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Polaronic approach to strongly correlated electron systems with strong electron-phonon interaction
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The three-band p-d model of strongly correlated electrons interacting with optical phonons via diagonal and
off-diagonal electron-phonon interactions is considered within the cluster perturbation theory. In the beginning,
the exact diagonalization of the Hamiltonian of a CuO4 cluster results in the construction of local polaronic
eigenstates |p〉 with hole numbers nh = 0,1,2 per unit cell. The intercluster hoppings and interactions are exactly
written in terms of Hubbard operators X

pq

f = |p〉〈q| determined via the multielectron polaronic eigenstates |p〉 at
site f. The Fermi-type single-electron quasiparticle dispersion and spectral weight are calculated for the undoped
antiferromagnetic parent insulator like La2CuO4. The quasiparticle dispersion of Hubbard polarons is determined
by a hybridization of the Hubbard fermion subbands with local Franck-Condon resonances so the main polaronic
effect of the quasiparticle band structure is a splitting of the Hubbard bands on the number of Hubbard polaron
subbands. Increasing of the EPI constant results in an increase of splitting, decrease of the subband width, transfer
of the spectral weight to high-energy multiphonon excitations, and subsequent localization of the charge carriers.
Herewith, the effect of such renormalization for the conduction band and the valence one differs depending on the
ratio of the diagonal and off-diagonal EPI. In the framework of the GTB method, the Franck-Condon broadening
of the spectral function of polaronic excitations is also reproduced for strongly correlated systems with strong
electron-phonon interaction.
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I. INTRODUCTION

The electronic structure of the undoped cuprates, which are
parent compounds for the high-temperature superconductors
is one of the most important problems for understanding the
physics of the high-Tc superconductivity [1]. Strong electron
correlations (SEC) are known to result in the Mott insulating
state. The polaron formation and strong electron-phonon
interaction (EPI) are expected from the ionic nature of the
undoped cuprates. The interplay between EPI and SEC is a
key to resolve the quantum dynamics of the doped holes or
electrons into the high-Tc cuprates.

There are many experimental indications of a strong
electron-phonon interaction (EPI) in the HTSC cuprates. These
are large oxygen isotope effects on the Tc for underdoped
cuprates and on the superfluid density at the optimal doping
[2–6], kinks in the electronic structure from ARPES [7],
phonon softening with doping [8,9], etc. Attempts to describe
ARPES features [10,11] and optical conductivity spectra
[12–14] also indicate the strong EPI and polaronic nature
of carriers in the cuprates. The dispersion obtained from
ARPES is in good agreement with the t − t ′ − t ′′ − J -model
dispersion [1]. Theoretical models predict narrow quasiparticle
peaks in the low-energy region [15]. However, the peaks in
ARPES have a large width, which is comparable with the
width of the band and the form of the quasiparticle peaks
is better fitted by a Gaussian than a Lorentzian [10]. Also,
a temperature dependence of the peak width was found in
Ref. [11]. All these features were explained in the framework
of the Franck-Condon broadening concept [10,11,16–18].

The problem of a nonperturbative description of systems
with a strong interaction between charge and lattice vibrations
is investigated in a number of works [19–27]. The generic
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model to consider the electron-phonon interaction is the
Holstein model [22,23]. In the framework of the spinless
Holstein model, polaron states were investigated with the
quantum Monte Carlo method [28–31], exact diagonalization
[31,32], variational methods [33–37], density matrix renor-
malization group method [38,39], and momentum average
approximation (MA) [40,41]. The latter approach was also
applied to investigate the Edwards fermion-boson mode [42].
In the systems with SEC, it is important to take into account
the interplay between charge, spin, and lattice degrees of
freedom. It has been studied theoretically in the framework of
t − J -Holstein and Hubbard-Holstein hybrid models, and dif-
ferent approaches are used: inhomogeneous Hartree-Fock with
random phase approximation (RPA) fluctuation calculations
[43,44], LDA+U approximation [45], exact diagonalization
[46,47], quantum Monte Carlo [48], exact Monte Carlo
method [49], the diagrammatic Monte Carlo method [50–53],
dynamical cluster approximation (DCA) with a quantum
Monte Carlo [54,55] and the determinant quantum Monte
Carlo [56] methods, and the dynamical mean-field calculations
[57–59].

To consider both the local effects of the strong EPI as a
set of the Franck-Condon resonances [60] and the electron
dispersion in the infinite lattice, we present in this paper
the polaronic version of the multielectron generalized tight-
binding (GTB) approach to the quasiparticle band structure
in SEC materials. The generalized tight-binding method [61]
and its ab initio version LDA+GTB [62] have been developed
previously to study the electronic structure of the cuprates,
cobaltites, and manganites within the multiband Hubbard
model [63,64]. The polaronic version of the GTB method
(p-GTB) as well as the initial GTB is an example of cluster
perturbation theory [65,66]. The general idea of the GTB is
the following: the initial multiband Hubbard-like Hamiltonian
is written as the sum of the intracell part Hc and the intercell
hoppings and interactions Hcc. The exact diagonalization of
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the Hc provides a set of local multielectron eigenstates {|p〉}
and the intracell Hubbard operators X

pq

f = |p〉〈q| [67]. Hence
all two-site intercluster contributions in Hcc will be given by
bilinear products of Hubbard operators of different unit cells.
In other words, any multiband Hubbard-like model in GTB
looks like the original Hubbard model. The only difference is
the size of the matrix |p〉〈q|. In the original Hubbard model
with four local states it is a 4 × 4 matrix. In the five-band p-d
model [61] with a number of local electronic states Ne ≈ 100
the |p〉〈q| matrix size is Ne × Ne. In the polaronic approach
[16,68] with a number of coupled phonons Nph > 10, the size
of the |p〉〈p| matrix may be 1000 × 1000. Nevertheless, for the
low-energy physics only a small part of multielectron states is
relevant that is very important for the p-GTB approach below
[62].

Besides the local states of Cu d holes and O p holes and
local Coulomb interactions Ud , Up, and Vpd , we include the
electron-phonon interaction with an optical phonon mode. An
exact diagonalization of the Hamiltonian Hc results in the
local polaronic states {|p〉} defined for different number of
holes per unit cell nh = 0,1,2. For the three-band p-d model
[69,70] with EPI, the same procedure has been carried out in
Ref. [71]. Within the GTB perturbation treatment of the in-
tercluster Hamiltonian Hcc, we have calculated the dispersion
of Hubbard polarons that is formed by hybridization of the
Hubbard subbands with the local Franck-Condon resonances.
To distinguish standard polaron for non- or weakly correlated
electrons from polaron in strongly correlated electronic sys-
tems, we introduce the notion of Hubbard polarons for the latter
case. The first doped holes or electrons are delocalized at the
weak EPI and becomes localized at the strong EPI. Effects of
the diagonal (the Hubbard-Holstein model) and off-diagonal
EPI have been discussed. A partial compensation of these two
EPI has been found at the intermediate coupling strength.

The organization of this work is as follows. In the next
section, we present the three-band p-d model Hamiltonian
with additional bare phonons and EPI and separate the total
Hamiltonian to a sum of individual unit cells part Hc and
the intercell contribution Hcc. Section III clarifies briefly the
general ideas of the polaronic version of the GTB formalism.
In Sec. IV, we discuss the structure of the local Hilbert
space with multiphonon and multielectron eigenstates with
relevant for cuprates quantum numbers of holes per cell
nh = 0,1,2. Sections V and VI contain, respectively, the
calculated polaronic band structure and spectral function for
undoped cuprates. A discussion of the results is presented in
Sec. VII.

