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Effect of electron correlations on the Fe3Si and α-FeSi2 band structure and optical properties
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We use the Vienna ab initio simulation package (VASP) for evaluation of the quasiparticle spectra and their
spectral weights within Hedin’s GW approximation (GWA) for Fe3Si and α-FeSi2 within the non-self-consistent
one-shot approximation G0W0 and self-consistent scGWA with the vertex corrections in the particle-hole channel,
taken in the form of two-point kernel. As input for G0W0, the band structure and wave functions evaluated within
the generalized gradient corrected local-density approximation to density functional theory (GGA) have been
used. The spectral weights of quasiparticles in these compounds deviate from unity everywhere and show
nonmonotonic behavior in those parts of bands where the delocalized states contribute to their formation. The
G0W0 and scGWA spectral weights are the same within 2%–5%. The scGWA shows a general tendency to return
G0W0 bands to their GGA positions for the delocalized states, while in the flat bands it flattens even more. Variable
angle spectroscopic ellipsometry measurements at T = 296 K on grown single-crystalline ∼50-nm-thick films
of Fe3Si on n-Si(111) wafer have been performed in the interval of energies ω ∼ (1.3–5) eV. The comparison of
G0W0 and scGW theory with experimental real and imaginary parts of permittivity, refractive index, extinction
and absorption coefficients, reflectivity, and electron energy loss function shows that both G0W0 and scGW
qualitatively describe experiment correctly, the position of the low-energy peaks is described better by the
scGW theory, however, its detailed structure is not observed in the experimental curves. We suggest that the
angle-resolved photoemission spectroscopy experiments, which can reveal the fine details of the quasiparticle
band structure and spectral weights, could help to understand (i) if the scGWA with this type of vertex correction
is sufficiently good for description of these iron silicides and, possibly, (ii) why some features of calculated
permittivity are not seen in optical experiments.
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I. INTRODUCTION

A hope to use the electron spin additionally to the charge
as an information carrier has led to a development of the
spintronics. One feasible way to exploit the spin degrees
of freedom is to synthesize such magnetic semiconductors,
which, on the one hand, should be magnetic at room temper-
ature, and, on the other hand, should be easily integrated with
existing semiconductor industry. Therefore, it is desirable that
it should be Si based [1]. A magnetic moment can be added
by transition-metal constituents. The other way is to use a
magnetic metal for injecting the spin-polarized electrons into,
say, Si-based semiconductor. The technologies which create
magnetic epitaxial multilayer films on Si produce an interface,
which contains the compounds of T Si, where T is a transition
metal. This makes iron silicide compounds highly perspective
materials both in bulk and film form and a detailed understand-
ing of their physics is on demand [2]. Recently, the formation
of single-crystalline Fe3Si phases in the Fe/Si interface has
been demonstrated by several groups [3–5]. The theoretical
understanding of the ground-state properties like cohesive and
structural properties is achieved long ago via first-principles
calculations based on the various realization of local-density
approximation to density functional theory [6–11].

