, 39]. Their real parts 

= ( )E zRer  define the positions of the resonances with the reso-
nance widths given by imaginary parts Γ = − ( )z2Imr . In order 
to find the complex eigenvalues z in case of noticeable radia-
tion shifts it is necessary to solve the fix point equations for 
the resonance positions [14] = [ ( )] Γ = [ ( )]E z E z ERe , Imr r r r . 
Resonant widths as functions of the finger gate potential Vg 
show in figure 6 oscillating behavior because the longitudinal 
wave functions of the bridge ϕ ( )xm  tend to accumulate their 
nodal points on the waveguide-bridge interface as the prob-
ability distribution is pushed from the central region of the 
bridge with the growth of the finger gate potential as shown 
in the inset in figure 7(a). As a result the overlapping integrals

∫ ∫ψ ϕ π ϕ= ( ) ( ) = ( )J x x x x x xd 2 d sinm m m
0

1

1
0

1
� (10)

in the coupling matrix elements in equation  (8) behave non 
monotonically as shown in figure  7(b). Respectively one 
can see unusual behavior of the resonances shown in inset 
of figure 6(a). As shown in figure 6(b) further growth of Vg 
gives rise to a hierarchical trapping of resonances predicted 
by Rotter and co-authors [43, 44] as a result of the repulsion 
of complex eigenvalues of the effective Hamiltonian with the 

growth of the eigenvalue density. That phenomenon also takes 
place in Π-shaped waveguides at a different length L.

Next, under variation of the the finger gate potential a unique 
case can occur when the inverse of matrix −H Eˆeff  in equa-
tions (9) does not exist, when the determinant ∥ − ∥=H E 0eff . 
That corresponds to [ ( )] =z EIm 0BSC  and = [ ( )]E z EReBSC BSC . 
These equations define the necessary and sufficient condition 
for the BSC [45, 46] and can be combined into a single equa-
tion for the BSC point

( ) − =H E E 0.eff BSC BSC� (11)

The corresponding eigenfunction of the effective 
Hamiltonian is the BSC function, respectively. The solution 
figure 6(c) demonstrates multiple BSCs denoted by red open 
circles occurring under variation of Vg. An alternative approach 
to diagnose the BSC is calculating the poles of the S-matrix 
and finding the condition under which a complex pole tends 
to the real axis [48–53]. Clearly, as the imaginary part of a 
pole or a complex eigenvalue tends to zero both methods yield 
identical results. The BSCs can be also be found in the con-
ductance versus the Fermi energy and the potential Vg as the 
singular points where full reflection ( =G 0) meets the full 
transmission ( =G 1) [23, 27, 28]. These points are singular 
due to the collapse of the Fano resonances [47]. In figure 5(a) 
these points are marked by white circles and enumerated to 
show corresponding BSC functions in figure 8. The BSC wave 
function 4 is very similar to the BSC wave function 3 and is 
not shown in figure 8.

In figure 8 one can see two different types of BSCs. The 
first three 1–3 are due to the FPR mechanism discussed in 
the Introduction. The other three BSC functions 5–7 are remi-
niscent to those considered by Robnik [34] in a directional 
quantum waveguide with a negative potential Vg shown in 
figure 1(c). In this case the Schrödinger equation is separable

ψ π ϕ( ) = ( ) ( )x y ny d x, sin /� (12)

which gives rise to the effectively one-dimensional transmis-
sion through a potential well

ϕ ϵ ψ∂
∂

+ [ − ( )] =
x

V x 0g

2

2
� (13)

Figure 5.  Conductance of double-bent waveguide versus Fermi energy EF and Vg for Z- (a) and and Π-shaped waveguides (b) for =L 3. 
Open circles mark BSC.

J. Phys.: Condens. Matter 27 (2015) 295303



A F Sadreev et al

5

where

ϵ π= −E
n

d
.

2 2

2
� (14)

There are approximately π= −N L V /g  one-dimensional 
bound states ϕ ( )xm  with discrete energies ϵm in the potential 

well with length Lg in terms of the width of the waveguide 
d and depth Vg for <V 0g  [34]. All bound states with =n 1 
and ϵ < 0m  are below the first channel propagation band and 
therefore are not BSCs. But the bound states with = …n 2, 3  
and energies π π ϵ> +n4 m

2 2 2  become BSC because of their 
orthogonality to the first channel propagation state with =n 1.

Figure 6.  (a) Evolution of resonant positions Er and resonant widths Γr under variation of the finger gate potential Vg for the Z-shaped 
double bend waveguide =L 3. Vg varies in the range [− ]500, 200 . All but two resonant energies grow with the increase of Vg. The evolution 
starting point = −V 500g  for two broad resonances are shown by red circles in the inset. (b) The resonant widths versus Vg. (c) The same as 
in (b) but zoomed to demonstrate the positions of BSCs. The BSC points are shown by red open circles. A quasi-BSC is shown by a green 
dashed circle.
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Turning back to the double-bent waveguides the symmetry 
arguments by Robnik are not valid because the coupling of 
some bridge state with the first channel can be cancelled 
only accidentally. The numerics show that it only occurs for 
the Fermi energy above the second channel threshold π4 2 as 
shown in figure 7(a). The reason is clear and can be readily 

seen from equation (8). For the coupling matrix element (8) 
to be equal to zero it is necessary that the wave function of the 
bridge ϕ ( )xm  had a nodal point at =x 1/2 (see inset figure 6). 
That obviously corresponds to the second channel transmis-
sion as shown in figure 7(a) by red closed circles. Therefore 
the BSC at <V 0g  are realized through the Friedrich–Wintgen 

Figure 8.  BSC wave functions for the Z-shaped waveguide with =L 3 labelled in figure 5(a). (1) = = −E V35.066, 4.8g , (2) 
= = −E V35.845, 83.11g , (3) = = −E V30.8864, 68.205g , (5) = = −E V24.15, 26.98g , (6) = = −E V16.49, 90.98g , and (7) 
= = −E V16.023, 97.37g .