II. THE MINIMAL MODEL

Among the different groups of high-temperature super-
conductors the copper oxides can be classified as the most
correlated ones. To consider the interplay between strong EPI
and strong electron correlations in these compounds, we start
from a minimal semirealistic model that describes holes in the
CuO-plane interacting with the longitudinal optical vibrational
mode:

H = Hpd + Hph + HEPI. (1)

TABLE I. Hopping parameters and single-electron energies of the
p-d model (2) obtained in the framework of the LDA+GTB method
[62] and used in the present paper.

Parameter εd εp tpd tpp

value, eV 0 0.91 1.36 0.86

The Hamiltonian Hpd of the three-band p-d model [69,70]
includes only the most essential orbitals for the low-energy
physics of cuprates, i.e., the bonding Cu-dx2−y2 and O-px,py

ones:

Hpd =
∑
f,σ

(εd − μ)d†
fσ dfσ +

∑
α,g,σ

(εp − μ)p†
(α)gσ p(α)gσ

+
∑

α,α′,g�=g′,σ

tpα pα′ (p
†
(α)gσ p(α′)g′σ + H.c.)

+
∑

α,f �=g,σ

tpα d (d†
fσp(α)gσ + H.c.) + 1

2

∑
f,σ

Udn
σ
(d)fn

−σ
(d)f

+ 1

2

∑
g,σ

Upnσ
(pα )gn

−σ
(pα )g +

∑
α,f,g,σ,σ ′

Vpdn
σ
(d)fn

σ ′
(pα )g. (2)

Here, indexes f and g run through the positions of the copper
and oxygen plane atomic orbitals so that g = f + rl and index
l enumerates the oxygen atoms in the tetragonal unit cell
centered on site f. The values εd and εp are the copper
and oxygen hole energy levels, respectively, and μ is the
chemical potential. The operators df,σ and p(α)g,σ describe
the destruction of the holes with spin σ at orbitals dx2−y2

and p(α) = {px,py}; nσ
(d)f and nσ

p(α)g are the corresponding
hole number operators. The hopping tpα pα′ is between the
two nearest-neighbor oxygen sites, while tpαd corresponds to
the hopping between neighboring copper and oxygen orbitals.
The explicit form of hopping terms depends on the chosen
phase condition [72] and is consistent with the paper [61].
The largest energy scale in the problem is defined by a
set of the Coulomb repulsion parameters, which consists of
intra-atomic interactions Ud and Up and the nearest-neighbor
copper-oxygen Coulomb parameter Vpd .

The ab initio hopping parameters and single-electron
energies of the underlying p-d model (2) have been obtained
[62] earlier for La2CuO4 using a Wannier function projection
procedure [73]. Their values are listed in Table I. The
parameters in this table differ from the values in Table III
of Ref [62] since we do not normalize them by tpd . The
Coulomb parameters are taken from Ref. [74], where the
following values have been obtained by fitting to experimental
ARPES data: Ud = 9, Up = 4, and Vpd = 1.5 (all values are
given in eV). It should be noted that the values of parameters
are model dependent. For example, to fit the charge-transfer
gap and RIXS data, the authors of Ref. [75] use the value
of charge transfer energy � = εp − εd = 3.2 eV. With our
set of parameters from Table I, we also have reproduced the
experimental charge transfer gap in La2CuO4, which is 2 eV
at low temperatures and 1.5 eV above the Neel temperature
[76]. The charge transfer gap in our approach is determined not
only by � but also by the Coulomb oxygen-copper parameter
Vpd , which is absent in the calculations of Ref. [75]. We have
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also checked the stability of our results for the polaronic
band structure and spectral function to small variations of
parameters and have found only insignificant quantitative
shifts without any qualitative changes.

The next term in Eq. (1) is the phonon Hamiltonian
Hph, which includes the only in-plane full-breathing oxygen
vibrations that refers to the q = (π,π ) momentum point
in the bond-stretching Cu-O optical phonon branch. It is
sufficient for the purpose of the paper although a more realistic
approach should take at least several modes with the largest
coupling constant into account. In cuprates, these modes [9,77]
involve breathing Cu-O stretching motions of the planar and
apical oxygen atoms and out-of-plane buckling motions of the
planar oxygen atoms. Nevertheless, to reasonably simplify the
problem, the phonon Hamiltonian Hph has been written down
as

Hph = �ωbr

∑
f

(
e
†
f ef + 1

2

)
. (3)

Operators ef and e
†
f describe the destruction and creation,

respectively, of the local phonon at site f with the frequency
ωbr . They are linearly related to the displacement operator via
the canonical transformation

ufl =
√

�

2Mωbr

nl(e
†
f + ef), (4)

that convert a quadratic form of the initial vibration Hamilto-
nian to a diagonal one. Here, nl is the unit polarization vector,
which is assumed to be a constant independent of reciprocal
space vector q as well as the phonon frequency ωbr .

The phonon-induced renormalization of the electron ener-
gies is given by the Hamiltonian HEPI:

HEPI =
∑
f,σ

∑
l

(−1)Sl gdufld
†
fσ dfσ

+
∑

f �=g,σ

(−1)1+Sl gpdufl(d
†
fσpgσ + H.c.). (5)

The first diagonal term results from a modulation of the
copper on-site energy by the oxygen displacements from their
equilibrium positions. Since the value εd increases with the
Cu-O bond length increasing, the index Sl = 0 for
displacements (f ± rlex(y) ± δrlex(y)) and Sl = 1 for
(f ± rlex(y) ∓ δrlex(y)), where ex and ey are the unit
vectors in the directions x and y. The second term in Eq. (5)
is an off-diagonal one and describes the dependence of the
Cu-O hopping energy on the length of Cu-O bond.

It is convenient to define a dimensionless parameter of
electron-phonon interaction, which will be used throughout
this work as a measure of the electron-phonon coupling
strength,

λd(pd) = g2
d(pd)

2Mω2
brW

. (6)

For the chosen set of parameters, the bandwidth W of the
occupied valence band in La2CuO4 has been calculated by
the LDA+GTB method and is equal to 2.2 eV. The phonon
frequency is taken as ωbr = 90 meV in accordance with the

measured [9] value. In the present paper, the parameters λd(pd)

vary between 0 and 0.5 values.
To proceed in the scheme of the generalized tight-binding

method, we need to separate the total Hamiltonian (1) into
the intracell and intercell parts. The concomitant problem
of nonorthogonality of all operators related to the oxygen
sites of adjacent cells is solved explicitly via a canonical
transformation [78] that introduces new operators in k space.
A detailed description of this procedure for the Hamiltonian
of the p-d model can be found elsewhere [61,79]. The new
oxygen hole operators are a linear combination of the Fourier
transforms of the original p(x)qσ and p(y)qσ orbitals:

aqσ = − i

μq

(
sxp(x)qσ + syp(y)qσ

)
,

(7)

bqσ = i

μq

(
sxp(x)qσ − syp(y)qσ

)
,

where sx(y) = sin ( qx(y)a

2 ), a is a lattice parameter, and μq =√
s2
x + s2

y . In the coordinate space, the group orbitals aqσ and
bqσ are Wannier-like oxygen wave functions of a1g and b1g

symmetry, respectively, which are centered at the copper site
f and spread over several neighboring sites.

To diagonalize the phonon part of the Hamiltonian (1), a
procedure similar to the Shastry canonical transformation has
been successfully applied in Ref. [80]. Fourier transforms of
the new phonon operators are given by equations

Aq = − i

μq

(
sxe(x)q + sye(y)q

)
,

(8)

Bq = − i

μq

(
sye(x)q − sxe(y)q

)
.

After the orthogonalization (7) and (8), the total Hamilto-
nian can be written as a sum of the individual unit cell part Hc

and the intercell contribution Hcc.

H = Hc + Hcc, Hc =
∑
f,σ

Hfσ , Hcc =
∑
f,f′,σ

Hff′σ , (9a)

Hfσ =
∑

β

(εβ − μ)nσ
(β)f − 2tpdμ0(d†

fσ bfσ + H.c.)

