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Wannier-Stark states in double-periodic lattices. I. One-dimensional lattices
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We analyze the Wannier-Stark spectrum of a quantum particle in generic one-dimensional double-periodic
lattices. In the limit of a weak static field, the spectrum is shown to be a superposition of two Wannier-Stark ladders
originating from two Bloch subbands. As the strength of the field is increased, the spectrum rearranges itself into
a single Wannier-Stark ladder. We derive analytical expressions that describe the rearrangement employing the
analogy between the Wannier-Stark problem and a driven two-level system in the strong-coupling regime.
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I. INTRODUCTION

By definition, Wannier-Stark (WS) states are the eigenstates
of a quantum particle in a periodic potential in the presence
of a static field F . For a simple one-dimensional (1D) lattice
of period a the spectrum of WS states is a ladder of energy
levels with the level spacing aF , known as the Wannier-Stark
ladder or the Wannier-Stark fan. The equidistant spectrum
implies periodic dynamics of the particle, which is simply
the celebrated Bloch oscillations (BOs). If the lattice period
is doubled, BOs become a complicated process because of
the Landau-Zener (LZ) tunneling between two subbands that
emerge from a single band. In the past decade BOs and
LZ tunneling in 1D double-periodic lattices have attracted
much attention in cold-atoms physics and photonics due
to applications in interferometric measurements and as a
method for manipulating localized wave packets [1–5]. We
mention that these phenomena were analyzed earlier in the
context of solid-state systems, where the considered model
was a crystal with two minibands subject to an electric field
[6–10].

The main question we address in this work is how the
interband LZ tunneling is encoded in the properties of WS
states. In fact, since an arbitrary initial quantum state of
the system can be expanded over the basis of WS states,
they provide an alternative approach for describing various
dynamical phenomena, including LZ tunneling. The advantage
of this alternative approach becomes especially transparent
in two-dimensional systems, which will be the subject of the
following paper [11]. Thus the present work can be also viewed
as a necessary step before proceeding with analysis of WS
states in two-dimensional lattices.

The structure of the paper is as follows. In Sec. II we
introduce the model, the tight-binding Hamiltonian of a
double-periodic lattice, and perform a preliminary analysis
of the Wannier-Stark spectrum. The analysis reveals two
different regions in the parameter space: the cases of weak
and strong fields, which are studied in detail in Sec. III.
We obtain asymptotic expressions for the WS spectrum in
the limit F → ∞ and F → 0 and discuss two analytical
methods that describe this spectrum for intermediate F .
Finally, in Sec. IV we analyze the system beyond the tight-
binding approximation. The main results are summarized in
Sec. V.

II. MODEL

Within the tight-binding approximation an arbitrary double-
periodic lattice is characterized by four parameters: alternating
tunneling elements J1 and J2, alternating on-site energies ±δ,
and the Stark energy aF . Thus, in the second quantized form
the Hamiltonian reads

H =− J1

∑
m odd

(c†m+1cm + H.c.) − J2

∑
m even

(c†m+1cm + H.c.)

+ δ
∑
m

(−1)mc†mcm + aF
∑
m

(m − 1/2)c†mcm, (1)

where the last term corresponds to the potential energy
F (x − x0) with x0 chosen in the middle between two sites. For
F = 0 the single-particle spectrum of the system (1) consists
of two Bloch bands

E±(κ) = ±
√

δ2 + J 2
1 + J 2

2 + 2J1J2 cos(2κ), (2)

where κ is the quasimomentum defined in the reduced
Brillouin zone −π/2 � κ < π/2 (we set the distance a

between the nearest sites to unity). In what follows we will
be mainly concerned with two cases: (i) J1 = J2 ≡ J and
δ �= 0 and (ii) δ = 0 and J1 �= J2. These two lattices may
have almost indistinguishable Bloch spectra [see Fig. 1(a)],
however, their Bloch states are profoundly different. In
fact, the Bloch states of lattice (ii), known in solid-state
physics as the Su-Schrieffer-Heeger (SSH) lattice [12], possess
nontrivial topological properties reflected in the quantized Zak
phase [13]. In contrast, case (i) corresponds to a topologically
trivial lattice. We mention in passing that recently the Zak
phase was measured in the cold-atom implementation of the
model (1) in Ref. [14].

