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Abstract
A series of Fe1−xCoxSe1.09 (x=0 to 1)nanoparticles were synthesized by thermal decomposition
method. Particles in composition range Fe0.5Co0.5Se1.09 toCoSe1.09 crystallized inmonoclinic
structure of Co6.8Se8, while FeSe1.09 crystallized in hexagonal structure of FeSe achavalite.
Magnetization dependences on temperature and externalmagnetic field reveal complicatedmagnetic
behavior and correspond to the sumof paramagnetic and superparamagnetic response.Mössbauer
spectra contain several paramagnetic doublets with parameters corresponding to nonequivalent
positions of divalent and trivalent iron cationswith low spin. The nonequivalent positions appeared
due to inhomogeneous distribution of Co ions ormetal vacancies in iron surrounding.

1. Introduction

Chalcogenide compounds attract great attention due to their useful semiconductor, photo- semiconductor,
luminescent, scintillation, and recently discovered superconducting properties [1–7]. The structure and
composition of the chalcogenide compounds strongly affect theirmagnetic properties [8, 9].

Iron selenide FeSeywith 0.96<y<0.98 (49.0–49.4 at% Se) has tetragonal PbO-structure [10]with Fe
atoms occupying two-dimensional square layers within cubic close-packed Se lattice. Each Fe atom is
surrounded by four Se atoms forming distorted FeSe4 tetrahedra [11]. Crystal structure of iron selenide FeSey
with 1<y<1.25 is based onNiAs unit cell, where Fe cation occurs in octahedral coordination created by six
Se, and Se anion occurs in trigonal prismatic arrangement, created by six Fe cations [12]. This structure omits
metal atoms thus creating iron vacancies. An ordered distribution of vacancies forms a superlattice nCwhich is n
times larger than the unitNiAs subcell in the ‘C’ direction. FeSey can havemonoclinic (∼Fe3Se4) or hexagonal
(∼Fe7Se8) symmetry. According to PTerzieff et al [13], hexagonal FeSey exhibits antiferromagnetism at
compositions FeSe1.02–FeSe1.11 (50.5–52.5 at%Se) and ferrimagnetism at compositions FeSe1.11–FeSe1.19
(52.5–54.3 at%Se)withCurie temperature aboutTC≈450 K. For antiferromagnetic alloys PTerzieff et al [13]
observed the transition to the paramagnetic state in the unstable range between room temperature and 573 K.

Crystal structure of cobalt selenideCoSey (1<y<1.20) is hexagonal of theNiAs-like type. At composition
CoSe1.20, a lowering of symmetry fromhexagonal tomonoclinic occurs [14]. At compositions CoSe1.03–
CoSe1.14, distribution of Co atoms and vacancies forms the stacking of Kagomé net-like planes and fully
occupiedNiAs-like planes along the c-axis. At compositions CoSe1.14–CoSe1.25, the AFCFA superstructure of
theCr7Se8-type is formed, where ‘A’ and ‘C’ are Kagomé nets and ‘F’ is fully occupied layer [15]. CoSeywith
1.05<y<1.20 exhibits ferrimagnetismwhile CoSeywith y>1.20 is paramagnetic according to Bohm et al
[14]. But according toM.Sato et al [16] andTKamimura [17], Co7Se8 (y≈1.14) is paramagnetic and (Fel
−xCox)7Se8 exhibit ferrimagnetism at x<0.6withCurie temperature varying fromTC≈450 K for Fe7Se8 to
TC≈80 K for (Fe0.43Co0.57)7Se8.
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Basing on the data presented, the possibility can be supposed of the differentmagnetic phases coexistence in
the same sample. The present paper is aimed atfinding of such states in the systemFe1−xCoxSe1.09. The specified
Se concentrationwas chosen because FeSey andCoSey demonstrate differentmagnetic states for y=1.09:
antiferromagnetic and ferrimagnetic, respectively, as it wasmentioned above.