+ 1

2

∑
β

Uβnσ
(β)fn

−σ
(β)f +

∑
σ ′

Ṽpdn
σ
(d)fn

σ ′
(b)f

+ �ωbrA
†
f Af + 2λdμ0(A†

f + Af)n
σ
(d)f

+ 2λpdρ
A
0 (A†

f + Af)(d
†
fσ bfσ + H.c.), (9b)

Hff′σ = −2tpdμff′ (d†
fσ bf′σ + H.c.) − 2tppνff′ (b†fσ bf′σ + H.c.)

+ 2λdμff′ (A†
f + Af)n

σ
(d)f′ +

∑
g,h

2λpdρ
A
fgh

× (A†
f + Af)(d

†
gσ bhσ + H.c.). (9c)

Here, index β = {d,b} enumerates the plane orbitals of copper
and oxygen, respectively. The terms containing operators of
the a1g oxygen orbital as well as B-type phonon excitations
are omitted in Hamiltonian (9) because of their insignificantly
small influence on the low-lying local eigenstates. The effects
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of omitted oxygen orbital and B-type phonons will be
discussed below in Chapter VII. Expressions for the new
parameters and renormalizing coefficients from Eq. (9) are
presented in Appendix A.

We should emphasize that the electron-phonon interaction
in the derived Hamiltonian has a nonlocal character. The
procedure of orthogonalization results in a renormalization
of all matrix elements in Eq. (9), which become strongly
distance-dependent even if the initial parameters are taken
to be nonzero only for the nearest neighbors.

III. THE POLARONIC VERSION OF THE GTB METHOD

The GTB method has been proposed to calculate the
band structure of compounds in the limit of strong electron
correlations. When the Coulomb energy is much higher than
the kinetic energy, the idea of a bare electron as the zero
approximation of a theory does not work. Contrary to the
conventional tight-binding method, the local states in the GTB
approach are not free electron ones but rather quasiparticle
excitations between multielectron terms of dn and dn±1

configurations.
It should be clarified what these quasiparticles are. The

localized multielectron dn configurations for a separate ion
in the crystal field can be easily determined from local
electroneutrality. Let us denote the m possible for the given
configuration dn terms as Em(n). One of them is the ground
term E0(n), which is occupied at zero temperature. The
excitations from the ground to any term with the energy
�Em0 = Em(n) − E0(n) are the local Bose-type quasiparticles
such as excitons, magnons, and so on. If an external electron
comes to the given ion, the later changes its configuration to
dn+1 with its own energy spectra Em′(n + 1). The electron
addition energy mm′ = Em′ (n + 1) − Em(n) may be consid-
ered as a single-particle excitation between two multielectron
configurations, with the initial state Em(n) and the final state
Em′ (n + 1). The interatomic interactions transform these local
excitation energies mm′ into the quasiparticle bands mm′ (q).

Due to the large number of initial and final states, there
are different quasiparticles with all possible pairs of (m,m′). It
is evident that the contribution of each particular |m,n〉 →
|m′,n + 1〉 excitation is determined by the corresponding
matrix element 〈m′,n + 1|c†|m,n〉 of the electron creation
operator c†. Moreover, excitations from empty |m,n〉 to empty
|m′,n + 1〉 states have zero spectral weights, while their
energies mm′ are defined. The nonzero spectral weight of
the quasiparticles results from a total or partial occupation of
the participating multielectron terms.

Therefore, in the GTB picture, the correlated electron is
treated as a linear combination of different quasiparticles and
more importantly each of them has its own quasiparticle
weight. This results in the crucial difference between the
free-electron picture and the GTB one. The following spectral
weight redistribution over these quasiparticles defines the
underlying effects of the band structure formation in correlated
systems.

The polaronic version of the GTB method is a natural
development of the approach to the systems with strong
electron-electron and electron-phonon interactions. While in
the GTB picture the quasiparticles are formed via the electron-

electron interactions, in p-GTB method, the formation of
quasiparticles is owned to the presence of both electron-
electron and electron-phonon interactions.

IV. EXACT MULTIELECTRON AND MULTIPHONON
EIGENSTATES OF CuO4 CLUSTER

The undoped La2CuO4 has a mixture of d9p6 (hole on
copper) and d10p5 (hole on oxygen) configurations. Both
are related with one hole per unit cell (here CuO4 cluster).
The electron addition results in the d10p6 local configuration
without holes. The electron removal results in a mixture of
two-hole local configurations d9p5, d10p4, and d8p6. That
is why one has to start the GTB procedure with an exact
diagonalization of the local Hamiltonian Hc given by (9) in
the three subspaces of the Hilbert space with the number of
holes nh = 0,1,2.

A. Subspace with nh = 0

The eigenstates can be written as

|0,ν〉 = |0〉|ν〉, ν = 0,1, . . . ,Nmax. (10)

Here, |0〉 means the hole vacuum, corresponding to the
electronic configuration |d10p6〉, |ν〉 denotes a muliphonon
state with number of phonons nph = ν, which results from
ν × the action of a phonon creation operator A† on the vacuum
state |0〉 of a harmonic oscillator:

|ν〉 = 1√
ν!

(A†)ν |0〉. (11)

B. Subspace with nh = 1

Without EPI there are two eigenstates corresponding to the
bonding and antibonding mixtures of dx2−y2 copper and px,y

oxygen orbitals. The ith cluster eigenstate with one hole is a
spin doublet with a projection of spin σ that may be written in
the following way:

|1σ,i〉 =
Nmax∑
ν=0

(
cd
iν |dσ 〉|ν〉 + cb

iν |bσ 〉|ν〉). (12)

Here, |dσ 〉 = d+
σ |0〉, |bσ 〉 = b+

σ |0〉. In general, the ground and
excited eigenstates (12) characterize an electron surrounded by
a cloud of phonons, e.g., the polaron. The polaronic shift Epi

of the term (12) may be calculated as a difference in the term
i energy with and without EPI: Epi(λ) = Ei(λ) − Ei(λ = 0)
[27]. It is instructive also to calculate the square root of the
average square of the oxygen displacement√〈

u2
gl

〉
i
=

√
〈(nh,i)gl|u2

gl|(nh,i)gl〉
for the cluster centered at site f in the eigenstate |nh,i〉. This
value allows to restrict the EPI parameters not to get the
lattice melting following the Lindeman criterion. For values
λd,λpd < 0.5, the Lindeman criterion

√〈u2〉0 
 a is fullfilled
[see Fig. 1(c)].

For simplicity, we start our discussion with the effect
of diagonal EPI when the off-diagonal term λpd = 0. The
monotonic distribution of one hole among copper and oxygen
orbitals as a function of λd is shown in Fig. 1(a). The structure
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FIG. 1. (Color online) The distribution of a hole among copper d and oxygen b orbitals as a function of (a) the diagonal EPI λd and
(b) the phonon number ν for small coupling and (d) the same for large coupling, (c) the ground state |1σ,0〉 ratio of the square root of the

average square of oxygen displacement to the lattice parameter
√

〈u2〉0
a

, the polaronic shift Ep0, and the number of phonon 〈Nph〉0 dependencies
on the diagonal EPI.

of the polaronic state (12) is determined by the coefficients
cd
iν and cb

iν that are shown in Fig. 1(b) for different phonon
numbers. Without EPI, there is only one summand in Eq. (12)
with ν = 0. For small EPI, λd = 0.01, the maximal probability
is for the 0-phonon state (|cd

00|2 + |cb
00|2)|0〉, i.e., the phonon

cloud around the electron is very thin. For λd = 0.1, the
maximal probability to find a hole either on copper or on
oxygen occurs for the three-phonon ν = 3 state with rather
large contributions from 1-, 2-, and 4-phonon states, a similar
demonstration of the polaronic effect on the local single-hole
ground state has been obtained in Ref. [71]. With increasing
EPI the maximal probability shifts to the multiphonon states
with ν = 15 for λd = 0.3 and ν = 35 for λd = 0.5 [Fig. 1(d)].

