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Light trapping above the light cone in a one-dimensional array of dielectric spheres
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We demonstrate bound states in the first TE and TM diffraction continua (BSC) in a linear periodic array
of dielectric spheres in air above the light cone. We classify the BSCs according to the symmetry specified by
the azimuthal number m, the Bloch wave vector β directed along the array, and polarization. The most simple
symmetry-protected TE and TM polarized BSCs have m = 0 and β = 0 and occur in a wide range of the radii
of the spheres and dielectric constants. More complicated BSCs with m �= 0 and β = 0 exist only for a selected
radius of the spheres at a fixed dielectric constant. We also find robust Bloch BSCs with β �= 0 and m = 0.
We present also the BSCs embedded into two and three diffraction continua. We show that the BSCs can be
easily detected by the collapse of the Fano resonance for scattering of electromagnetic plane waves by the
array.
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I. INTRODUCTION

The scattering of electromagnetic (EM) waves by an
ensemble of dielectric spheres has a long history of research
beginning with Mie who presented a rigorous theory for
scattering by a single dielectric sphere [1]. The overwhelming
majority of papers since the pioneering papers by Ohtaka
and his coauthors [2–5] have considered periodical two-
dimensional (2D) and three-dimensional (3D) arrays [6–9].
Surprisingly, less interest was payed to scattering by a linear
array of dielectric spheres mostly restricted to aggregates of a
finite number of spheres [10–12]. Guiding of electromagnetic
waves by a linear array of dielectric spheres below the
diffraction limit attracted more attention. There were two
types of consideration: finite arrays [13–18] and infinite arrays
which were studied by means of the coupled-dipole approx-
imation [19–23]. A consummate analysis of electromagnetic
waves propagating along linear arrays of dielectric spheres
below the light cone was provided by Linton et al. [24].

It has been widely believed that only those modes whose
eigenfrequencies lie below the light cone are confined and
the rest of the eigenmodes have finite lifetimes. Recently
confined electromagnetic modes were shown to exist in
various periodical arrays of (i) long cylindrical rods [25–28],
(ii) photonic crystal slabs [29–32], and (iii) 2D arrays of
spheres [33,34]. Similarly one may expect light trapping in
the one-dimensional (1D) array of spheres with the bound
frequencies above the light cone. Such localized solutions of
the Maxwell equations are known as the bound states in the
continuum (BSC) and were first reported by von Neumann
and Wigner [35] for the stationary Schrödinger equation with a
specially chosen oscillatory potential. Nowadays, the BSCs are
known to exist in various waveguide structures ranging from
quantum dots [36–39] to acoustic periodic structures [40–44],
where they are known as the embedded trapped modes, to
photonic crystals [30,45–50]. The BSCs are of immense
interest in optics thanks to the experimental opportunity to
confine light despite that outgoing waves are allowed in the
surrounding medium [31,34,51–54].

II. BASIC EQUATIONS FOR EM WAVE SCATTERING
BY A LINEAR ARRAY OF SPHERES

In the present paper we consider a free-standing 1D infinite
array of dielectric spheres in air (Fig. 1). In what follows we
refer to all length quantities in terms of the period h of the
array. We formulate the scattering theory by a periodic array
of dielectric spheres in the form of the Lippmann-Schwinger
equation similar to the approach developed for a periodic array
of dielectric cylinders [27]:

L̂a = � inc, (1)

where the matrix L̂ accounts for both the scattering matrix of
the isolated sphere and the mutual scattering events between
the spheres, � inc is given by the incident wave, and the column
a consists of amplitudes am

l of the multipole expansion of the
scattering function.

The exact expression of the matrix L̂ was derived by Linton
et al. [24] for EM guided waves on a periodic array of dielectric
spheres. For the reader’s convenience we present the equations
and notations from the above reference. We seek the solutions
of the Maxwell equations, which obey the Bloch theorem

E(r + Rj ) = eiβRj E(r), H(r + Rj ) = eiβRj H(r)

with the Bloch wave vector β directed along the array aligned
with the z axis (see Fig. 1). Here Rj = jez is the position
of the center of the j th sphere and ez is the unit vector
along the array. Scattered EM fields are expanded in a series
over vector spherical harmonics Mm

n and Nm
n [1,24] defined in

Appendix A:

E(r) =
∑

j

eiβRj

∑
lm

[
am

l Mm
l (r − Rj ) + bm

l Nm
l (r − Rj )

]
,

H(r) = −i
∑

j

eiβRj

∑
lm

[
am

l Nm
l (r − Rj ) + bm

l Mm
l (r − Rj )

]
.

(2)
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FIG. 1. (Color online) A periodic infinite array of dielectric
spheres illuminated by a plane wave (short blue arrow). The wave
can be transmitted and reflected to discrete diffraction continua
enumerated by integers m and n in accordance with Eqs. (17) and (21)
shown by long red arrows.

In series (2) the first and second terms presents TE and TM
spherical vector EM fields, respectively.