If F �= 0 the continuous Bloch spectrum (2) transforms
into the discrete WS spectrum. For the sake of preliminary
analysis we calculate the spectrum using the straightforward
diagonalization of the Hamiltonian matrix. Denoting proba-
bility amplitudes for the odd and even sites ψ

A,B
l (here index

l labels elementary cell consisting of two sites), we have the
stationary Schrödinger equation in the form

2F (l − 1/4)ψA
l − δψA

l − J2ψ
B
l − J1ψ

B
l−1 = EψA

l ,

2F (l + 1/4)ψB
l + δψB

l − J2ψ
A
l − J1ψ

A
l+1 = EψB

l . (3)
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FIG. 1. (Color online) Shown on the left are Bloch bands of the
tight-binding system (1) for J = 0.76 and δ = 0.4 (dashed line) and
for J1 = 1, J2 = 0.6, and δ = 0 (solid line). In what follows, these
two sets of parameters are referred to as lattice (i) and lattice (ii),
respectively. The constants J1, J2, δ, and the energy E are measured
in arbitrary energy units. Shown on the right is the Bloch spectrum of
the continuous system (39), which will be discussed in Sec. IV. The
distance a between the nearest sites is set to unity in the subsequent
figures.

The solid lines in Fig. 2 show the numerical solution of Eq. (3)
as a function of F for lattice (ii). It can be seen that the spectrum
consists of two Wannier-Stark fans that are associated with two
Bloch bands in Fig. 1(a). In the region of large F the ladders
strongly affect each other, which is reflected in pronounced
avoided crossings. The size of the avoided crossings, however,
progressively decreases if F → 0. This can be clearly seen in
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FIG. 2. (Color online) Wannier-Stark spectrum for lattice (ii) as
a function of the Stark energy aF . The dashed lines correspond to
Eq. (4) with n = 0. These lines indicate the origins of two intersecting
Wannier-Stark fans and illustrate the meaning of the geometric phase
discussed in Sec. III B.
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FIG. 3. (Color online) Scaled spectrum as a function of 1/F .
Solid lines are the four nearest E = 0 energy levels from Fig. 2.
The dashed lines are analytical result for the Wannier-Stark spectrum
in the strong-field limit [see Eq. (28) in Sec. III A].

Fig. 3, where we scale the spectrum according to the ladder
spacing F . Thus, in the limit of small F we have

En,± ≈ ±C + 2Fn, n = 0,±1, . . . , (4)

where the constant C will be specified later on in Sec. III B.
It can also be seen in Fig. 3 that in the opposite limit of large
F two Wannier-Stark ladders merge into one ladder with the
level spacing F , i.e.,

En ≈ F (n + 1/2), n = 0,±1, . . . . (5)

To calculate the spectrum using Eq. (3) we truncate an
infinite system of equations to a finite system, which results in
numerical errors. In the next section we describe an approach
that is free from this drawback and more importantly opens a
way for finding analytical solutions.

III. FLOQUET OPERATOR APPROACH

To approach Eq. (3) analytically we introduce the generat-
ing functions

YA,B(θ ) = (2π )−1/2
∞∑

l=−∞
ψ

A,B
l exp(ilθ ). (6)

This reduces Eq. (3) to the system of two ordinary differential
equations

i2F
dY(θ )

dθ
= G(θ )Y(θ ), (7)

where Y(θ ) = [YA(θ ),Y B(θ )] and the 2 × 2 matrix G(θ ) is
given by

G(θ ) =
(

E + F/2 + δ J2 + J1 exp(−iθ )
J2 + J1 exp(iθ ) E − F/2 − δ

)
. (8)