For small λd , the effect of EPI on the occupation number
of a d orbital is weak because the polaronic shift Ep is small
versus the covalence that is determined by tpd , |Ep| 
 tpd .
Hole hopping from oxygen to copper takes time ≈1/tpd and
it is faster than the time it takes for a polaron to form a
potential well and become localized in it for the time ≈1/Ep.
A charge carrier is untrapped by the deformation field and
delocalized, we can call such a state a large radii local
polaron (large local polaron). The term “local” here indicates
a state without dispersion. The polaronic dispersion will be
considered in the next section, nevertheless, a classification of
polarons as large and small radii corresponds to light/heavy
effective mass states. The stronger the EPI the larger is the
population of holes on the copper orbital because the oxygen

holes are more mobile than the copper ones. Smoothly with
λd growth at λd = 0.03–0.04 the phonon cloud transforms
from the narrow distribution with the maximum at the 0-
phonon component in the eigenstates (12) to the multiphonon
components. Nevertheless, a partial occupation of the oxygen
orbital takes place for large EPI also. Only in the nonrealistic
limit λd = 1, we have found a full occupation of the d orbital
[Fig. 1(d)].

Now we consider the effect of both diagonal λd and
off-diagonal λpd EPI. Contrary to the diagonal EPI, the
off-diagonal one has a trend for hole delocalization. It results
in a partial compensation of both EPI contributions. For the
same value of λ, the multiphonon contribution to the eigenstate
(12) is much smaller [compare Fig. 2(a) and Fig. 1(b)].
From Fig. 2(a), it is clear that increasing of λpd up to the
λd value results in decreasing the size of the phonon cloud
and the multiphonon weight. With parameters λd,λpd there
are too many variants, for simplicity, we restrict ourselves
further by the case λd = λpd = λ. In this case, we have
found a critical value λc = 0.314 separating the properties
of our local polaron. At λ 
 λc, the square root of average
square of displacement

√
〈u2〉, number of phonons 〈Nph〉,

and the polaronic shift Ep are less than for the diagonal EPI
regime [compare Fig. 2(b) and Fig. 1(c)]. This is the effect
of the partial compensation of the diagonal and off-diagonal
EPI. At small λ, the redistribution of the hole between
copper and oxygen versus λ is almost absent [Fig. 2(c)], the
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FIG. 2. (Color online) The effect of both diagonal and off-diagonal EPI on (a) the distribution of a hole as a function the phonon number

and λpd , (b) ratio of the square root of the average square of the oxygen displacement to the lattice parameter
√

〈u2〉i
a

, the polaronic shift Epi

and the average number of phonons 〈Nph〉i
, (c) the change of the copper and oxygen orbital occupations for the ground and excited states, and

(d) the energy levels of a single hole ground and excited states.

polaronic shift of the ground and excited eigenstates (12) is
almost the same [Fig. 2(b)], the number of phonons 〈Nph〉
is close to the case of the EPI absence, and the difference
〈1,i + 1|Nph|1,i + 1〉 − 〈1,i|Nph|1,i〉 is close to 1. These are
the large local polaron states. When we approach the critical
value λc, all characteristics of the ground and excited terms
(12) drastically change. A nonmonotonic dependence appears
for the hole occupation numbers [Fig. 2(c)], the average square
of displacement 〈u2〉i , and the number of phonons 〈Nph〉i
[Fig. 2(b)] in the ground and excited terms, and the energies
of the ground and excited terms are close to a crossover
[Fig. 2(d)].

We have compared the polaronic effect in the ground and
several excited states in Fig. 3. Below the critical value we
find the maximum contribution of ν = 0 in the ground state,
while the multiphonon contributions dominate in the excited
states [Fig. 3(a)]. At the critical value λ = λc = 0.314, both
0-phonon and multiphonon contributions exist in the ground
state, one is typical for the large and the other for the small
polaron [Fig. 3(b)]. Simultaneously, in the first excited state
[Fig. 3(b)], we have noticed the increase in the 0-phonon
contribution vs the same excited state in Fig. 3(a).

All these results indicate that at λ = λc = 0.314, there is a
crossover between large and small local polaron states. This
critical behavior is different from the case of the diagonal
EPI where the transformation between large and small local
polaron states is smooth. For λ = 0.32 in the ground state with

nh = 1, we have found almost a full occupation of the copper
orbital and the empty oxygen one [see Figs. 2(c) and 3(c)].
Further increase of λ results in a small decrease of the copper
hole occupation while the average square of displacement
〈u2〉0, number of phonons 〈Nph〉0, and polaronic shift |Ep0|
continue to grow.

C. Subspace with nh = 2

The two-hole states of the CuO4 cluster may be singlets or
triplets. For the low-energy theory, only singlets are essential.
We write down the exact eigenstates in the form

|2,j 〉 =
N∑

ν=0

(
cZR
jν |ZR〉|ν〉

+cdd
jν |d↓d↑〉|ν〉 + cbb

jν |b↓b↑〉|ν〉). (13)

Here, the first term corresponds to the Zhang-Rice (ZR)
configuration |3d92p5〉, the second one to the two holes
on copper |3d82p6〉, and the third one has two holes on
oxygen |3d102p4〉. The two-hole state appears in the theory
due to the electron removal process from the single-hole
state. The additional hole occupies mainly the oxygen orbital.
From Fig. 4(a), it is clear that in the absence of EPI, at
λd = λpd = 0, the number of copper holes has increased by
0.04 in comparison to Fig. 1(a), while the number of oxygen
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FIG. 3. (Color online) The copper and oxygen hole distribution
vs the phonon number in the single-hole ground and three excited
states for equal parameters of the diagonal and off-diagonal EPI
(a) below the critical value, (b) in the critical point, and (c) above it.

holes has grown almost by 1. In the ground two-hole state, the
main contribution is given by the ZR contribution, the minimal
weight has a |d↓d↑〉 contribution, and the |b↓b↑〉 configuration
has an intermediate weight [Fig. 4(b)].

Two holes in the CuO4 cluster renormalized by EPI may
be considered as a local bipolaron. If electrons were free of
the Coulomb interaction, one would expect a doubling of the
oxygen and copper occupation numbers, while the binding
energy of the bipolaron changes more strongly similar to the
binding energy of a bipolaron in the Holstein model that is

four times as large as for a single polaron. This behavior takes
place for λd �= 0, λpd = 0. Note that for λpd = λd the behavior
is more complicated. Due to the strong electron correlations
in cuprates, there is no doubling of occupation numbers.
Because the second hole occupies mainly the oxygen orbital,
the diagonal EPI results in a small change versus single-hole
eigenstates. For λd < 0.1, the average square of displacement
〈u2〉0, number of phonons 〈Nph〉, and polaronic binding energy
increase less then 25% in comparison to the single-hole
eigenstates [Fig. 4(c)]. Further increase of the diagonal EPI
provides a smooth growth of the copper hole population; at
λd = 0.24, it becomes equal to the oxygen hole population
[Fig. 4(a)] and is close to 1 at λd = 0.9. Thus we have found
for two-hole eigenstates the effect of competition between
the Coulomb repulsion and effective attraction mediated by
EPI. A similar competition has been revealed earlier by the
quantum Monte Carlo method [56]. The transformation of the
phonon cloud with the maximum at the 0-phonon component
to the multiphonon maximum for the two-hole states (13) with
diagonal EPI occurs smoothly in the region λd = 0.025–0.03
[almost the same as for single-hole states (12)], nevertheless,
the evolution of the large local polaron to the small local
polaron continues up to λd = 0.9 [Fig. 4(d)].