In absence of an incident wave Linton et al. [24] derived
the homogeneous matrix equation for the amplitudes am

l and
bm

l :

Z−1
TE,la

m
l −

∑
ν

(
am

ν Amm
νl + bm

ν Bmm
νl

) = 0,

(3)
Z−1

TM,lb
m
l −

∑
ν

(
am

ν Bmm
νl + bm

ν Amm
νl

) = 0,

where summation over ν begins with max(1,m), and the so-
called Lorenz-Mie coefficients are given by

ZTE,l = jl(kR)[rjl(k0r)]′r=R − jl(k0R)[rjl(kr)]′r=R

hl(k0R)[rjl(kr)]′r=R − jl(kR)[rhl(k0r)]′r=R

,

(4)

ZTM,l = εjl(kR)[rjl(k0r)]′r=R − jl(k0R)[rjl(kr)]′r=R

hl(k0R)[rjl(kr)]′r=R − εjl(kR)[rhl(k0r)]′r=R

,

where k = √
εk0 and ε is the dielectric constant of the spheres,

Amm
lν = 4π (−1)miν−l

√
ν(ν + 1)

l(l + 1)

l+ν∑
p=|l−ν|;l+ν+p=even

× (−i)pglνpG(l,m; ν,−m; p)sp, (5)

Bmm
lν = 2π (−1)m√

l(l + 1)ν(ν + 1)

l+ν−1∑
p=|l−ν|+1;l+ν+p=odd

× iν−l−p

√
2p + 1

2p − 1
H(l,m; ν,−m; p)sp. (6)

The coefficients

glνp = 1 + (l − ν + p + 1)(l + ν − p)

2ν(2ν + 1)

− (ν − l + p + 1)(l + ν + p + 2)

2(ν + 1)(2ν + 1)
, (7)

G(l,m; ν,μ; p) = (−1)m+μ

√
4π

√
(2l + 1)(2ν + 1)(2p + 1)

×
(

l ν p

m μ −m − μ

)(
l ν p

0 0 0

)
(8)

are expressed in terms of Wigner 3-j symbols,

H(l,m; ν,−m; p) =
1∑

s=−1

Gs(l,m; ν,−m; p), (9)

with

G0(l,m; ν,−m; p) = −2m|p|G(l,m; ν,−m; p − 1),

G±1(l,m; ν,−m; p) = ∓
√

(ν ± m)(ν ∓ m + 1)p(p − 1)

×G(l,m; ν,−m ± 1; p − 1), (10)

and

sp = λp0

∞∑
j=1

hp(k0j )(eiβj + (−1)pe−iβj ), (11)

where λlm is normalization factor given in Appendix B.
The next step is to account for an incident plane wave which

can be expanded over vector spherical harmonics [1,7]:

Eσ (r) =
∞∑
l=1

l∑
−l

[
qσ

lmMm
l (r) + pσ

lmNm
l (r)

]
,

(12)

Hσ (r) = −i

∞∑
l=1

l∑
−l

[
pσ

lmMm
l (r) + qσ

lmNm
l (r)

]
.

Here index σ stands for plane TE and TM waves:

pTE
lm = −Flmτlm(α), qTE

lm = Flmπlm(α),
(13)

pTM
lm = −iFlmπlm(α), qTM

lm = iFlmτlm(α),

kx = −k0 sin α, ky = k0 cos α,

Flm = (−1)mil

√
4π (2l + 1)(l − m)!

(l + m)!
,

τlm(α) = m

sin α
P m

l (cos α), (14)

πlm(α) = − d

dα
P m

l (cos α).

For a particular case of normal incidence kz = 0 and α =
−π/2, we obtain the following from Eqs. (14):

τlm = −mP m
l (0), πlm = − d

dα
P m

l (0). (15)

The general equation for the amplitudes am
l and bm

l which
describe the scattering by a linear array of spheres takes the
following form:

Z−1
TE,la

m
l −

∑
ν

(
am

ν Amm
νl + bm

ν Bmm
νl

) = qσ
lm,

(16)
Z−1

TM,lb
m
l −

∑
ν

(
am

ν Bmm
νl + bm

ν Amm
νl

) = pσ
lm
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Here the left-hand term formulates explicitly the matrix L̂ in
Eq. (1) and the right-hand term corresponds to the vector of
incident wave � inc in the space of vector spherical functions
notified by two integers, l and m, and polarization σ .

III. THE DIFFRACTION CONTINUA OF VECTOR
CYLINDRICAL MODES

Thanks to the axial symmetry of the array we can exploit
the vector cylindrical modes for description of the diffraction
continua which are doubly degenerate in TM and TE polar-
izations σ . The modes can be expressed through the scalar
function ψ [1]:

ψm,n(r,φ,z) = H (1)
m (χnr)eimφ+ikz,nz. (17)

Then for the TE modes we have

Ez = 0, Hz = ψm,n,

Er = ik0

χ2
n

1

r

∂ψm,n

∂φ
, Hr = ikz

χ2
n

∂ψm,n

∂r
, (18)

Eφ = −ik0

χ2
n

∂ψm,n

∂r
, Hφ = ikz

χ2
n

1

r

∂ψm,n

∂φ
,

and for the TM modes we have

Ez = ψm,n, Hz = 0,

Er = ikz

χ2
n

∂ψm,n

∂r
, Hr = −ik0

χ2
n

1

r

∂ψm,n

∂φ
, (19)

Eφ = ikz

χ2
n

1

r

∂ψm,n

∂φ
, Hφ = ik0

χ2
n

∂ψm,n

∂r
,

where

χ2
n = k2

0 − k2
z,n (20)

and

kz,n = β + 2πn, n = 0,±1,±2, . . . . (21)

In what follows we consider the BSCs in the diffraction
continua specified by two quantum numbers m and n, where
the m is the result of the axial symmetry and n is the result
of translational symmetry of the infinite linear array of the
dielectric spheres. Note that each diffraction continuum is
doubly degenerate relative to the polarization σ . As a result of
the interplay between the frequency k0 and the wave number
kz,n the continua can be open (χ is real) or closed (χ is
imaginary). The axial symmetry of the system substantially
simplifies the consideration of BSCs since the azimuthal
behavior is specified by the integer m only. That reduces the
dimensionality of the system from the 3D space of the variables
r , φ, and z to the 2D space of r and z.