Since YA,B(θ ) are by definition periodic functions of θ , we
are only interested in periodic solutions of Eq. (7). This
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gives the quantization rule for the energy E entering Eq. (8).
The periodicity of solutions implies that eigenvalues of the
evolution (Floquet) operator

U = êxp

[
− i

2F

∫ 2π

0
G(θ )dθ

]
(9)

must be unity. Numerically, we can use this fact to find
the Wannier-Stark spectrum exactly, i.e., without using the
truncation procedure. In more detail, first we calculate (9) for
a trial energy E = 0 and diagonalize it. This provides two
complex eigenvalues λ1 and λ2 = λ∗

1. Then the positions of
energy levels in Figs. 2 or 3 are found from the equation

exp

(
− i

πE

F

)
= λ1,2. (10)

Unfortunately, Eq. (7) has no analytical solution in the
closed form that would be valid in the whole parameter space.
Nevertheless, we can obtain an analytical solution in the case
of weak fields and separately in the case of strong fields. A
quantity that distinguishes these two cases is obviously the size
of the energy gap separating two Bloch subbands as compared
to the Stark energy. In terms of Bloch dynamics it distinguishes
the regime of negligible interband LZ tunneling from that
where the tunneling is the main effect. We begin with the case
of strong fields.

A. Strong fields

As it was already mentioned in Sec. II, in the limit of large
F two ladders are strongly coupled, which leads to an almost
equidistant spectrum with the level spacing F . The parameters
that quantify the strength of coupling are

ε1 = (J2 − J1)/F (11)

if δ = 0 and

ε2 = δ/F (12)

if J1 = J2 but δ �= 0. The maximal coupling corresponds to
ε1 = 0 (ε2 = 0), which is reached either by taking the limit
F → ∞ or by closing the energy gap between Bloch subbands.
In terms of Eq. (7) this corresponds to the trivial solutions

Y−(θ ) = 1√
2π

(
einθ

0

)
, Y+(θ ) = 1√

2π

(
0

einθ

)
, (13)

with the energies En,+=F (2n+ 1/2) and En,−=F (2n− 1/2),
respectively. To find the periodic solutions of Eq. (7) for finite
ε1 and/or ε2 we use (and compare) two different methods: the
Wu-Yang iterative approach from the theory of periodically
driven two-level systems [15] and a perturbative approach
based on the Bogoliubov-Mitropolskii averaging technique
from the theory of classical dynamical systems [16].

1. Wu-Yang iterative approach

Let us consider lattice (i), i.e., J1 = J2 ≡ J and δ �= 0. After
the substitution

YA = Ỹ A exp(−iEθ/2F − iθ/4),

Y B = Ỹ B exp(−iEθ/2F + iθ/4) (14)

and t = θ/2, Eq. (7) takes the form of the Schrödinger equation
for a periodically driven two-level system

i
d

dt

(
Ỹ A

Ỹ B

)
=

(
ε2 	 cos t

	 cos t −ε2

) (
Ỹ A

Ỹ B

)
, (15)

where 	 = 2J/F plays the role of the Rabi frequency. Since
we are interested in the limit ε2 	 	 we are in the so-called
strong-coupling regime where the common rotating-wave
approximation is not justified. This regime has attracted much
attention in quantum optics; we will follow the above-cited
work [15], which reports recent progress in the strong-coupling
problem. Essentially the method provides an approximate
expression for the evolution operator U (t),

Ỹ(t) = U (t)Ỹ(0), (16)

which is given in the Appendix. To satisfy the periodicity of the
solutions, Eq. (16) should be complemented with the boundary
conditions

Ỹ A(π ) = exp

(
− i

Eπ

F

)
Ỹ A(0),

Ỹ B(π ) = − exp

(
− i

Eπ

F

)
Ỹ B(0). (17)

This yields the spectrum

En,± = F (2n ± 1/2) ± F

π
arcsin

(
U11(π ) −U22(π )