In the regime of equal diagonal and off-diagonal EPI up to
λ < 0.314, the population of oxygen holes negligibly increases
and the copper hole population decreases with strengthening
the EPI [Fig. 5(a)]. At the critical point λ = 0.314, there is a
crossover between the different two-hole configurations, the
maximal population is acquired by the |d↓d↑〉-configuration.
The copper hole number increases sharply almost by 1
[Fig. 5(a)] at the critical point. Corresponding jumps have
been revealed for the average square of displacement 〈u2〉0 and
number of phonons Nmax [Fig. 5(b)]. The maximal number of
phonons sharply changes from ν = 15 till ν = 190 [Fig. 5(c)].

The maximal number of phonons Nmax is a parameter of
the theory, however, the choice of this parameter depends on
the value of λd(pd). For any given EPI coupling, we have
calculated the hole distribution versus the phonon number ν

for different Nmax, and increase the Nmax value up to stable zero
contributions for higher phonon numbers. The dependence of
Nmax on the value of EPI constant is shown on Fig. 6 for
single-hole and two-hole ground states. The growth of Nmax

with λ = λd increasing is monotonic if λpd = 0 for either
nh = 1 and nh = 2 states. If λd = λpd = λ, there is a sharp
increase of Nmax near λ = λc = 0.314. Note that Nmax for the
excited polaron states increases with increasing of their energy.

Summarizing this chapter, we plot schematically in Fig. 7(a)
the general structure of the relevant Hilbert space with three
subspaces with the number of holes nh = 0,1,2. With a
maximal phonon number Nmax, each electronic level is split
into (Nmax + 1) sublevels. In the hole vacuum subspace, there
are (Nmax + 1) equidistant sublevels numerated by the number
of phonons and separated by the phonon energy �ωbr . In the
single-hole subspace, there are two blocks of spin doublets
with 2(Nmax + 1) sublevels each, corresponding to the bonding
and antibonding hole orbitals. In the two-hole subspace, there
are three singlet blocks of (Nmax + 1) sublevels and the triplet
block of 3(Nmax + 1). In subspaces nh = 1 and 2, the energy
levels are not equidistant and the phonon number is not a
quantum number.
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Due to the long-range antiferromagnetic order in the
undoped La2CuO4 with two sublattices A and B, the local
hole states from Eq. (12) are subject of the effective exchange
interaction J ∼ t2

U
that results in the splitting of states |1σ,i〉

and |1σ̄ ,i〉, here σ̄ means −σ . From the chemical potential
equation for the undoped La2CuO4 at T = 0, we found the
only occupied term, that is, the nh = 1 ground state marked
by a cross in Fig. 7(a). According to the GTB approach (see
Sec. III above), the electron removal from this initial state
results in the formation of a set of hole quasiparticles with
different final states in the subspace nh = 2. These excitations
are shown schematically by an arrow in Fig. 7(a). Their
dispersion is studied in Sec. V. All these excitations form
the valence (v) band. Similarly, the electron addition to the
occupied single-hole term results in the formation of a set of
hole vacuum multiphonon states (10) and the conduction (c)
band.

V. POLARONIC BAND STRUCTURE IN THE
GENERALIZED TIGHT-BINDING METHOD

The mathematical tool that allows to work with a multilevel
lattice system with a set of orthogonal and normalized local
eigenstates {|p〉} = {|ni〉} = {|0,ν〉,|1σ,i〉,|2,j 〉} is given by
the Hubbard operators Xpq = |p〉〈q| [67]. Each diagonal
operator Xpp determines the occupation of the eigenstate |p〉,
while the nondiagonal operator X

pq

f describes the excitation
at the site f from the initial state |q〉 to the final state |p〉. If

the change of electric charge during the excitation is odd, this
excitation is the Fermi-type quasiparticle. According to the
definition of our multielectron and multiphonon eigenstates,
the Hubbard fermion in p-GTB is a polaron and we call it
the Hubbard polaron. Due to completeness of the local set of
eigenstates {|p〉}, each single-hole annihilation operator at site
f is given exactly by the linear combination of the Hubbard
fermions [67].

We can write down the hole annihilation operators on the
corresponding orbitals β = b,d as a linear combinations of the
Hubbard fermions

aσ (β) =
∑
pq

γσ (β)(pq)Xpq

f . (14)

The matrix elements γσ (β)(pq) = 〈p|aσ (β)|q〉 for orbital β are
calculated straightforwardly because we know all eigenstates
|p〉 and |q〉. Quasiparticle transitions between states within one
Hilbert space sector are described by the Bose-type Hubbard
operators Z

ni,nj

f , to distinguish the Bose operator from the
Fermi one, we use for the former the notation Z.

The phonon number is not a quantum number in the
single-hole (12) and two-hole (13) states therefore the phonon
annihilation operator on the site f is given by

Af =
2∑

n=0

∑
ij

γA(ni,nj )Zni,nj

f , (15)

where γA(ni,nj ) = 〈ni|Af |nj 〉.
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Since we know all the coefficients in Eqs. (14) and (15), it is easy to write down the total Hamiltonian Hc + Hcc from Eq. (9)
in terms of Hubbard operators, then it consists of two parts. The first one, Hel-int = Hc + H el-el

cc , is similar to the Hubbard model
but constructed on operators describing Hubbard polaron excitations instead of the usual Hubbard fermion ones. The second
part, Hel-ph = H

el-ph
cc , results from EPI in initial Hamiltonian and contains Bose excitations.

Htot = Hc + Hcc, Hcc = H el-el
cc + H el-ph

cc , (16a)

Hc =
∑

f

2∑
n=0

∑
i

EniX
ni,ni
f , (16b)

H el-el
cc = −

∑
f,f′,σ,β

∑
ii ′jj ′kk′ll′

2tpβμff′
[(

γ ∗
σ (β)(0i,1σj )X1σj,0i

f + γ ∗
σ (β)(1σ̄ k,2l)X2l,1σ̄ k

f

)

× (
γσ (b)(0i ′,1σj ′)X0i ′,1σj ′

f′ + γσ (b)(1σ̄ k′,2l′)X1σ̄ k′,2l′
f′

) + H.c.
]
, (16c)

H el-ph
cc =

∑
f,f′,σ

∑
n,i,j

∑
k,l,r

2λdμff′
(
γ ∗

σ (A)(ni,nj )Xnj,ni

f + γσ (A)(ni,nj )Xni,nj

f

)(|γσ (d)(0l,1σk)|2X1σk,1σk
f′ + |γσ (d)(1σ̄ k,2r)|2X2r,2r

f′
)

+
∑

f,f′,h,σ

∑
n,i,j

∑
k,k′,l,l′

2λpdρ
A
ff′h

(
γ ∗

σ (A)(ni,nj )Xnj,ni

f + γσ (A)(ni,nj )Xni,nj

f

){(
γ ∗

σ (d)(0k,1σk′)X1σk′,0k
f′

+ γ ∗
σ (d)(1σ̄ l,2l′)X2l′,1σ̄ l

f

)(
γσ (b)

(
0l,1σ l′

)
X

0l,1σ l′
h′ + γσ (b)(1σ̄ k,2k′)X1σ̄ k,2k′

h′
) + H.c.