IV. SYMMETRY CLASSIFICATION OF BSCS

In the previous section we presented the theory for the
scattering of plane waves by a periodic array of dielectric
spheres based on the approach by Linton et al. [24]. If there is
no incident wave we have L̂a = 0, whose solutions are bound
modes of the array. There might be two kinds of the bound
modes. The first type of modes have wave number β > k0 and
describe guided waves along the array. These solutions found

TABLE I. Classification of the BSCs.

m β Type I of BSC Type II of BSC

�=0 0 (am
2k,b

m
2k+1) (am

2k+1,b
m
2k)

0 �= 0 (a0
l ,0),Ez = 0 (0,b0

l ),Hz = 0
0 0 (a0

2k,0),Ez = 0 (0,b0
2k),Hz = 0

0 0 (0,b0
2k+1),Hz = 0 (a0

2k+1,0),Ez = 0

by Linton et al. [24] exist in some interval of the material
parameters of spheres, dielectric constant ε or radius R, and the
Bloch wave number β. The second type of bound modes with
β < k0 resides above the light cone (BSCs). It is much more
difficult to establish the existence of the second type of bound
states because a tuning of material parameters is required.
However there might exist symmetry-protected BSCs which
are robust with respect to the material parameters. These BSCs
have been already considered in the linear array of infinitely
long dielectric rods [25–27,29,31,34,52].

The axial symmetry of the array implies that the matrices A
andB split into the irreducible representations of the azimuthal
number m which therefore classifies the BSCs. Next, the
discrete translational symmetry along the z axis implies that the
respective wave number β specifies the BSC. At last, additional
optional symmetries arise due to the inversion symmetry
transformation K̂f (x,y,z) = f (x,y,−z) for β = 0 and π .
It follows from Eq. (11) that s2k+1 = 0, and, respectively,
from Eqs. (5) and (6) we obtain Amm

νL = 0 if l + ν is odd and
Bmm

νL = 0 if l + ν is even. Moreover for arbitrary β,: B00
νl = 0

(see Appendix B). These relations establish the selection rules
for the amplitudes am

l and bm
l which determine the allowed

BSC modes listed in Table I.
The Cartesian components of the vector spherical functions

transform under the inversion of z as follows

Mm
l,x,y(π − θ ) = −(−1)l−mMm

l,x,y(θ ),

Mm
l,z(π − θ ) = (−1)l−mMm

l,z(θ ),
(22)

Nm
l,x,y(π − θ ) = (−1)l−mNm

l,x,y(θ ),

Nm
l,z(π − θ ) = −(−1)l−mNm

l,z(θ ).

For β = 0 we have∑
j

Mm
l,x,y(r − Rj ) = −(−1)l−m

∑
j

Mm
l,x,y(K̂r − Rj ),

∑
j

Mm
l,z(r − Rj ) = (−1)l−m

∑
j

Mm
l,z(K̂r − Rj ).

(23)∑
j

Nm
l,x,y(r − Rj ) = −(−1)l−m

∑
j

Nm
l,x,y(K̂r − Rj ),

∑
j

Nm
l,z(r − Rj ) = (−1)l−m

∑
j

Nm
l,z(K̂r − Rj ).

Then from these equations and Eqs. (2) one can obtain the
following symmetric properties for the Cartesian components
of the EM fields collected in Table II.

Tables I and II are useful for the symmetry classification
of the bound modes in the next sections. In particular, as it is
seen from Table I for m = 0 and β = 0 the type I of BSCs is
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TABLE II. Symmetry properties of the eigenmodes with β = 0.

Type I Type II

Ex,y(−z) = (−1)m+1Ex,y(z) Ex,y(−z) = (−1)mEx,y(z)
Ez(−z) = (−1)mEz(z) Ez(−z) = (−1)m+1Ez(z)
Hx,y(−z) = (−1)mHx,y(z) Hx,y(−z) = (−1)m+1Hx,y(z)
Hz(−z) = (−1)m+1Hz(z) Hz(−z) = (−1)mHz(z)

the pure TE modes while the type II is the pure TM modes.
However when m �= 0 the BSCs are given by superposition
of TE and TM polarized modes. Nevertheless each type I and
type II of the BSCs presents a sort of polarization because of
their orthogonality to each other.

V. SYMMETRY-PROTECTED BSCs

In this section we present numerical solutions of Eq. (3)
for the symmetry-protected BSCs with m = 0 and β = 0
embedded into the first diffraction continuum with n = 0.
They constitute the majority of the BSCs in the array. The
symmetry-protected BSCs are either pure TE spherical vector
modes (Type I in Table I) with a0

2k �= 0 and b0
k = 0 or pure

TM spherical vector modes (Type II in Table II) with a0
k = 0

and b0
2k �= 0. We show that the symmetry-protected BSCs are

symmetrically mismatched to the first open continuum.

A. BSCs with m = 0

Below we present numerical solutions for the TE BSCs
with an accuracy of 10−4:

k0 = 4.24, R = 0.3, ε = 12,
(24)

a0
l =

⎛⎝ 0
0.7563 − 0.6542i

0

⎞⎠, b0
l = 0,l � 1,

k0 = 5.0115, R = 0.4, ε = 12,
(25)

a0
l =

⎛⎜⎜⎜⎜⎜⎝
0

0.08576 + 0.1161i

0
0.588 + 0.796i

0
−0.0002 − 0.0003i

⎞⎟⎟⎟⎟⎟⎠, b0
l = 0,l � 1.