2i

)
, (18)

where U11(t) and U22(t) are the diagonal elements of the
evolution operator in Eq. (16). Expanding Eq. (18) in the
parameter ε ≡ ε2 up to fourth order, we have

En,± = F (2n ± 1/2) ± ε
1(F ) ± ε3
3(F ), (19)

where


1(F ) = FJ0

(
4J

F

)
(20)

and


3(F ) = 2F

π

∫ π

0
dt

[
I
(

t,
4J

F

)
− 1

2
I
(

π,
4J

F

)]2

× cos

(
4J

F
sin t

)
. (21)

In these last two equations J0(z) is the Bessel function of the
first kind and

I(t,z) =
∫ t

0
dx sin(z sin x). (22)

The accuracy of the asymptotic equation (19) is illustrated
in Fig. 4. In this figure the solid lines are the exact spectrum
calculated by using Eqs. (9) and (10), the dashed lines the first-
order corrections to the zeroth-order result, and the dash-dotted
lines the third-order corrections. It can be seen in Fig. 4(a)
that the first-order result systematically shifts positions of the
avoided crossings. This is corrected by the third-order term
in Eq. (19); now the avoided crossings appear at the right
positions. Unfortunately, applicability of Eq. (19) is restricted
to small ε and if δ is increased, this automatically decreases
the validity interval in F [see Fig. 4(b)]. In this figure we
also depict the result according to Eq. (18). It can be seen in
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FIG. 4. (Color online) Scaled spectrum for lattice (i) with J1 =
J2 = 0.76 and δ = 0.2 (left) and δ = 0.4 (right). The dashed and dash-
dotted lines are the first- and third-order approximations according to
Eq. (19), respectively, and the broken line corresponds to Eq. (18).

Fig. 4(b) that Eq. (18) removes the divergence of Eq. (19) but
introduces unphysical oscillations.

2. Bogoliubov-Mitropolskii averaging technique

Next we discuss the perturbative approach based on the
Bogoliubov-Mitropolskii averaging technique [16]. In this
section we consider the general case δ �= 0 and J1 �= J2. Let us
rewrite Eq. (7) in terms of the parameters in Eqs. (11) and (12).
This is done by using two substitutions. The first substitution
defined in Eq. (14) results in the equation

i2F
d

dθ

(
Ỹ A

Ỹ B

)
=

(
δ g(θ )

g∗(θ ) −δ

) (
Ỹ A

Ỹ B

)
, (23)

where g(θ ) = J1 exp(iθ/2) + J2 exp(−iθ/2). The second sub-
stitution is

u = (Ỹ A + Ỹ B) exp

(
− i

2F

∫
Re[g]dθ

)
,

v = (Ỹ A − Ỹ B) exp

(
+ i

2F

∫
Re[g]dθ

)
. (24)

This gives

i
d

dθ

(
u

v

)
=

(
0 f (θ )

f ∗(θ ) 0

)(
u

v

)
, (25)

where

f (θ ) =
[
ε2 + iε1 sin

(
θ

2

)]
exp

[
i
2(J1 + J2)

F
sin

(
θ

2

)]
. (26)

Since the function f (θ ) is proportional to small parameters
ε1 and/or ε2, Eq. (25) can be treated by the Bogoliubov-
Mitropolskii perturbative approach.

The first order of the Bogoliubov-Mitropolskii theory
amounts to replacing the function f (θ ) in Eq. (25) by its mean
value

f̄ = δ

F
J0

(
2(J1 + J2)

F

)
+ J1 − J2

F
J1

(
2(J1 + J2)

F

)
, (27)

where J0(z) and J1(z) are the Bessel functions of the
first kind. After the above substitution Eq. (25) is trivially
solved, providing two independent solutions. Next, using the
substitutions (14) and (24) in the reverse order, we find
two independent approximate solutions of Eq. (7). Finally,
requiring that these solutions are periodic in θ , we obtain
corrections to the equidistant spectrum

En,± = F
[
2n ± 1

2 ± f̄ (F )
]
. (28)

If J1 = J2 this result coincides with the first-order corrections
obtained in the previous section. In the case J1 �= J2, i.e., for
lattice (ii), the approximate solution (28) is depicted in Fig. 3
by the dashed lines. Notice a different asymptotic behavior at
1/F → 0 as compared to lattice (i).