2. Experiment

A series of powdered Fe1−xCoxSe1.09 (x=0 to 1) samples was synthesized by themethod of thermal
decomposition of the source components in high-temperature solutions in a three-neck flask equippedwith an
inlet of argon gas, condenser,magnetic stirrer, thermocouple, and heatingmantle. Iron(III)nitrate Fe(NO3)3,
cobalt nitrate Co(NO3)2 and seleniumSe in an appropriate ratio, oleylamine and oleic acidwere put into the
three-neck flask, heated up to 180 °Cand kept for 30 min under this temperature in argon gas. Then themixture
was heated up to 200 °C for 1 h to decompose salts, after that themixture was heated up to 350 °C. The
synthesized powderwas cooled to room temperature andwashed thoroughlywith hexane.

Themorphology of the particles was examined by the transmission electronmicroscope (TEM,TecnaiG2
F20, FEG-TEM, Philips Co. Ltd). The crystal structure and phase purity of the samples were examined by x-ray
powder diffraction (XRD)with the use of aMutiflexMF2100, RigakuCo. Ltd diffractometer equippedwith aCu
Kα radiation source in the 2θ range of 10°–80°with a step size of 0.02°.Magnetic properties were analyzed using
a SQUIDmagnetometer. Temperature dependences ofmagnetizationweremeasured at temperatures between
5 and 390 K in an appliedfield of 100 Oe. Themeasurements of hysteresis loopswere carried out at 5, 120, and
300 K in an applied field sweeping from−50 to 50 kOe.Mössbauermeasurements were performed onMS-
1104Em spectrometer at room temperature. Co57 (Cr) radiation sourcewas used. Powders had density of
5–10 mg cm−2.

3. Results and discussion

TheTEM images of the CoSe1.09 and FeSe1.09 nanoparticles are shown infigure 1. The agglomerates of spherical
CoSe1.09 nanoparticles are observed in the figure 1(a). The insert shows high resolutionTEM (HRTEM) image,
one can see a lattice fringe spacing of 0.52 nm,which represents the (001) planes of themonoclinic Co6.8Se8. In
figure 1(b) FeSe1.09 nanoparticles of spherical, cubic or irregular forms are observed. TheHRTEM image in
insert shows the nanoparticle with lattice fringe spacing of 0.32 nm,which represents the (100) planes of the
hexagonal achavalite.

TEM images were used to plot diagrams of particle size distribution (bar-graphs infigures 2(a) and (b)). The
particle size distribution of nanocrystallinematerials is usually described by log-normal function[18]:

Figure 1.TheTEM images of CoSe1.09 (a) and FeSe1.09 (b)nanoparticles, HRTEM image is shown in insert.
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The standard deviation of the log-normal size distribution is the square root of the variance.
Approximation of data received fromTEM images by function (1) let us determine d0 andσ. The arithmetic

mean dnum and standard deviationwere found from equations (2) and (3) to be 12.9 and 4.2 nm forCoSe1.09 and
12.8 and 6.2 nm for FeSe1.09. CoSe1.09 particles have narrower size distribution in comparisonwith FeSe1.09.

The volume-weighted average grain size dvol can be found as[19]:
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The volume-weighted average grain size dvol was found to be 17.4 nm forCoSe1.09 and 24.2 nm for FeSe1.09,
respectively.

TheXRD analysis of Fe1−xCoxSe1.09 (x=0–1) samples showed (figure 3) that the observed peak positions
and intensities are in good agreementwith the database provided byMatch2 software, card (96-901-2807) for
Co6.8Se8, which has amonoclinic structure with a space group of C 1 2/m1 (for samples with x=0.5–1), and
card (96-101-1367) for FeSe achavalite, which has a hexagonal structure with a space group P63/mmc (for
samplewith x=0).