These TE BSCs embedded into the lowest n = 0 diffraction
continua of both polarizations are shown in Figs. 2(a) and 2(b).
Hereinafter we plot only the real parts of EM fields. There are
also the TM BSCs:

k0 = 4.7504, R = 0.3, ε = 15, a0
l = 0,

(26)

b0
l =

⎛⎜⎝ 0
−0.6017 + 0.7988i

0
0.0004 − 0.0006i

⎞⎟⎠, l � 1,

FIG. 2. (Color online) Patterns of the symmetry-protected BSCs
embedded into the TE and TM continua with m = 0 and n = 0. TE
BSCs from Eq. (24) [panel (a)] and Eq. (25) [panel (b)] with electric
force lines (red) parallel to the sphere surface. TM BSCs from Eq. (26)
[panel (c)] and Eq. (27) [panel (d)] with magnetic force lines (blue)
parallel to sphere surface. Left panels show the real parts of the EM
field components; right panels show the electric force lines in red and
the magnetic force lines in blue.
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k0 = 6.1522, R = 0.47, ε = 15, a0
l = 0,

(27)

b1
0 =

⎛⎜⎜⎜⎜⎜⎝
0

−0.8718 + 0.3926i

0
0.267 − 0.1203i

0
−0.0013 + 0.0006i

⎞⎟⎟⎟⎟⎟⎠, l � 1.

Patterns of these TM BSCs are shown in Figs. 2(c) and 2(d).
Due to the immediate vicinity of the BSC (27) to the
second diffraction continuum, the BSC shows a large scale
of localization around the spheres (see also Sec. VIII).

The symmetry-protected TE and TM polarized BSCs have
qualitatively similar field structure with respect to E ↔ H but
are not degenerate because of different boundary conditions for
E and H at the sphere surface. The TE polarized BSC (24) and
the TM polarized BSC (26) have the dominant contribution
a0

2 while the TE BSC (25) and the TM BSC (27) have
the noticeable contribution of a0

4 , which is reflected in the
complication of the EM force lines shown in Figs. 2(b) and
2(d). From Table II one can see why the eigenmodes (24)–(27)
are protected by symmetry against decay into the diffraction
continua m = 0 and n = 0 with TE and TM polarizations.
From Eqs. (18) and (19) we obtain that the TE and TM
continua with kz,0 = 0 (β = 0) have the only Hz �= 0 and
Ez �= 0 independent of z. The TE BSC has Ez = 0 and odd Hz

so that these types of BSCs are symmetrically mismatched to
both TE and TM continua. Similarly, the TM BSC has odd Ez

and Hz = 0 and is decoupled from both TE and TM continua.
Besides the fully symmetry-protected BSCs from the third

row in Table I, (a0
2k,0) and (0,b0

2k), we found a partially
symmetry-protected TM BSC (a0

2k+1,0) from the fourth row
of Table I:

k0 = 2.934, R = 0.4805, ε = 15,
(28)

a0
l =

⎛⎜⎜⎜⎝
0.6826 + 0.0332i

0
−0.7291 − 0.0354i

0
−0.0008

⎞⎟⎟⎟⎠, b0
l = 0, l � 1;

however, the TE BSCs with (0,b0
2k+1) were not revealed in our

computations. The TM BSC (28) is symmetrically mismatched
relative only to the m = 0 and n = 0 continuum with TM
polarization. Zero coupling of this BSC with the TE continuum
can be achieved by tuning the radii of spheres. Patterns of EM
fields and EM force lines for this TM BSC are shown in Fig. 3.

B. ±m degenerate BSCs with β = 0

For the m = 0 case the BSC solutions can be described by
purely TE or TM modes in cylindrical coordinate as is shown in
Figs. 2 and 3. The case m �= 0 is fundamentally different from
the former case. Nevertheless the above-described mechanism
for partially symmetry-protected BSCs with m = 0 can be
exploited for even the case m �= 0. Obviously, the system has
the time-reversal symmetry which implies that such BSCs
are degenerated over ±m. Let us start with the type I BSC
with m = 1 which has the odd Ez and the even Hz according
to Tables I and II. This BSC is symmetrically mismatched

FIG. 3. (Color online) Pattern of the TM BSC from Eq. (28)
embedded into the TE and TM diffraction continua with m = 0 and
n = 0.

with the TM diffraction continuum m = 1 and n = 0 which
is independent of z. The coupling with the TE continuum can
be canceled by tuning the radius. The result of computation
of this partially symmetry-protected type I BSC (a2k,b2k+1) is
the following:

m = 1, k0 = 2.847, R = 0.3945,

(
a1

l ,b
1
l

) =

⎛⎜⎝ 0 0.6662 + 0.4273i

−0.33 + 0.5145i 0
0 −0.0048 − 0.0031i

0 0

⎞⎟⎠,

l � 1, (29)

and is shown in Fig. 4(a). The type II BSC (a2k+1,b2k) with
m = 2 has even Ez and odd Hz. It is symmetry protected
against decay into the TE continuum with m = 2 and n = 0,