}
. (16d)

Here the intracluster term Hc contains only energies Eni

of the local eigenstates of the cluster with diagonal operators
X

ni,ni
f , where n = 0,1,2, and index i enumerates the polaronic

eigenstate in the Hilbert space sector with a hole number
n. The intercluster terms result in the polaronic hopping
and dispersion. Due to the intercluster contribution from the
diagonal and off-diagonal EPI, the polaron scattering H

el-ph
cc

on the bosonic excitations occurs. In the intercluster matrix
elements, the single-electron hopping tpd , tpp and EPI λd , λpd

parameters are strongly suppressed by the matrix elements
from Eqs. (14) and (15) and structural factors μfg, νfg, ρfgh.
These factors are strongly decreasing with distance, and
usually only contributions from the first three neighbors are
enough, that is why the t − t ′ − t ′′ tight-binding fitting is rather
successful in cuprates [61].

To obtain the dispersion of quasiparticle excitations, we use
the method of equation of motion for the two-sublattice matrix
Green function of polarons: DGG′

ff′ (uv; v′u′) = 〈〈Xuv
fG | Xv′u′

f′G′ 〉〉.
Due to the large number of fermionic quasiparticles, it is con-
venient to introduce the matrix Green function D̂ff′ = {Dmn

ff′ },
where the row m and column n indexes numerate the different
quasiparticles (p,q)n(m) ↔ n(m). Indeed, the number of quasi-
particles (p,q) is finite, so each may be enumerated just by the
number n(m) which has the meaning of the quasiparticle band
index. The total Green function in the matrix form looks like

D̂ff′ =
(

D̂AA
ff′ D̂AB

ff′

D̂BA
ff′ D̂BB

ff′

)
. (17)

For the Hamiltonian with two-particle electron-electron
interactions, the generalized Dyson equation for the matrix
Green function [81] in the Fourier transformation reads

D̂k(ω) = [
Ĝ−1

0 (ω) − P̂k(ω)t̂k + �̂k(ω)
]−1

P̂k(ω). (18)

Here, Ĝ−1
0 (ω) is a local propagator determined by the

multielectron eigenstates |p〉 and |q〉, t̂mn
k = γ (m)γ (n)tk is

the intersite hopping matrix, and tk is a bare dispersion.
Besides the self-energy �̂(k,ω), the unusual strength operator
P̂ (k,ω) appears in Eq. (18). It results in the redistribution
of the QP spectral weight (or oscillator strength) and in a
renormalization of the quasiparticle dispersion, which are the
intrinsic features of SCES. Recently, the ARPES line shape
had been discussed with Eq. (18) and an odd in (k − kFermi)
contribution to the momentum distribution curve had been
found due to the imaginary part of the strength operator [82].

The simplest nontrivial solution (Hubbard-I approximation)
is usually used in the cluster perturbation theory [83,84].
It can be obtained from Eq. (18) when �̂k(ω) = 0 and
P̂k(ω) = δpqF (pq). The so-called filling factor F (pq) is
given by the sum of the initial and final state occupation
numbers Ff(pq) = 〈Xpp

f 〉 + 〈Xqq

f 〉 and is strongly dependent
on sublattice magnetization, doping, and temperature. The
appearance of the filling factor is the very important difference
of the Hubbard fermions versus bare electrons. In particular,
this factor makes irrelevant many excitations from empty |p〉
to empty |q〉 states with determined energy Ep − Eq .

In the Hubbard-I approximation, we have obtained the
following Dyson equation for the polaronic matrix Green
function:

D̂−1
k = D̂−1

0 + t̂k + M̂EPI
k . (19)

Here, D
pq

0 = F (pq)/(ω − (pq)), where (pq) is the local
quasiparticle energy of the multielectron and multiphonon
eigenstates and t̂k is the matrix of the combined p-d and p-p
hopping that provides the band dispersion ωk in the absence
of EPI [61].

Matrix M̂EPI
k contains terms of intercluster EPI M̂

(1)
(pd)k and

M̂
(2)
(pd)k, which are presented in Appendix B 1. For the typical

EPI parameters, we have estimated the ratio Mpd

t
∼ 0.01, and

the terms M̂
(1)
(pd)k and M̂

(2)
(pd)k provide a small contribution

to the dispersion. Thus the local intracluster effects of EPI
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discussed in Sec. IV are the most important for the polaronic
bands formation. In the absence of EPI, the only possible
polaronic quasiparticles with nonzero spectral weight are
the ones between the multielectron n, n + 1 terms with an
equal number of phonons. At zero temperature, this condition
results only in 0-0 Franck-Condon resonances between terms
with the phonon number ν = 0. These Hubbard fermion
dispersion is shown in Fig. 7(b) by a solid line with different
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spectral weight in various parts of the Brillouin zone due to
the long-range antiferromagnetic order. All other polaronic
excitations correspond to the dispersionless Franck-Condon
resonances with zero spectral weight in the absence of EPI
[Fig. 7(b)]. In general, EPI results in the hybridization of
the Hubbard subbands and the Franck-Condon resonances.
The low-energy part of the polaronic bands is shown in
Figs. 8 and 10. The effect of the diagonal and both diagonal
and off-diagonal EPI on the polaronic band structure is
different. The weak diagonal EPI introduced in Eq. (9) mainly
modifies the conduction band, while the equal diagonal and
off-diagonal coupling more strongly affects the valence band.
Thus, at λ = 0.1, we found the hybridization splitting and finite
spectral weight for several Franck-Condon resonances in the
conduction band [Fig. 8(a)]. The number of split subbands and
the value of the minigaps between these subbands becomes
larger for λ = 0.2 [Fig. 8(b)]. For the valence band there
are also split subbands separated by smaller minigaps. The
top of the valence band, particularly the first removal state
at (π/2,π/2), is unaffected by a small diagonal EPI. For
larger EPI, the spectral weight of the conduction band is
strongly suppressed, it is transferred to the higher energy
bands shown in Fig. 7(a). For λd = 0.4, the first removal state
is also strongly renormalized [Fig. 8(d)]. The effective mass
of the hole in the first removal state sharply increases above
λd = 0.35, while for λd < 0.35, the effective mass m∗

‖ along
the (0,0) − (π,π) direction and m∗

⊥ along the (π,0) − (0,π )
direction increase rather weakly with EPI growth (Fig. 9). A
similar effect has been obtained in Refs. [16,68]. In the regime
λd = λpd = λ, both the conduction band and the middle part
of the valence band are strongly renormalized by the subband
splitting and spectral weight redistribution [Figs. 10(a)–10(d)].
In this regime, we have found a critical coupling value at
which the properties of local single- and two-hole states are
changed (see Figs. 3 and 5). A sharp increase of the effective
mass occurs also at λ = λc (Fig. 11). The difference between
the two considered EPI regimes results from the smooth
renormalization of the local eigenstates for λpd = 0 and sharp
level crossing [Fig. 2(d)] for λpd = λd .
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FIG. 7. (Color online) (a) Schematic picture of the multielectron and multiphonon local eigenstates for different number of holes per CuO4

unit cell, nh = 0,1,2. In the two-hole sector, the irrelevant triplet states with higher energy are not shown. Arrows between subspaces (0,1)
and (1,2) schematically indicate the polaronic quasiparticles. (b) The quasiparticle dispersion ωk is shown in the absence of EPI. Solid lines
correspond to the conduction and the valence bands of electrons in the antiferromagnetic phase. Dotted horizontal lines correspond to the
dispersionless Franck-Condon resonances with zero spectral weight.

VI. POLARONIC SPECTRAL FUNCTION

The polaronic spectral function is given by

A(k,ω) =
∑

σ

Aσ (k,ω)

= − 1

π

∑
σβmn

γσ (β)(m)γ ∗
σ (β)(n)ImD

m,n
k (ω + iδ).