However, the experiments, that probe the properties of ma-
terials beyond the ground state, require for their interpretation
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a knowledge of the single-particle excitations. For example,
all photoeffect-based measurements belong to this class.
The photoemission spectroscopy (PES) [12] provides direct
measurement of the energy of electronic quasiparticles. Its
extension, the angle-resolved PES (ARPES) [12], allows
for extracting also perpendicular to surface momentum de-
pendence of quasiparticle energy. Further refinement, the
laser-based ARPES provides even better accuracy and res-
olution. A recently developed method, the time-resolved
two-photon photoemission (TR-2PPE) spectroscopy [13], can
monitor the state of an excited electron during the course
of its transformation by laser-induced surface reaction. The
transport and tunneling experiments are even more evident
examples where the quasiparticle concept is a necessary
ingredient for understanding the underlying physics. However,
general theories sometimes are not sufficient for describing
real materials. For example, the predictions of the lifetimes
within the Landau theory of Fermi liquid do not describe the
experiments even on Al and noble metals [14], contrary to
the expectation. Indeed, electrons in these metals are well
delocalized and expected to behave as a good Fermi liquid.
Furthermore, TR-2PPE experiments show that the lifetime of
an excited electron in Al at a fixed energy E < EF depends
on the frequency of the pump pulse, i.e., on the band from
which the electron originated. These examples convince that
ab initio calculations for real materials are required. The most
developed method of electronic-structure calculations, which
is based on density functional theory (DFT), is designed and
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applicable for the ground-state properties only [14,15]. This
gives rise to certain doubts that the electronic bands obtained
within the framework of density functional theory (DFT) in the
local- (spin-) density approximation with or without gradient
corrections can be interpreted as energies of excited states.
Nevertheless, the band structure, generated by the Kohn-
Sham equations, is ubiquitously exploited as quasiparticle
spectrum. For this reason, it makes sense to compare the
quasiparticle spectrum with the Kohn-Sham bands. Here, we
will compare the results of calculations within the version
of gradient-corrected local-density approximation to density
functional theory (GGA) and GW approximation (GWA) [14].
The name GW comes from the form of the approximation
for the self-energy � = G · W in a diagram perturbation
theory for electron Green’s function G; W is screened by
the electron-hole excitations Coulomb potential [within so-
called random phase approximation (RPA)]. Both approaches
have their own advantages and disadvantages. The exchange-
correlation potential used in all modern implementations of the
Kohn-Sham machinery contains the correlation effects that are
much beyond the random phase approximation used in GWA.
However, the time-independent formulations of the DFT are
applicable to the description of the ground-state properties only
and, besides, it is very difficult to improve the calculations by
adding in a controlled way some corrections. An example of
the latter is the widely used LDA + U approximation and its
modifications, where many different forms of double-counting
corrections are in use [16]. The nonlinear nature of DFT and
an absence of a regular perturbation theory makes it difficult to
perform a convincing derivation of the form of this correction.
The GW method does not contain these problems; it is a well-
controlled approximation. The strong advantage of GW is that
it produces not only the energies of quasiparticle excitations,
but also their spectral weights and lifetimes. The disadvantages
of the GW approximation are that (i) it requires much more
of computer resources than, say, GGA; (ii) it is applicable for
description of high-density electron gas only, i.e., for rs � 0.5
while in real metals 2 < rs < 8 (here, rs is dimensionless
interelectron distance in Bohr radius aB units, reflecting ratio
of average potential and kinetic energies); finally, (iii) the
effective Hamiltonian for GW eigenvalues and eigenfunctions
is not Hermitian. Both approaches are not expected to work
well at high-momentum transfer, which is required for the
description of the systems with d and f electrons.

Hedin’s formulation of GW contains both Green’s function
G and the screened Coulomb potential W fully self-consistent.
In practice, different levels of self-consistency and approxi-
mations are used in order to decrease the computer resources
needed. The most commonly exploited is the so-called one-
shot approximation G0W0, with no self-consistency, where the
output of GGA calculations is used as an input for it. Within
the G0W0, only one iteration is made, i.e., the expansion of
the electron Green’s function is performed with respect to the
perturbation (� − vXC), where vXC is the exchange-correlation
potential in the GGA approach. The spectral weight of single-
particle excitation with the energy Ekn, which is defined as [17]

Znk =
(

1 − 〈ψnk|
[
∂�

∂ω

]
ω=E

QP
nk

|ψnk〉
)−1

, (1)

in this approximation is given by the coefficient in first
correction to the Kohn-Sham energy εkn:

Ekn = εkn + Zkn

[
Re�′

GW(εkn) − (
v

(GGA)
XC

)
kn

]
; (2)

the prime in �′
GW here means that it does not include the

Hartree term. The absence of self-consitency makes the G0W0

approximation sensitive to the input band structure, however,
this is the cheapest way to calculate the excitation energies and
their spectral weights which are not available within the Kohn-
Sham scheme at all. Several options for self-consistency are in
use, G0W, GW0, and the full one GW (see reviews [14,18]).