FIG. 4. (Color online) BSC with β = 0 embedded into the TE
and TM continua with n = 0 and m �= 0: (a) the type I BSC [Eq. (29)]
with m = ±1 and (b) the type II BSC [Eq. (30)] with m = ±2.
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and coupling with the TM continuum is canceled by tuning
the radius with the following result:

m = 2, k0 = 3.086, R = 0.471,

(
a2

l ,b
2
l

) =

⎛⎜⎜⎜⎝
0 0.6545 + 0.2013i

−0.2142 + 0.6964i 0
0 −0.0057 − 0.0018i

0 0
0 0

⎞⎟⎟⎟⎠,

l � 2. (30)

All components of electric and magnetic fields are nonzero
and localized around the array as shown in Fig. 4. We show
the EM field around only one sphere because the pattern is
periodically repeated along the z axis. One can see that the
value of the azimuthal number m is reflected in the structure of
the force lines in the x-y plane while the number of amplitudes
am

l is reflected in the structure of lines along the z axis.
Figure 4 clearly shows that the BSCs with m �= 0 are neither
TE polarized nor TM polarized.

VI. ROBUST BLOCH BSCs WITH β �= 0 AND m = 0

Could the Bloch BSC occur at β �= 0 in the continuum of
free-space modes? This question was first answered positively
by Porter and Evans [42] who considered acoustic trapping
in an array of rods of rectangular cross section. Marinica
et al. [46] demonstrated the existence of the Bloch BSC with
β �= 0 in two parallel dielectric gratings and Ndangali and
Shabanov [26] in two parallel arrays of dielectric rods. In
a single array of rods positioned on the surface of bulk 2D
photonic crystal multiple BSCs with β � 0 were considered by
Hsu et al. [29]. The Bloch BSCs in a single array of cylindrical
dielectric rods in air were also reported in Ref. [27]. Such
traveling wave Bloch BSCs with the eigenfrequencies above
the light cone are interesting because the array serves as a
waveguide although only for fixed β (see summary of BSCs in
Fig. 8) in contrast to the bound states below the light cone [24].

According to Table I the Bloch BSCs with β �= 0 and
m = 0 have only the nonzero components a0

l or b0
l . Let us

first consider type I BSCs with b0
l = 0 which have Ez = 0

and, therefore, are decoupled with the TM continuum but
coupled with the TE n = 0 and m = 0 continuum. We show
numerically that this coupling can be canceled under variation
of β. The numerical results are collected in Eq. (31) with the
pattern of EM fields shown in Fig. 5:

k0 = 3.6505, R = 0.4, ε = 15, β = 1.2074,

(
a1

l ,b
1
l

) =

⎛⎜⎜⎜⎝
0.1053 − 0.0638i 0
0.1918 + 0.3161i 0
0.6046 + 0.5572i 0
0.7873 + 0.4777i 0

−0.0033 − 0.0054i 0

⎞⎟⎟⎟⎠, l � 1. (31)

Although this BSC occurs at the fixed value of β there is
no necessity to tune the material parameters of the spheres
and therefore the BSC can be referred to as robust, which
is attractive from an experimental viewpoint. We managed
to find only type I BSCs for ε = 15 and none of type II.
Such a difference between the types is related to different

FIG. 5. (Color online) EM field configurations of the TE Bloch
BSC with β = 1.2074 given by Eq. (31) embedded into TE and TM
continua with m = 0 and n = 0.

boundary conditions for electric and magnetic fields at material
interfaces.

VII. THE BOUND STATES EMBEDDED INTO TWO AND
THREE DIFFRACTION CONTINUA

According to Sec. III the continua in the form of outgoing
cylindrical waves are specified by two numbers m and n which
define kz,n. Above we presented numerous BSCs embedded
into the first diffraction continuum with n = 0. However there
might be BSCs embedded into a few continua as was shown for
the case of grating structures [26,27]. Let us consider a TE BSC
with m = 0 and β = π , with the nonzero component a0

2k �= 0,
Ez = 0, and odd component Hz according to Table I. This
BSC is coupled with the TE polarized radiation continua m =
0,n = 0 and m = 0,n = −1 which have kz,0 = π and kz,−1 =
−π , respectively. Because of degeneracy of the continua we
can form linear combinations with both even and odd Hz.
Then, obviously, the the BSC remains coupled with the odd
Hz continuum. This coupling can be canceled by variation
of the sphere radius to give the following result for the BSC
amplitudes:

m = 0, β = π, k0 = 5.0185, R = 0.35456,
(32)

ε = 15, a0
l =

⎛⎜⎜⎜⎝
0

0.1552 − 0.0123i

0
−0.9847 + 0.0776i

0

⎞⎟⎟⎟⎠, l � 1.

The EM field and force lines are shown in Fig. 6.
We also found a type II BSC (0,b2k) with m = 0 and β = 0

with odd Ez and Hz = 0 embedded into three continua with
n = 0 and ±1 shown in Fig. 7. As is shown above this BSC is
completely decoupled from the TE and TM radiation continua
with n = 0 due to the symmetry. As for the other continua
with n = ±1 the BSC is decoupled from the TE continua.
Similar to the previous case the degenerate TM continua have
kz,±1 = ±2π and can be superposed into the continua with
either even or odd Ez. Thus, the type II BSC is decoupled with
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FIG. 6. (Color online) Pattern of the TE BSC with m = 0 and
β = π embedded into four TE and TM continua with m = 0,n = 0
and m = 0,n = −1, respectively, given by Eq. (32).

the continuum with even Ez. By variation of the sphere radius
we achieved zero coupling with the continuum with odd Ez

with the following solution:

m = 0, β = 0, k0 = 8.9129, R = 0.4274, ε = 15,

b0
l =

⎛⎜⎜⎜⎜⎜⎝
0

−0.2273 − 0.1508i

0
−0.8015 − 0.532i

0
0.0082 + 0.0055i

⎞⎟⎟⎟⎟⎟⎠, l � 1. (33)

We collected the BSC frequencies k0 and Bloch vectors β in
Fig. 8.