Comparing two methods used in this work, we conclude that
both methods give a tractable analytical expression only in the
first order over the perturbative parameter. Furthermore, when
restricted to first order, the Bogoliubov-Mitropolskii technique
is simpler and more universal than the Wu-Yang approach.

B. Weak-field regime

1. Geometric phase and asymptotic solution

We proceed with the weak-field limit where we shall focus
on lattice (ii). Assuming that F is beyond the vicinity of
the avoided crossings, the periodic solution of Eq. (7) can
be found with the help of the adiabatic theorem. It expresses
the function Y(θ ) = [YA(θ ),Y B(θ )]T in terms of instantaneous
eigenfunctions y1,2(θ ) of the 2 × 2 matrix G(θ ) [Eq. (8)],

G(θ )y±(θ ) = E±(θ )y±(θ ). (29)

We have

Y±(θ ) = e−i�d (θ)e−i�g (θ)y±(θ ), (30)

where

�d (θ ) = 1

2F

∫ θ

0
E±(θ ′)dθ ′,

�g(θ ) = i

∫ θ

0
yT

±(θ ′)
d

dθ ′ y±(θ ′)dθ ′ (31)

are the dynamical and geometric phases, respectively. It is easy
to prove that the eigenvalues E±(θ ) are given by

E±(θ ) = E + Ẽ±(θ ),

Ẽ±(θ ) = ±
√(

δ + F

2

)2

+ J 2
1 + J 2

2 + 2J1J2 cos(θ ). (32)

To ensure periodicity the solution (30) must satisfy the
condition �d (2π ) + �g(2π ) = 2πn, where n is an integer.
This results in the spectrum

En,± = C± + 2F (n + c±), (33)

where

C± = 1

2π

∫ 2π

0
Ẽ±(θ )dθ, c± = i

2π

∫ 2π

0
yT

±(θ )
d

dθ
y±(θ )dθ ′.

(34)

Comparing Eq. (32) with the Bloch dispersion relation (2), we
conclude that in the limit of small F the constants C± are given

053631-4



WANNIER-STARK STATES . . . . I. ONE-DIMENSIONAL . . . PHYSICAL REVIEW A 91, 053631 (2015)

0 0.1 0.2 0.3 0.4 0.5
−4

−3

−2

−1

0

1

2

3

4

F

E

FIG. 5. (Color online) Same as in Fig. 2 but for different dimer-
ization (J1,J2) = (0.6,1). This dimerization has a different geometric
phase, which is reflected in the different slope of the dashed lines as
compared to Fig. 2.

by the mean energies of the Bloch subbands

lim
F→0

C± = 1

π

∫ π/2

−π/2
E±(κ)dκ, C+ = −C− ≡ C (35)

and the constants c± are the Zak phases of these bands. For
the example considered in Fig. 2 c± = 0 and hence we recover
Eq. (4). However, for the alternative dimerization of the SSH
lattice J2 ↔ J1, one has c± = ±1/2 and Eq. (4) must be
corrected as En,± = ±C + 2F (n ± 1/2). The WS spectrum of
lattice (ii) for the alternative dimerization is depicted in Fig. 5.
Because the system dynamics is determined by transition
frequencies between energy levels, Fig. 5 describes the same
physical situation as in Fig. 2. However, formally the spectrum
does depend on the lattice dimerization, which is reflected in
Eq. (33). As it was already mentioned in Sec. II, the SSH lattice
is a topological system, i.e., its geometric phase is insensitive
to variation of the tunneling rates and is either zero (J2 < J1) or
±1/2 (J2 > J1). This result does not hold in the topologically
trivial case δ �= 0 where the constants c± in Eq. (33) depend on
the tunneling rates and in principle can take arbitrary values.