Figure 9.  Expansion of BSC functions shown in figure 8 over the bridge eigenfunctions (5).
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interference mechanism. In figure  9 we show the coeffi-
cients am n,  of the modal expansion of the BSC wave func-
tion ψ ( )x y,BSC  over the eigenfunctions of the bridge ψ ( )x y,m n,  
equation (5)

∑ψ ψ( ) = ( )
=

x y a x y, , .
m n

m n m nBSC
, 1

, ,� (15)

As seen from figures  8 and 9 the bridge wave function 
with longitudinal quantum number =m 1 dominates in BSC 
functions 5 and 6. For the corresponding finger gate poten-
tials given in the figure  caption these function are mostly 
localized underneath the gate and decay exponentially in the 
waveguides. Therefore the contributions of the other bridge 

states to decouple the resonant state from the first propaga-
tion channel has to be also exponentially small as seen from 
figure 9 for BSCs 5 and 6.

The BSC functions in the Π-shaped waveguide are shown 
in figure 10. For =L 3 and the chosen range of the finger gate 
potential the Π-shaped waveguide does not display the FPR 
type of the BSCs. Nevertheless the FPR type BSCs occur 
for =L 5. Finally in figure 11 we show the conductance of 
the shortest double-bend waveguides =L 2 with the corre-
sponding BSCs in figure 12 for the Z-shaped waveguide and 
figure 14 for the Π-shaped waveguide, respectively. Figure 13 
shows the coefficients of the modal expansion of the BSCs 
in the Z waveguide with =L 2 over the eigenfunctions of the 

Figure 10.  BSC functions for the Π-shaped waveguide with =L 3 labelled in figure 5(b). (1) = = −E V17.24, 35.86g , (2) 
= = −E V16.86, 90.58g , (4) = = −E V29.81, 76.49g .

Figure 11.  Conductance of double-bend waveguide versus Fermi energy and Vg for Z- (a) and Π-shaped waveguides (b) for =L 2. Open 
circles mark BSCs.

Figure 12.  BSC functions for the Z-shaped waveguide labelled in figure 11(a). (1) = = −E V15.9213, 33.54g , (2) = = −E V23.464, 63.75g , 
(3) = = −E V23.73, 83.932g .
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bridge ψ ( )x y,mn . One can see that only the first BSC can be 
approximately described by the Friedrich–Wintgen two-level 
approach. Similar expansions for the BSC in the Π-shaped 
waveguide shown in figure 15 demonstrate that the two-level 
approximation is applicable. Moreover one can see that only 
the eigenfunctions ϕ ( )xm  symmetrical in the x-axis participate 
in the BSC which complies the symmetry of the waveguide.

4.  Summary

We considered electron transmission in two types of double-
bend waveguides, namely Z- and Π-shaped waveguides. 
The waveguides differ in the sequence of the chirality of the 
bends. In the Π-shaped waveguide the bends have the same 
chirality with respect to the direction of the flow, while in 
Z-shaped waveguide the bends have opposite chirality. It is 

demonstrated that because of the difference in chirality the 
vortices near the bends have different current circulation. That 
explains the difference in conductance in those two types of 
waveguide. Alternatively, the origin of resonant peaks in the 
double-bend waveguides is explained through the approach 
of the effective non-Hermitian Hamiltonian. It is shown that 
although the central element (bridge) in both types of wave-
guide is identical the difference in conductance arises from 
the structure of the coupling matrix (8) which accounts for 
the coupling between the bridge and attached waveguides. 
Moreover the effective Hamiltonian approach with the cou-
pling matrix (8) explains narrowing of resonant peaks with 
enlarging of the bridge length L. The central result of the 
paper, however, is the electron localization between the bends 
thanks to bound states in the continuum (BSC) with discrete 
energies embedded in the propagation band of the waveguide. 
The BSCs like those in figures 8, 10, 12, and 14 are shown 

Figure 13.  Expansion of BSC functions in Z-shaped waveguide shown in figure 12 over the inner eigenfunctions (5).
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Figure 14.  BSC functions for the Π-shaped waveguide labelled in figure 11(b). (1) = = −E V27.3, 12.31g , (2) = = −E V22.55, 71.34g .

Figure 15.  Expansion of BSC functions in Π-shaped waveguide shown in figure 14 over the eigenfunctions (5).
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to be generic to both Z- and Π-shaped waveguides subject 
to the static potential of a finger gate. Such double-bend 
waveguide could be seen as a transistor with the finger gate 
voltage controlling the conductance as well as the resonant 
widths. It is shown that the finger gate potential can tune the 
resonant widths to zero as a result of variation of the coupling 
constants between the eigenstates of the bridge and the first 
channel continuum. Although it is hardly possible to visualize 
electron BSCs in microelectronics, they can be registered as 
a singularities in the conductance where the collapse of Fano 
resonances occurs as shown in figures 7 and 11. Such features 
were experimentally observed by Lepetit et al [27, 28] for a 
dielectric resonator positioned in a microwave waveguide. We 
speculate that employing the equivalence between quantum 
waveguides and microwave systems with TM electromagnetic 
modes [15] it could be possible to directly observe the BSCs 
in microwave double-bend waveguides.
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