VIII. EMERGENCE OF THE BSC IN SCATTERING

Scattering of plane waves by periodic 2D arrays of dielectric
spheres was first considered in the pioneering papers by Ohtaka
et al. [3–5] (see also Ref. [6]). Scattering by aggregates
of spheres was considered in the framework of multisphere
Mie scattering [7,10,12], nevertheless to our knowledge the
scattering by a 1D infinite array of dielectric spheres has not
been considered so far. In this section we present the results of
numerical computations for differential and total cross sections
of the infinite array with the focus on resonant traces of
the BSCs similar to the scattering by an array of dielectric
rods [27,29,31]. In what follows we restrict ourselves to the
BSCs which are standing localized solutions with β = 0. The
general theory of scattering in terms (am

l ,bm
l ) is formulated in

the form of Eq. (16), which allows one to find the amplitudes.
After the amplitudes are found from Eq. (16) one can expand
EM fields (2) over vector cylindrical modes to calculate the
cross sections.

FIG. 7. (Color online) Pattern of the TM BSC with m = 0 and
β = 0 embedded into three continua with m = 0,n = 0 and m =
0,n = ±1 given by Eqs. (33).

FIG. 8. (Color online) BSC frequencies and Bloch vector β

relative to the light line k0 = β. Dash and dash-dot lines show
thresholds where the next continua n = ±1 and n = −2 are opened.
Fully symmetry-protected BSCs [Eqs. (24) and (26)] are marked by
open circles (TE BSCs are in red and TM BSCs are in green), a TM
BSC [Eq. (28)] is marked by a star, two degenerate BSCs [Eqs. (29)
and (30)] are marked by solid points, the Bloch BSC [Eq. (31)]
with β �= 0 is marked by a rhombus, and BSCs [Eqs. (32) and (33)]
embedded into two and three continua are marked by crosses.

While the BSCs are given by the homogeneous part of
Eq. (1) with � inc = 0, the scattering fields are given by the
solution of inhomogeneous Eq. (3) with an incident plane
wave at the right-hand part. As it follows from Eqs. (20)
and (21) only one diffraction channel, n = 0, is open for low
frequencies k0 where the majority of the BSCs occur. Although
the BSCs cannot be probed directly by an incident wave, they
are seen as collapses of the Fano resonance when the BSC
point is approached in the parametric space. That phenomenon
was observed for the scattering of EM waves by arrays of
rods [25–27,29,31,33,34,49] and layered spheres [55]. In this
section we report a similar Fano resonance collapse in the
differential and total cross sections vs frequency when the wave
number kz tends to zero or the radius of the spheres approaches
the BSC radius. The Fano resonance for the present system can
be interpreted as an interference of the optical paths through
and between the spheres. We restrict ourselves to the BSC
effects on the cross section for the fully symmetry-protected
BSCs and the BSCs degenerate over m = ±2.

Let us consider an incident plane wave with the wave vector
in the x-z plane and polarizations: (a) TE polarized with the
electric field along the y axis and (b) TM polarized with the
magnetic field along the y axis. For m = 0 and kz �= 0 Eqs. (13)
and (14) give that pTE

l0 = 0 and qTM
l0 = 0. Then taking into

account that B00
νl = 0 (see Appendix B) we have the following

from Eqs. (16) for the TE incident plane wave:

Z−1
TE,la

0
l −

∑
ν

a0
νA00

νl = qTE
l0 ,

(34)
Z−1

TM,lb
0
l −

∑
ν

b0
νA00

νl = 0.

We do not present here the sectors of wave scattering with
m �= 0 since the type I BSC belongs to the sector m = 0. The
second equation gives b0

l = 0, so that the plane wave with
TE polarization after the scattering is given by a0

l only. Then
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FIG. 9. (Color online) Total cross section for scattering of the
plane wave incident by the angle φ onto the array. (a) Scattering
of the TE plane wave is strongly affected by the presence of the
symmetry-protected type I BSC [Eq. (24)] with the eigenfrequency
k0 = 4.24 for R = 0.3 and ε = 12. (b) Scattering of the TM plane
wave is strongly affected by the presence of the symmetry-protected
type II BSC [Eq. (26)] with the eigenfrequency k0 = 4.7504 for R =
0.3 and ε = 15.

the type I BSCs are quasi-BSCs weakly coupled with the
TE continuum for small kz. That results in a sharp resonant
contribution in the cross section σTE,TE as shown in Fig. 9(a).
The cross sections σTE,TM, σTM,TM, and σTM,TE have no features
related to these BSCs and are not shown in Fig. 9(a). If the
plane wave is incident onto the array normally α = −π/2
(kz = 0) we have a fully invisible type I BSC that is shown by
dash line in Fig. 9(a). Alternatively, the symmetry-protected
type II BSCs with the only nonzero bk can be observed via the
cross section σTM,TM as shown in Fig. 9(b). Thus, although the
BSCs have no effect for the normal incidence they are detected
by the collapse of Fano resonances in total cross sections for
kz → 0.