The average crystallite size varies from12 (x=0.58) to 26 (x=0) nm (table 1) as estimated by Scherrer’s
formula:

d K 2 cos . 5( ) ( )l q q= D/

Here d is the volume-weighted average size of crystallites,K is the dimensionless shape factor assumed to be 0.94,
λ=0.15406 nm is thewavelength for theCuKα radiation source, θ is the Bragg angle andΔ(2θ) is the full
width of the diffraction peak at halfmaximum located at 2θ. Themost intensive diffraction peakwas chosen, it is
the peak of (101) crystal plane (2θ=32.42°) for FeSe and the peak of (220) crystal plane for Fe1−xCoxSe1.09
(x=0.5–1) samples (2θ=33.54° for Co6.8Se8). The calculated d values are in a good agreementwith volume-
weighted average grain size dvol determined fromTEM images.

Themagnetization curvesmeasured in an appliedmagneticfield up to 50 kOe are shown infigure 4. The low
temperaturemagnetization curves are very similar in shape for all x values: hysteresis is in relatively lowfields
and, practically, linear dependence onmagnetic field is observed, when it exceeds~20 kOe.Magnetic saturation
is not reached even atH=50 kOe. A step increase of themagnetization in themaximalmagnetic field used as
well as of the coercivity value,Hc, are observedwhen x changes from1.0 to 0.5.With the temperature increase
from5 to 300 K, the shape of themagnetization curve in the lowfield region changes noticeably:Hc reduces

Figure 2.Bar-diagrams of the size distributions obtained fromTEMmicrographs and fittingwith normalized log-normal distribution
functions f(x) for CoSe1.09 (a) and FeSe1.09 (b)nanoparticles.
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significantly in all samples and hysteresis disappears at 120 K for x=0.83 to 1 and at 300 K for x=0.5 to 0.67.
However, the bend in lowfield curves for ferro-or ferrimagnetic states remains at higher temperatures, both at
120 and 300 K. The bend absents, practically, for samples with x=0.58 and 0.67 containing nanoparticles of the
lowest average diameter. All these facts can evidence the coexistence of the paramagnetic nanoparticles (or
diluted paramagnetic ions) and superparamagnetic nanoparticles. The assumption of strong paramagnetic
contribution at low temperatures is in a good agreementwith literature data [16, 17] according towhich pseudo-
binary systems (Fel−xCox)7Se8 exhibit paramagnetism for x=0.6–1. Part of superparamagnetic nanoparticles is
‘frozen’ at low temperature providing hysteresis. Opposite sign ofmagnetization in the region of bend at 120 and
300 K should be noted for sample with x=1.

The temperature dependences ofmagnetization recorded in zero-field-cooled (ZFC) andfield-cooled (FC)
regimes in an applied field of 100 Oe are shown infigure 5. The difference between FC andZFC curves is
characteristic for themagnetically inhomogeneous systems such as ensembles of superparamagnetic particles.
The pictures for samples with x from0.83 to 0.50 are typical for such systems confirming the ideamentioned
above on the superparamagnetic contribution to themagnetization curves.

The FCmagnetization dependence for x=0.5 (figure 5(f)) obeys the Langevin functional equation for
paramagnetic and superparamagnetic particles:

M T n H kT kT Hcth . 6( ) ⁎ ( ) ( )m m m= -/ /

Here k is Boltzmann constant,μ—magneticmoment, n—number of particles withmagneticmomentμ, per 1 g.
The value ofμ and n are found from fitting to be n=3.2×1014 g−1,μ=6.9×104 μb, here
μb=9.27×10−21 Erg/G is Bohrmagneton. This result can be due to superparamagnetism of Fe0.5Co0.5Se1.09
sample. Hence one can estimate the diameter of superparamagnetic particles to be d=(6/πnρ)1/3≈92 nm,

Figure 3.X-ray diffraction patterns of the Fe1−xCoxSe1.09 particles and of reference Co6.8Se8 and FeSe (achavalite) structures. The
reflection indexes correspond to theCo6.8Se8monoclinic structure and to the FeSe hexagonal structure, respectively.

Table 1.Average crystallite size of Fe1−xCoxSe1.09.