The accuracy of the adiabatic equation (33) can be improved
by including the second-order corrections that are proportional
to F 2. Using the analogy with spin-1/2 dynamics and adopting
results of Ref. [17] to the problem under consideration, the
coefficient in front of F 2 is found as

D = (J1 + J2)2(J1 − J2)2

32

1

2π

∫ 2π

0
[(J1 + J2)2 cos2(θ/2)

+ (J1 − J2)2 sin2(θ/2)]−5/2dθ. (36)

2. Avoided crossings and resonant tunneling

An important point requiring special attention is that the
adiabatic equation (33) breaks down at the level crossings.
Here the level crossings should be replaced with avoided
crossings with the gap �E. Drawing an analogy with the driven
two-level system, where the avoided crossings are associated
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0

1/F

〈P
+

〉

0 5 10
0

0.2

0.4

FIG. 6. (Color online) Time-averaged population of the upper
band for lattice (ii) as a function of 1/F on logarithmic (main panel)
and linear (inset) scales. The average is over 40 Bloch periods. (For
an infinite number of Bloch periods the hight of all peaks is exactly
1/2.) The dashed lines are approximations of the resonance peaks by
the Lorentzian (38).

with multiphoton resonances [18], we have

�E

F
= 2

π
exp

(
− 1

F

∫ θ0

0

√
1 − 2J1J2

J 2
1 + J 2

2

cosh(θ )dθ

)
,

2J1J2

J 2
1 + J 2

2

cosh(θ0) = 1. (37)

It is easy to show that the avoided crossings between Wannier-
Stark levels describe the so-called phenomenon of the resonant
LZ tunneling. This phenomenon can be detected by analyzing
population dynamics of the Bloch subbands [8,10]. In fact,
let us assume that initially the system is in the ground state
and consider the time-averaged occupation of the upper band
P+ = 〈P+(t)〉 as a function of the static field. For lattice (ii)
the result of this experiment is depicted in Fig. 6. This figure
should be compared with Fig. 3. It can be seen that positions
of the resonance peaks coincide with the positions of the
avoided crossings in Fig. 3, while the widths of the peaks
are determined by the gaps �Ej , so locally one has

P+(z) = 0.5
(�Ej/2)2

(�Ej/2)2 + (z − zj )2
, z = 1

F
. (38)

An interesting dynamical manifestation of the resonant
tunneling is a possibility of transferring the quantum particle
from the lower Bloch subband to the upper subband and
vice versa. Assume that F is not near a given avoided
crossing and the initial state of the system is a wave packet
constructed from Bloch states belonging to the lower subband.
Then the particle performs BOs in the lower subband with
negligible LZ tunneling to the upper subband. If we now
adiabatically change F to pass through the avoided crossing,
the particle will perform BOs in the upper subband. This
dynamics is illustrated in Fig. 7, which shows BOs of a
localized packet. In this simulation we linearly change F in the

053631-5



MAKSIMOV, BULGAKOV, AND KOLOVSKY PHYSICAL REVIEW A 91, 053631 (2015)

FIG. 7. (Color online) Dynamics of a localized wave-packet
(top) and the mean momentum (bottom) as functions of time. The
initial condition corresponds to a Gaussian wave packet of a width of
approximately five sites located at m = −20. Within the considered
time interval the static force is linearly increased from F = 1/9.4 to
F = 1/8.7. The other parameters are the same as in Fig. 6. The time
is measured in units of TJ = 2π/J1 and the momentum in units of
�/a.

interval 8.7 < 1/F < 9.4, which contains one avoided crossing
at 1/F ≈ 9 (see Fig. 3).

We conclude this section with a remark concerning future
prospects. Nowadays, in cold-atom physics much attention is
paid to atom-atom interactions. With respect to the interband
LZ tunneling, the role of interactions is discussed, for example,
in Refs. [19–23]. The cited papers analyze the nonlinear
dynamics of the system in terms of the Gross-Pitaevskii
equation or the discrete nonlinear Schrödinger equation. The
main effects found are the broadening of resonance peaks and
asymmetry of the tunneling. It would be interesting to look
for stationary solutions of Eq. (3) complemented by nonlinear
terms.