Next, consider the effect of the BSCs with m = 2 given
by Eq. (30) on the cross section. We begin with the TE
plane waves incident on the array normally (kz = 0). Then
we have from Eqs. (13)–(15) that pTE

l2 = 0 and qTE
l2 �= 0 for

odd l, and pTE
l2 �= 0 and qTE

l2 = 0 for even l. Therefore, as
Eq. (16) shows, there are only type II solutions for scattered
waves with the amplitudes (a2k+1,b2k). Table I shows that they
belong to the same type of BSCs with m = 2. Therefore in
the vicinity of RBSC = 0.471 this BSC is coupled with the
TE continuum and gives the resonant contribution in the cross
section σTE,TE that is demonstrated in Figs. 10(a) and 10(b).
As for the scattering of the TM plane waves there are no
resonant features as shown in Fig. 10(b) by the dash line. One
can see in Fig. 10(c) bright features of the differential cross
sections near the eigenfrequency of the BSC caused by the
resonant contribution of the amplitude A2 at the azimuthal
angles φ = 0, ±90◦, and 180◦:

dσ

dφ
= σ0

∣∣∣∣∣∑
m

Am cos(mφ)

∣∣∣∣∣
2

. (35)

It is clear that for the sphere radius close to RBSC = 0.471
the BSC solution dominates in the near field zone. The solution
can be presented as

� = α�BSC + �, (36)

where α has a resonant behavior over frequency k0 with the
resonant width γ ∼ |R − RBSC|. Analytical expression for
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FIG. 10. (Color online) The effect of the BSC (30) with m = 2,
k0 = 3.086, and R = 0.471 on (a) differential cross section vs
frequency and the azimuthal angle, (b) total cross sections for
different radii of the spheres close to the BSC radius (29) for plane
waves illuminating the array normally. (c) Frequency behavior of the
amplitudes Am in the expansion (35). (d) Harvesting capability of the
quasi-BSC at R = 0.473. The dashed red line shows the contribution
of the BSC to the scattering function; the blue solid line shows the
background φ.

the resonant width can be derived following Refs. [39,56].
Thus we have slowly decaying quasi-BSC modes above the
light cone similar to those considered in Ref. [57]. That
effect is important for the concentration of light by touching
spheres [33,58] identified as the harvesting capability of the
system. Figure 10(d) illustrates the harvesting capability of
the array of spheres in the vicinity of the BSC (30). Solid blue
lines show the contribution of the background φ = ||�|| where
|| · · · || is the norm of vector �.

IX. SUMMARY

Recently the BSCs above the light cone were shown to
exist in various systems of 1D arrays of dielectric rods
and holes in a dielectric slab [25–31,46]. Similar acoustic
BSCs called embedded trapped Rayleigh-Bloch surface waves
were obtained in a system of material rods [40–44]. One
could ask why BSCs occur in periodic dielectric structures
(gratings) but not in homogeneous structures like a slab
or a rod which can support guided EM modes below the
light cone only. Let us begin with the simplest textbook
system of a dielectric slab infinitely long in the x-y plane
with the dielectric constant ε > 1. The Maxwell equations
can be solved by separation of variables for scalar function
ψ(x,y,z) = eikxx+ikyyψ(z) to result in bound states below the
light cone k2

0 = k2
x + k2

y [59] while all solutions above the
light cone are leaky [60]. The situation can be cardinally
changed by replacing the continual translational symmetry
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by the discrete symmetry ε(x,y,z) = ε(x + ph,y,z), where
p = 0,±1,±2, . . ., and h is the period of the structure.
Then the radiation continua of plane waves eikx,nx+ikyy+ikzz

are quantized kx,n = β + 2πn/h, n = 0,±1,±2, . . ., with
the frequency k2

0 = k2
x,n + k2

y + k2
z . Here β is the Bloch wave

vector along the x axis, and the integer n refers to the diffraction
continua [26]. The physical interpretation of this statement is
related to the slab with the discrete translational symmetry
being considered as a 1D diffraction lattice in the x direction.
Let us take for simplicity β = 0 and ky = 0. Assume there is
a bound solution with the eigenfrequency k0,BSC > 0 which
is coupled with all diffraction continua enumerated by n. Let
k0,BSC < 2π/h, i.e., the BSC resides in the first diffraction
continua but below the others. Because of the symmetry or
by variation of the material parameters of the modulated
slab we can achieve that the coupling of the solution with
the first diffraction continuum equals zero [27–31]. However
the solution is coupled with evanescent continua n = 1,2, . . .,
giving rise to exponential decay of the bound solution over the z

axis. The length of localization is given by L ∼ 1√
4π2/h2−k2

0,BSC

.

Therefore the evanescent diffraction continua play a principal
role in the space configuration of the BSCs. Moreover, one
can see from Fig. 8 that in the limit h → ∞ the BSCs
with frequency k0,BSC → 0 leave no room for the BSCs with
k0,BSC > 0.

In the present paper we choose another strategy to quantize
the radiation continuum. We replace the rod with continual
translational symmetry by a periodic array of dielectric
spheres. Because of the axial symmetry of the array aligned
along the z axis the quantized continua are specified by two
integers, m and n. The first integer is the azimuthal quantum
number and the second number defines discrete directions of
outgoing cylindrical waves (17) given by the wave vector
kz,n = β + 2πn/h in each sector m where β is the Bloch
vector along the array. The bottoms of the particular continua
with m = 0 and n = 0,±1 and n = −2 are shown in Fig. 8.
By arguments similar to those presented above for the grated
slab we obtain that the BSC with β = 0 embedded into the
first radiation continuum with m = 0 and n = 0 is localized
around the array with the radius of localization given by

1√
4π2/h2−k2

0,BSC

.