(20)

Splitting of the Hubbard fermion bands to the many hybridized
subbands results in a series of narrow peaks for a given
wave number. Each peak results from some Franck-Condon
resonance and is related to the multiphonon excitation. For
λd < 0.2, the main peak of the first removal state at the top
of the valence band with k = (π

2 , π
2 ) corresponds to the 0-0

resonance between the 0-phonon single- and two-hole ground
states from Fig. 7(a). The multiphonon contributions to the
spectral function are negligibly weak and shifted down in
energy [Fig. 12(a)]. With the diagonal EPI increasing, the
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FIG. 8. (Color online) Effect of the diagonal EPI on the polaronic band structure for the undoped antiferromagnetic La2CuO4 at T = 10 K
for different values of EPI parameters: (a) λd = 0.1, (b) 0.2, (c) 0.3, and (d) 0.4. The line intensity is proportional to the quasiparticle spectral
weight. We emphasize the decreasing of the intensity scale for the conduction band with EPI growth. Dashed line shows a dispersionless band
of quasiparticle excitations corresponding to the 0-0 Franck-Condon resonance, this excitation has negligible intensity and a large effective
mass.
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0-0 peak decreases while a set of multiphonon peaks appears
[Fig. 12(b)]. For the equal diagonal and off-diagonal EPI, the
situation is qualitatively similar [Figs. 12(c) and 12(d)]. The
shift of the multiphonon peak from the 0-0 resonance with
almost zero spectral weight is larger in Fig. 12(d).

The effect of the quasiparticle finite lifetime on the spectral
function is also shown in Figs. 12(b) and 12(d). It is modeling
by the different Lorenzian width δ. With increasing δ, we
reproduce the formation of one wide peak in the spectral func-
tion from the sum of several Franck-Condon resonances. This
mechanism of the large linewidth in the ARPES experiments
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FIG. 11. (Color online) The effective mass at the top of the
valence band at ( π

2 , π

2 ) for equal diagonal and off-diagonal EPI.

in the undoped cuprates has been discussed in Ref. [11]. The
large shift of the spectral intensity below the nominal top of the
valence band in the absence of EPI given by a 0-0 resonance
has been also found in ARPES measurements [10].

VII. DISCUSSION OF THE RESULTS

In this paper, we have developed a general approach to the
electronic structure of Mott-Hubbard insulators with strong
electron correlations and strong electron-phonon coupling.
The polaronic version of the GTB (or p-GTB) method is
a variant of the cluster perturbation theory with an exact
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FIG. 10. (Color online) Effect of equal diagonal and off-diagonal EPI on the polaron band structure of the undoped antiferromagnetic
La2CuO4 at T = 10 K for different values (a) λ = 0.1, (b) 0.2, (c) 0.3, and (d) 0.35.
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FIG. 12. (Color online) The spectral function of the first removal state at ( π

2 , π
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almost absent for delocalized polarons at (a) and (c) and appear for localized polarons at (b) and (d).

diagonalization of the intracell part of the Hamiltonian and
a redefinition of all local fermionic and bosonic operators
as a linear combination of quasiparticles that are excitations
between multielectron and multiphonon initial and final
states. The Fermi-type excitations are Hubbard polarons. The
formally exact generalized Dyson equation has been solved in
the conventional for the cluster perturbation theory Hubbard-I
approximation, which results in a polaronic band structure of
hybridized Hubbard fermions and local multiphonon Franck-
Condon resonances. The polaronic spectral weight is strongly
dependent on the value of the EPI. We have carried out all
calculations here within the three-band p-d model. It is evident
that the p-GTB may be straightforwardly generalized to the
multiband realistic model with all copper d orbitals and all
oxygen p orbitals, and to a more realistic treatment of the
phonon system. For example, we can discuss now the effect
of oxygen a1g and B phonon modes on the polaronic band
structure. Due to symmetry, the B phonon is involved only
in the off-diagonal EPI interaction mixing the copper dx and
oxygen a1g orbitals, the additional term to the EPI Hamiltonian
(5c) is given by

HB
ff′σ =

∑
σ

2λpdξdζ
B
0 (B† + B)(d+

xσ aσ + H.c.). (21)

In the case of only diagonal EPI, the B phonon does not
participate in the one-hole ground polaronic state formation.
When off-diagonal EPI takes place, the contributions to the
one-hole local ground polaron eigenstate (12) of the a1g hole

and B phonons are

c0d
00 |d〉 + c0b

00|b〉 + c0a
00 |a〉

+ c0d
10 |dA〉 + c0b

10|bA〉 + c0a
10 |aA〉

+ c0d
20 |dAA〉 + c0b

20|bAA〉 + c0a
20 |aAA〉

. . .

+ c0d
NA0|dA . . . A〉 + c0b

NA0|bA . . . A〉 + c0a
NA0|aA . . . A〉

+ c0d
01 |dB〉 + c0b

01|bB〉 + c0a
01 |aB〉

+ cd
02|dBB〉 + cb

02|bBB〉 + ca
02|aBB〉

. . .

+ c0d
0NB

|dB . . . B〉 + c0b
0NB

|bB . . . B〉 + c0a
0NB

|aB . . . B〉
+ c0d

11 |dAB〉 + c0b
11|bAB〉 + c0a

11 |aAB〉
+ c0d

21 |dAAB〉 + c0b
21|bAAB〉 + c0a

21 |aAAB〉
. . .

+ c0d
NANB

|dA . . . AB . . . B〉 + c0b
NANB

|bA . . . AB . . . B〉
+ c0a

NANB
|aA . . . AB . . . B〉. (22)

A similar renormalization of the two-hole eigenstates (13) can
be written straightforwardly. We have calculated these eigen-
states for λ = λd = λpd = 0.2 and found that the A phonon
amplitudes c0d

10 and c0b
10 are much larger (∼0.2) than the

B phonon amplitudes [max (c0d
01 ,c0b

01,c
0a
01 ) ∼ 0.01]. So the

contribution of the B phonon term to the polaronic spectral
function is indeed negligible in comparison to the A phonon.

155143-13



MAKAROV, SHNEYDER, KOZLOV, AND OVCHINNIKOV PHYSICAL REVIEW B 92, 155143 (2015)

−0.4 −0.2 0 0.2 0.4 0.6
0

100

200

300

400

500

600

700

800

900

A
(k

,ω
)

N
B
=50

N
B
=0

N
A
=100

λ
d
=0.2, λ

pd
=0.2

0−0

ω (eV)

−0.4 −0.2 0 0.2
0

2

4

6

8

10

12

−0.4 −0.2 0 0.2

FIG. 13. (Color online) Spectral function of the polaron quasi-
particles of the system with and without taking into account
B phonons at ( π
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to SF in the system without B phonons and the red color is the SF
of the system with B phonons. (Left) SF in the wide energy range.
(Right) High-energy multiphonon satellites of the SF.

It is clear because the A phonon takes part in all processes of
the EPI, both diagonal and off-diagonal, while the B phonon
only in the off-diagonal. The calculated spectral function with
account for B phonons has a small shift of the 0-0 resonance
and even smaller changes of the high-order Franck-Condon
resonances (Fig. 13). No high-energy resonances up to −4 eV
have been found.

The restriction of the Hubbard-I approximation is not
obligatory for the GTB method, for example, self-consistent
calculations of the self-energy and spin correlation functions
for the t − J model have been carried out in the X-operator
technique in the spin liquid state of the doped cuprates [85] and
within the noncrossing approximation [86]. It is interesting
to note that the overlap of the large polarons may lead
to a significant renormalization or even dissociation of the
polaronic state at finite band fillings [31].