In G0W, GW0 approximations only eigenvalues are up-
dating during the self-consistency procedure, but the wave
functions are not updated. The self-consistent GW approxi-
mation (scGW) takes into account not only the off-diagonal
components of self-energy and updates of wave functions,
but includes also the vertex corrections. The situation is,
however, somewhat controversial. On the one hand, the G0W0

approximation often gives the results which describe PES
experiments better (see, e.g., Refs. [19–21]). On the other
hand, a description of the gap in semiconductors [22], as well
as the ionization potentials [23], has been improved with the
help of the vertex corrections to GW. Actually, a description
of the local correlations (d, f electrons) also requires an
improvement, namely at large momentum transfer, where the
large-distance screening effects do not play a decisive role.
These processes can be accounted for by the vertex corrections.
Thus, the approximation to be used is material dependent
and, possibly, different types of vertex corrections have to
be tested for different materials. An additional motivation to
include the vertex correction lies in the fact that each term
in the self-consistent perturbation theory (scPT) corresponds
to whole series in the non-scPT and the expansion of the
self-energy within non-scPT contains in the same order the
diagrams which decrease the polarization operator calculated
without vertex corrections. This is seen from comparison of
the corrections to the effective interaction W in the same
orders of perturbation theory: an insertion of the interaction
line into a fermion loop automatically decreases the number
of contributing fermion loops and, therefore, generates a sign
different from the sign of the graphs without such insertions.
{This is especially easy to see for a single-band model
by comparing two graphs, contributing to the screening of
interaction in the third order: [v(q)]2[�0(q,E)v(q)�0(q,E)]
and −[v(q)]2�1(q,E). Here, �0(q,E) = ∑

k π (k,q,E) is
electron-hole loop while �1(q,E) is the loop with inserted in-
teraction, �1(q,E) = ∑

k,p π (k,q,E)v(k − p − q)π (p,q,E)
where π (k,q,E) = (fk − fk+q)/(εk − εk+q + E), fk is Fermi
function. When the self-energy is calculated with these two
contributions, the full compensations arise only in small
phase volume of the integration due to constraints on the
integration region coming from the momentum conservation,
however, it may become non-negligible at large momentum
transfer. As easily seen, for constant interaction, part of the
graphs compensate each other exactly.} In the materials which
contain in their band structure flat bands (atomiclike level),
this compensation may become even more essential since
the compensation of contributions in pp and ph channels
may occur [see, e.g., Eq. (10) in Abrikosov’s paper [24]]. A
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degree of the compensation is, of course, material dependent.
In particular, the detailed investigation of the influence of
the ladder-type vertex corrections in the particle-hole (ph)
channel on the ionization potential of the series of binary
compounds has been performed in Ref. [23]. As seen from
Fig. 2 of Ref. [23], although an overall agreement with the
experimental ionization potential is improved, its degree is
material dependent.

The situation in which both ph and pp channels of scattering
are equally important is described by the parquet equations. So
far, they have been studied only for models [24]. Even direct
solution of the Bethe-Salpeter equations in the ph channel
requires too many computer resources to be widely used for
ab initio calculations. For this reason, the questions as to
how and to which terms the vertex corrections should be
applied still remain to be researched. One way to outsmart
this difficulty has been suggested in Refs. [25,26]: they
separated from the vertex the exchange-correlation two-point
depending scattering amplitude fXC from the time-dependent
DFT (TDDFT) and have shown that it is sufficient for
description of some spectroscopic data. This approximation
sometimes is too rough. For example, the authors of [23]
pointed out that it produces too large a gap for semiconductors
and insulators. The authors of Ref. [28] analyzed the effect of
the vertex corrections in the effective interaction W and in the
self-energy � on the ground-state properties and excitations
in the closed-shell atoms and jellium model compared to the
standard GW without vertex corrections. They found that the
first shows little improvement over standard GW, while for
jellium the substantial improvement occurs only when the
vertex is included to W, while the inclusion of it into � leads
to unphysical results.