X 1 0.92 0.83 0.75 0.67 0.58 0.5 0

Crystallite size d, nm 15 17 18 19 14 12 17 26
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taking into account that the density of Fe0.5Co0.5Se1.09 is of the same order that density of Co7Se8
ρ=7.54 g sm−3 [15]. This result however disagrees with TEMandXRDdata.

Themore complicated case takes place for samples with x=1.0 and 0.92whenmagnetization direction is
opposite to the externalmagneticfield (figures 5(a) and (b), respectively). Such a behaviormay originate from
the biasingfield, as it happens, for example, in ferromagnetic/antiferromagnetic structures. As the used
technology cannot exclude aCo oxidation process and antiferromagnetic CoO inclusions inside or in the surface
of nanoparticles, the interaction betweenCoO andCoSe can cause the oppositemagnetization direction in low
magnetic field.

Figure 4.Magnetization dependences on the appliedmagneticfield recorded at 5, 120 and 300 K for the Fe1−xCoxSe1.09 nanoparticles
with various x. Inserts show the zoomed view of hysteresis plots.

Figure 5.Temperature dependences ofmagnetization for the ZFC and FCmodes recorded in the appliedmagnetic field of 100 Oe for
Fe1−xCoxSe1.09 nanoparticles with various x. Black line isfitting by Langevin function.
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Room temperatureMössbauer spectra are shown infigure 6. It can be seen that the spectra are composed of
the sumof quadrupole doublets with different chemical shifts.

Interpretation of the spectra has been carried out in two stages. As afirst step, the distribution of quadrupole
splitting P(QS) values in the experimental spectrawas defined,figure 7. For this purpose, two groups of doublets
with different chemical shifts (IS)were used. The IS valuewas the same inside each group. The IS value and the
amplitude of the doublets werefitted to the experimental curves. As a result, for each sample two distributions P
(QS)were received: for relatively high value of chemical shift (IS=0.52–0.59 mm s−1

—red circles) and for low
value of chemical shift (IS=0.27–0.36 mm s−1

—blue squares).Maxima in the distributions P(QS) indicate
possible nonequivalent positions of iron in the investigated selenides. Positions can be considered as possible but
not veritable one’s because at fittingwe used chemical shifts that are common for each group of doublets.
Number ofmaxima of P(QS) corresponds to the number of non-equivalent positions, coordinate on theQS axis
corresponds to the splitting of possible doublets, the intensity ofmaxima corresponds to the approximate
population of the position.

Figure 6.Mössbauer spectra of Fe1−xCoxSe1.09: 1–x=0.5, 2–x=0.58, 3–x=0.67, 4–x=0.75, 5–x=0.83, 6–x=0.92.

Figure 7.The distribution of the quadrupole splitting values in the experimentalMössbauer spectra of FexCo1−xSe1.09. 1−x=0.5, 2–
x=0.58, 3–x=0.67, 4–x=0.75, 5–x=0.83, 6–x=0.92.
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In the second stage of the spectra interpretation, themodel spectrumwas formed based on the information
about P(QS), whichwasfitted to the experimental spectrum.With thisfitting false doublets vanish, and for the
true doubletsMössbauer parameters are refined. The result of the second stage is shown in table 2.

Table 2 shows that each sample’s spectrum contains two kinds of doublets different in chemical shift value
∼0.5-0.6 mm s−1 and∼0.3 mm s−1.When comparingwith the published data for iron chalcogenides [20],
doublets with a large chemical shift value (IS=0.54-0.67 mm s−1) should be attributed to the low-spin (LS)
Fe3+ cations in octahedral coordination of selenium, Fe3+(6Se). Some increase of the chemical shift value (up to
0.625) in our case is due, possible, to changes in ion-ion distances when iron is substituted by cobalt. The
presence of two doublets Fe3+ (6Se) is also can be associatedwith a cationic substitution. It is illustrated by
figure 8, which shows the twomost probable configurations of cations that surround the considered Fe3+ cation
in the second coordination sphere at the condition of the inhomogeneous distribution of the replacing Co ions.
Local symmetry at this cation disposition in the configuration {1Fe3Co} is higher than in the configuration
{2Fe2Co}. The quadrupole splittingQS,which characterizes the degree of distortion, for Fe in the first
configuration should be less. The presence of two doublets Fe3+(6Se) can be associated alsowith vacancies in the
second coordination sphere of the considered Fe3+ cation effecting in a decrease of symmetry of its nearest
surrounding. The quadrupole splittingQS,which characterizes the degree of nearest surrounding distortion
should be higher.