IV. BEYOND THE TIGHT-BINDING APPROXIMATION

In this section we discuss the cold-atom implementation of
double-periodic lattices considered in the previous sections.
After an appropriate rescaling, the dimensionless Hamiltonian
of the system reads

Ĥ =−1

2

d2

dx2
+ V (x) + Fx,

V (x) = V0 + V1 cos(2πx + φ1) + V2 cos(4πx + φ2), (39)

where V1 and V2 are proportional to the intensities of two
standing laser waves forming the optical lattice [4,14]. For
numerical purposes we introduce an additional parameter V0

in the Hamiltonian (39) to shift the energy axis. Varying the
parameters of the double-periodic potential V (x), one can
realize different values of the hopping matrix elements J1

and J2 and on-site energy ±δ in the tight-binding model. In
what follows we set φ1 = φ2 = 0, which ensures δ = 0, and
|V1| < |V2|, which ensures J2 < J1, and consider relatively
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FIG. 8. (Color online) Level positions (top) and their widths
(bottom) for two stable Wannier-Stark ladders originating from the
first and second Bloch bands in Fig. 1(b). Two additional upper curves
in the bottom panel are the level widths for unstable Wannier-Stark
ladders originating from the third and fourth Bloch bands.

small V2, which implies a shallow lattice. As an example,
Fig. 1(b) shows the Bloch spectrum of the system (39)
for (V0,V1,V2) = (−0.117,−0.15,0.3). In this figure we also
depict by the dashed line the potential V (x). Our prime interest
in Fig. 1(b) is two lower bands with the gap controlled by the
parameter V1. (Notice that for V1 = 0 the gap closes.) We
stress that we intentionally consider a shallow lattice because
it justifies our model (1). If the lattice were deeper one must
take into account the next two bands, which would essentially
complicate the tight-binding model.

If F �= 0 every Bloch band in Fig. 1(b) originates a Wannier-
Stark ladder with an equidistant spectrum. (For neutral atoms
the static force is typically introduced by accelerating the
lattice or by using a nonuniform magnetic field with constant
gradient.) However, unlike the tight-binding model, the energy
levels are now complex numbers

E′
n,α = En,α + i�α (40)

(here α is the band index) and the associated WS states are
metastable states (quantum resonances) with a finite lifetime
that is inversely proportional to the resonance width �α [24]. Of
course, only long-living WS states are of physical importance.
The energies of these states, reduced to the fundamental energy
interval |E| � F/2, are shown in the top panel in Fig. 8. This
figure should be compared with Fig. 3, where one can see
a similar structure with progressively decreasing size of the
avoided crossings. We note that, even if an avoided crossing
is not resolved on the scale of the figure, we can detect its
presence by sorting the levels according to their stability. In
fact, if the real parts of the complex energy levels undergo
an avoided crossing, the imaginary parts must cross [24]. This
behavior can be clearly observed in Fig. 8(b), where the ladders
exchange their stability at the avoided crossings.

As expected, we find the strongest deviation of the original
system from its tight-binding counterpart in the limit of strong
fields. In this domain coupling with higher (α > 2) Bloch
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bands results in nonanalytic behavior of En,± = En,±(F ),
which is seen as discontinuity of the curves in Fig. 8(a).
Nevertheless, the above conclusion that two Wannier-Stark
ladders merge into a single ladder in the limit F → ∞ remains
valid.

Here it is also appropriate to discuss another approxima-
tion of the continuous system (39) known as the two-band
model [6]:

H =
∑

l

[(δa + 2F l)a†
l al − J̃a(a†

l+1al + H.c.)]

+
∑

l

[(δb + 2F l)b†l bl + J̃b(b†l+1bl + H.c.)]