The symmetry of the system is also important for classifica-
tions of the BSCs which are labeled by the azimuthal number
of the continuum m of cylindrical vectorial waves and the
Bloch wave vector β.

(1) The symmetry-protected BSCs constitute the vast
majority of BSCs which are symmetrically mismatched with
the first diffraction continuum with m = 0 and n = 0 of both
polarizations. The EM field configurations of such BSCs
presented in Fig. 2 show hybridizations of a few orbital
numbers, l = 2,4,6, . . ., which specify the BSCs as multipoles
of high order. Therefore the BSC solutions cannot be obtained
by the use of the dipole approximation [21,22]. The most
remarkable property from an experimental viewpoint is the
robustness of the BSCs relative to the choice of the material
parameters of the dielectric spheres. We present in Fig. 3 an
example of a BSC which is symmetry protected relative to the
TM diffraction continuum but has a zero coupling to the TE
continuum obtained through variation of the sphere radius.

(2) By tuning of the radii of the spheres we found BSCs in
the next sectors of continua with m �= 0. These BSCs shown
in Fig. 4 are remarkable by degeneracy over the sign of
the azimuthal number. Each BSC with ±m has opposite the
Poynting vector.

(3) We demonstrated that the BSC can be accessed not only
by variation of the material parameters but also by variation
of Bloch wave vector β along the array axis. Patterns of the
Bloch BSCs are presented in Fig. 3.

(4) We found the trapped EM modes embedded in two
diffraction continua with n = 0 and n = 1 (Fig. 6) and three
continua with n = 0 and n = ±1 (Fig. 7).

The symmetry properties of the BSC play a very important
role since it is difficult to provide a zero coupling even with
the lowest continua with n = 0 because of the degeneracy
in polarization. Nevertheless the symmetry allows one to
decouple the BSC at least with some particular continua.

The advantage of dielectric structures is a high quality
factor and a wide range of BSC wavelengths from microns
(photonics) to centimeters (microwave) as dependent on the
choice of the radii of the spheres. Although the BSCs exist
only in selected points in the parametric space there is a nearest
vicinity of the BSC point where the BSC predominantly
contributes to the cross section and the EM field in the near
field zone as seen from Figs. 9 and 10. That leads to extremely
efficient light harvesting capabilities [58]. The far zone EM
fields can also show abundant features related to the BSCs. In
particular Fig. 8(a) demonstrates the effect of antenna when the
BSC with azimuthal number m = 2 converts the EM energy
into the perpendicular directions.
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APPENDIX A

The solution of the Maxwell equations inside and outside
of the dielectric sphere can be written via the scalar function
ψlm(r,θ,φ) = ψ(r)Ylm(θ,φ), where the radial solution is

ψ(r) =
{
cjl(

√
εk0r) if r < R,

ajl(k0r) + bh
(1)
l (k0r) if r � R.

(A1)

jl and h
(1)
l are spherical Bessel and Hankel functions defined

as

jl(x) =
√

π

2x
Jl+1/2(x), h

(1)
l (x) =

√
π

2x
JH

(1)
l+1/2(x). (A2)

Ylm are the spherical functions given by

Ym
l (θ,φ) = (−1)mλlmP m

l (cos θ )eimφ,

P m
l (x) = (1 − x2)m/2 1

2l!

dl+m

dxl+m
(x2 − 1)n, (A3)

Ym∗
l (θ,φ) = (−1)mY−m

l (θ,φ),
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and

λlm =
√

(2l + 1)(l − m)!

4π (l + m)!
. (A4)

Following Stratton [1] we introduce two independent vectorial
fields expressed through a single scalar function ψ which
satisfies the wave equation as follows:

Mm
l = ∇ × (rψlm), Nm

l = 1

k
∇ × Mm

l . (A5)

Then for the TE vector spherical modes we have(
E
H

)
=

(
Mm

l−i
√

εNm
l

)
, (A6)

and for the TM vector spherical modes we have(
E
H

)
=

(
Nm

l−i
√

εMm
l

)
. (A7)

APPENDIX B

The value B00
lν is expressed via

H(l,0,ν,0,p) = G+ + G− (B1)

for l + ν + p odd according to Eqs. (6)–(10), where

G± = ∓
√

ν(ν + 1)p(p − 1)G(l,0,ν,±1,p − 1),

G(l,0,ν,±1,p − 1) = −
√

(2l + 1)(2ν + 1)(2p − 1)

×
(

l ν p − 1
0 ±1 ∓1

)
×

(
l ν p − 1
0 0 0

)
(B2)

according to Eq. (8). Using the property of 3-j symbols(
j1 j2 j3

m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)
,

(B3)

we obtain (
l ν p − 1
0 1 −1

)
=

(
l ν p − 1
0 −1 1

)
(B4)

if l + ν + p − 1 is even. Therefore we have from Eqs. (B1)
and (B2) that H(l,0,ν,0,p) = 0 and B00

lν = 0, respectively.
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(2013).

[33] M. Zhang and X. Zhang, Sci. Rep. 5, 8266 (2015).
[34] M. Song, H. Yu, C. Wang, N. Yao, M. Pu, J. Luo, Z. Zhang, and

X. Luo, Opt. Express 23, 2895 (2015).
[35] J. von Neumann and E. Wigner, Phys. Z. 30, 465 (1929).
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