From a comparison of the cluster perturbation theory
with numerical results by other authors [83,84], it is clear
that the cluster size is the main control parameter for the
quality of the results in the cluster perturbation approach. The
convergence of the results as a function of the cluster size for
the single-band Hubbard model has been studied in Ref. [87],
where a square 2 × 2 and a five-site cluster (cruciform of five
atoms) have been compared with QMC [88], variational cluster
perturbation theory [89], and cluster dynamical mean-field
theory [90] data. While there is a qualitative general agreement
for the band dispersion and spectral weight distribution for
four-atom and five-atom clusters, a quantitative agreement
with the results [88–90] is achieved for five-atom cluster. It
was related with the number of different correlation functions
[87]: in the four-atom 2 × 2 cluster, the first and second
correlations are treated exactly, while in the cruciform of 5
atoms first, second, and third correlations are involved. In
the present paper, we have considered the simplest single-site
CuO4 cluster, which is nontrivial because of multiple bands
and phonons. Nevertheless, an extension to larger clusters or

to the variational cluster approach is planned in our future
work. We expect that the qualitative picture of Hubbard
polarons presented here would not change, while a quantitative
difference is inevitable.

The band dispersion and the spectral weight of Hubbard
polarons are strongly temperature and doping dependent. A
finite temperature generalization of the GTB band structure
calculations has been demonstrated recently for the undoped
La2CuO4 where the insulator state is shown to exist both in
the antiferromagnetic phase below the Neel temperature and
in the paramagnetic phase above the Neel temperature [76].
Due to the finite volume of this paper, we have restricted
ourselves here to only the undoped cuprates, the discussion of
the effects of doping and finite temperature on the polaronic
band structure will be given in a forthcoming paper.

We have shown that, in general, a polaron is characterized
by a broad distribution of the phonon numbers in the surround-
ing cloud. Depending on the EPI coupling, the maxima in the
phonon distribution are given by the 0-phonon or multiphonon
contributions. The former corresponds to a delocalized large
polaron, while the latter describes a localized small polaron
with a crossover from a large to a small polaron with increasing
EPI. Previously, a similar behavior has been found by the
diagrammatic Monte Carlo method [91] within the t − J -
Holstein model. The new results in our p-GTB approach have
been obtained when both diagonal and off-diagonal EPI were
considered. We have found a partial compensation between
them in the formation of the multiphonon cloud when both
coupling parameters were equal and a sharp transition occurs
from the a large to a small polaron at the critical value of
the EPI coupling. This transition is accompanied by a polaron
localization and its effective mass divergence. Our other new
result in comparison to the t − J -Holstein model treatment
by preceding authors is the simultaneous transformation of
both valence and conduction bands under EPI growth and
the different effect of the diagonal and off-diagonal EPI on
these bands. For the undoped cuprate, we have reproduced
the large width of the ARPES line measured for the first
removal state related with the loss of the spectral weight by
the 0-0 Franck-Condon resonance and shift the spectral weight
maximum down in energy to the multiphonon resonances,
these features have been found experimentally in the undoped
Sr2CuO2Cl2 [10,11].
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APPENDIX A: RENORMALIZED PARAMETERS OF THE
INITIAL HAMILTONIAN AND STRUCTURAL FACTORS

The link between the initial parameters and the new matrix
elements in Eq. (9) are given by

εb = εp − 2tppν00, (A1)

Ub = Up�0000, (A2)

Ṽpd = Vpd�000. (A3)
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TABLE II. The values of the coefficients μfg, νfg, and ρfgh as a
function of the site coordinates f, g, and h.

(fx − gx,fy − gy) (gx − hx,gy − hy) μfg νfg ρA
fgh

(0,0) (0,0) 0.958 0.727 −0.459
(1,0) (0,0) −0.14 −0.273 0.067
(1,1) (0,0) −0.024 0.122 0.011
(2,0) (0,0) −0.014 −0.064 0.007
(0,0) (1,0) – – 0.067
(1,0) (1,0) – – −0.121
(1,0) (0,1) – – 0.023
(1,1) (1,0) – – −0.015
(1,0) (1,1) – – −0.015

The coefficients ν00, �0000, and �000 are the values of the
structural factors νfg, �ijkl, and �ijk for a single cluster, ν00 =
0.727, �0000 = 0.2109, and �000 = 0.918. The values of �ijkl
and �ijk are strongly decreased with distance increasing.

The structural factors μfg, νfg, and ρA
fgh are defined by the

relations

μfg = 1/N
∑

k

μke
−ik(f−g), (A4)

νfg = 1/N
∑

k

(2 sin(kx/2) sin(ky/2)/μk)2e−ik(f−g), (A5)

ρA
fgh = ρA

f−g,g−h= 1/N2
∑
kq

1/μkμq

×[sin(kx/2) sin(qx/2) cos((kx + qx)/2)

+ sin(ky/2) sin(qy/2) cos((ky + qy)/2)]

× e−ik(f−g)e−iq(g−h). (A6)

Their values depending on the distance are given in Table II.

APPENDIX B: MATRICES OF INTERCLUSTER
ELECTRON-PHONON INTERACTION

The matrix of intercluster EPI in the Dyson equation (19)
includes two terms:

M̂EPI
k = M̂

(1)
(pd)k + M̂

(2)
(pd)k, (B1)

where M̂
(1)
(pd)k and M̂

(2)
(pd)k are the matrices of the off-diagonal

intercluster EPI:

M̂
(1)
pd k(uv; nm)

= 2gpdξdρ1k

∑
p

γ ∗
A(pp)γ ∗

dx
(vu)γb(nm)〈Xpp〉 (B2)

with coefficient ρ1k = ∑
gh ρA

ghe
ikh and

M̂
(2)
pd k(uv; nm)

= 2gpdξdρ2k

∑
p

γ ∗
A(pp)γ ∗

dx
(vu)γb(nm)〈Xpp〉 (B3)

with coefficient ρ2k = ∑
h ρA

0,he
ikh.

[1] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75,
473 (2003).

[2] M. K. Crawford, W. E. Farneth, E. M. McCarron III, R. L.
Harlow, and A. H. Moudden, Science 250, 1390 (1990).

[3] G.-M. Zhao, K. Conder, H. Keller, and K. A. Müller, J. Phys.:
Condens. Matter 10, 9055 (1998).

[4] T. Schneider and H. Keller, Phys. Rev. Lett. 86, 4899 (2001).
[5] J. Hofer, K. Conder, T. Sasagawa, G. M. Zhao, M. Willemin, H.

Keller, and K. Kishio, Phys. Rev. Lett. 84, 4192 (2000).
[6] S. G. Ovchinnikov and E. I. Shneyder, J. Supercond. Nov. Magn.

23, 733 (2010).
[7] A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng,

E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio et al.,
Nature (London) 412, 510 (2001).

[8] L. Pintschovius and M. Braden, Phys. Rev. B 60, R15039 (1999).
[9] L. Pintschovius, Phys. Status Solidi B 242, 30 (2005).

[10] K. M. Shen, F. Ronning, D. H. Lu, W. S. Lee, N. J. C. Ingle,
W. Meevasana, F. Baumberger, A. Damascelli, N. P. Armitage,
L. L. Miller et al., Phys. Rev. Lett. 93, 267002 (2004).

[11] K. M. Shen, F. Ronning, W. Meevasana, D. H. Lu, N. J. C. Ingle,
F. Baumberger, W. S. Lee, L. L. Miller, Y. Kohsaka, M. Azuma
et al., Phys. Rev. B 75, 075115 (2007).

[12] D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).
[13] M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh,

Rev. Mod. Phys. 70, 897 (1998).
[14] E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).

[15] A. S. Mishchenko, N. V. Prokof’ev, and B. V. Svistunov,
Phys. Rev. B 64, 033101 (2001).

[16] A. S. Mishchenko and N. Nagaosa, Phys. Rev. Lett. 93, 036402
(2004).

[17] A. S. Mishchenko, N. Nagaosa, Z.-X. Shen, G. De Filippis, V.
Cataudella, T. P. Devereaux, C. Bernhard, K. W. Kim, and J.
Zaanen, Phys. Rev. Lett. 100, 166401 (2008).
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