+ J̃abF
∑

l

(b†l al + H.c.). (41)

In this Hamiltonian the first and second terms explicitly refer
to the first and second bands in Fig. 1(b) and the last term is
the interband coupling induced by the static field. Notice that
that the summation index l refers to the lattice cells but not
the lattice sites. The model (41) captures essentially the same
physics as the model (1) and, in principle, the parameters of the
Hamiltonian (41) can be related to those of the Hamiltonian (1).
In the present work we prefer to stay with the model (1) because
of advantages in the analytical treatment of the WS spectrum
and because laboratory experiments with cold atoms and
photonics crystal provide numerical values for the parameters
of the model (1).

V. CONCLUSION

We analyzed the energy spectrum of a quantum particle
in a 1D double-periodic lattice in the presence of a static
field F . It was shown that in the limit of weak fields the
spectrum consists of two Wannier-Stark ladders originating
from two Bloch subbands. Each of these ladders is proved
to be uniquely characterized by two parameters: the mean
energy and geometric (Zak) phase of the Bloch subbands.

An additional characteristic of the spectrum is the size of
avoided crossings between energy levels associated with two
different ladders. These avoided crossings occur at certain
values of F and correspond to resonant interband Landau-
Zener tunneling. In the limit F → 0 the size of avoided
crossings decreases exponentially with F . In the opposite limit,
when F is increased, the energy gaps at avoided crossings
progressively increase and sooner or latter become comparable
to the ladder step. This results in rearrangement of the spectrum
from a superposition of two ladders with the step 2aF into
a single ladder with the step aF (here a is the distance
between the nearest sites). By mapping the problem to an
effective two-level system we derived analytic expressions
that describe this rearrangement. Remarkably, for the lattice
with alternating on-site energies this effective system coincides
with the driven two-level system in the strong-coupling regime.
Thus we demonstrated that the latter problem, which is of great
importance in quantum optics, can be viewed as a particular
case of the Wannier-Stark problem for double-periodic lattices.

Finally, we analyzed the Wannier-Stark spectrum of a
quantum particle in a double-periodic lattice beyond the
tight-binding approximation. The above-listed results were
shown to hold true for the original continuous system where
the Wannier-Stark states are quantum resonances and hence
have a finite lifetime.
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APPENDIX

The solution of Eq. (15) according to the second-order
Wu-Yang procedure in Ref. [15] could be written as

Ỹ(t) = U (t)Ỹ(0), (A1)

where U (t) is the 2×2 matrix with elements given by

U11 = eiβ ([cos τ cos φ − i sin τ sin φ] cos ψ − [i cos τ sin φ − sin τ cos φ] sin ψ),

U12 = e−iβ ([cos τ cos φ − i sin τ sin φ] sin ψ + [i cos τ sin φ − sin τ cos φ] cos ψ),

U21 = eiβ ([sin τ cos φ + i cos τ sin φ] cos ψ − [i cos τ cos φ + sin τ sin φ] sin ψ),

U22 = e−iβ ([sin τ cos φ + i cos τ sin φ] sin ψ + [i cos τ cos φ + sin τ sin φ] cos ψ).

The functions β = β(t), τ = τ (t), φ = φ(t), and ψ = ψ(t) are defined through the equations

τ (t) = ε

∫ t

0
dt ′ sin[2	 sin t ′] = εI(t,2	), (A2)

β(t) = ε

∫ t

0
dt ′ cos[2	 sin t ′] cos[2εI(t ′,2	)], (A3)

φ(t) = −ε

∫ t

0
dt ′ cos[2	 sin t ′] sin[2εI(t ′,2	)] cos

(
2πεJ0(2	) − 2ε

∫ t ′

0
dt ′′ sin[2	 cos t ′′]

)
, (A4)

ψ(t) = ε

∫ t

0
dt ′ cos[2	 sin t ′] sin[2εI(t ′,2	)] sin

(
2πεJ0(2	) − 2ε

∫ t ′

0
dt ′′ sin[2	 cos t ′′]

)
. (A5)
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