Table 2.Mössbauer parameters of FexCo1−xSe1.09 selenide. IS—isomer chemical shift with respect toα–Fe,QS—quadrupole
splitting,Γ—width of the absorption line A—the area under partial doublet (the population of the position).

X IS±0.005 mm s−1 QS±0.02 mm s−1 Γ±0.02 mm s−1 A±0.05 Position

0.5 0.558 0.31 0.21 0.15 Fe3+(6)LS
0.580 0.55 0.24 0.20

0.395 0.57 0.42 0.54 Fe2+(4)LS or Fe2+(6)LS
0.383 1.20 0.29 0.11

0.58 0.579 0.29 0.12 0.04 Fe3+(6)LS
0.546 0.62 0.38 0.40

0.238 0.29 0.23 0.15 Fe2+(4)LS or Fe2+(6)LS
0.247 0.77 0.32 0.41

0.67 0.545 0.27 0.18 0.09 Fe3+(6)LS
0.527 0.52 0.17 0.06

0.408 0.56 0.49 0.77 Fe2+(4)LS or Fe2+(6)LS
0.387 1.10 0.24 0.08

0.75 0.598 0.29 0.25 0.23 Fe3+(6)LS
0.585 0.63 0.24 0.19

0.358 0.01 0.21 0.07 Fe2+(4)LS or Fe2+(6)LS
0.346 0.50 0.19 0.08

0.359 0.95 0.51 0.44

0.83 0.598 0.423 0.26 0.21 Fe3+(6)LS
0.625 0.659 0.24 0.16

0.375 0.108 0.15 0.06 Fe2+(4)LS or Fe2+(6)LS
0.396 0.498 0.29 0.21

0.336 0.942 0.41 0.36

0.92 0.574 0.33 0.24 0.24 Fe3+(6)LS
0.556 0.75 0.26 0.22

0.302 0.08 0.21 0.06 Fe2+(4)LS or Fe2+(6)LS
0.282 0.76 0.47 0.42

0.328 1.05 0.31 0.05

Figure 8.Themost probable configuration of cations in the second coordination sphere surrounding the considered iron cation in the
Fe0.5Co0.5Se layer.
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Mössbauer parameters of the quadrupole doublets with smaller values of chemical shifts are typical for low
spin (LS) Fe2+ cations in iron chalcogenides with octahedral (IS=0.27–0.44 mm s−1) [21–27] and tetrahedral
(IS=0.3–0.51 mm s−1) [7, 25–30] coordinations. Thus, the position of the ironwith isomeric chemical shifts
IS=0.5–0.6 mm s−1 can be attributed to cations occupying the layers in the octahedral structure FeSe. These
cations are trivalent and have low spin, indicated in the table by red color. Position (indicated by blue color)
having a small chemical shift belong to phase with divalent iron ionswith low spin. As far as XRDmeasurements
didn’t show tetrahedral structure, this phase is probably of distorted hexagonal type.

4. Conclusion

Summarizing results obtained, we have revealed complicatedmagnetic behavior in series of nanosized particles
Fe1−xCoxSe1.09 in dependence on the relative Co and Fe concentrations. Superparamagnetic state of
Fe0.5Co0.5Se1.09 powderwith average particle size of 17 nm is shown.Mössbauer study showed nonequivalent
positions of iron ions appearing due to the inhomogeneous distribution of Co ions or presence ofmetal
vacancies in the second coordination sphere of iron ions.
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