Here, we apply the suggestion Refs. [25,26], which was
implemented [22] into VASP codes, to the metallic systems
with d electrons. Following, we will compare the results of
calculations for Fe3Si and α-FeSi2 within GGA, G0W0, and
scGWA with the correction fXC included and will show that
for these metallic compounds the quasiparticle (QP) energy
bands are described by GGA quite well, while for calculation
of the spectral weights the G0W0 approximation is sufficient.
The obtained QP band structure and spectral weights can serve
as a prediction for ARPES measurements on iron silicides.

The paper is organized as follows. In Sec. II, we present
the details of our ab initio GGA and GW calculations. The
GGA and G0W0A densities of electron states and the band
structures are compared in Sec. III; the behavior of the spectral
weights of iron silicides Fe3Si and α-FeSi2 is discussed in
Sec. IV. In Sec. V, we discuss the influence of self-consistency
(with vertex correction) on the quasiparticle band structure.
The comparison of calculated and experimentally measured
optical spectra on single-crystalline Fe3Si films grown by the
molecular beam epitaxy are given in Sec. VI (particularly,
the details of the experiment are given in Sec. VI A). The
discussion and conclusions are given in Sec. VII.

II. CALCULATION DETAILS

The calculations presented in this paper are performed
using the Vienna ab initio simulation package (VASP) [29]
with projector augmented wave (PAW) pseudopotentials [30].

The valence electron configurations 3d64s2 are taken for Fe
atoms and 3s23p2 for Si atoms. One part of the calculations is
based on the density functional theory where the exchange-
correlation functional is chosen within the Perdew-Burke-
Ernzerhoff (PBE) parametrization [31] and the generalized
gradient approximation (GGA). Throughout all GGA, G0W0,
and scGW calculations, the plane-wave cutoff energy is
500 eV, and Gauss broadening with smearing 0.05 eV is
used. The dielectric permittivity is calculated within the linear-
response theory and random phase approximation (RPA) as
implemented in VASP code [17,32]. The vertex correction to the
polarizability for scGW procedure, as well as for the dielectric
permittivity, is expressed approximately in terms of the
exchange-correlation kernel fXC [17,22,26]. The theoretical
optical characteristics are calculated from the permittivity (see
Figs. 13 and 14), using the formulas given in the captions to
the figures.

In the GW part of calculations implemented in VASP [17],
we report both G0W0 and scGW. The Brillouin-zone integra-
tion for G0W0 is performed on the grid Monkhorst-Pack [33]
special points 10 × 10 × 10 for Fe3Si and 12 × 12 × 6 for
α-FeSi2. The implemented in VASP Kramers-Kronig transfor-
mation for dielectric permeability ε uses a small complex shift
η, which smoothes the real part of ε and, correspondingly,
decreases the accuracy of calculations. A decrease of η requires
an increase of the number of the grid points in density of states.
In the present calculation, the chosen number of frequencies
was 500 for G0W0 calculations and 336 for scGW ones. It
was sufficient for working with small η = 0.047 and 0.065 eV
for G0W0 and scGW calculations correspondingly, providing,
thus, more accurate results. The GW calculations require
a large number of unoccupied bands [17]. We performed
calculations for 128 and 160 electronic bands. Since obtained
results do not differ, we used in further calculations 128 bands.

The GGA Kohn-Sham band structure and eigenfunctions
were taken as the input for the GW calculations, namely, the
self-energy for G0W0 is computed as �G0W0 ≈ iGGGAWGGA.
In the scGW, the iterative procedure was carried out until
the self-consistency is reached with respect to quasiparticle
energies. The scGW calculations require much more computer
resources; for this reason the convergence tests for this
approximation for Fe3Si were performed first at the small
grid 4 × 4 × 4 and 10 iterations. Then, the calculations were
performed at the 8 × 8 × 8 grid for Fe3Si and at 8 × 8 × 4
grid for α-FeSi2. Different bands reach self-consistency with
different speed; the “most difficult” happens to be the flat
bands. In our calculations, seven updates provided the accuracy
up to 10–40 meV, so in the following, we present the results
for the seventh iteration.

Structurally these two iron silicides, Fe3Si and α-FeSi2, are
quite different.

Their structures are illustrated in Fig. 1. The compound
Fe3Si belongs to DO3 structural type with the space symmetry
group Fm3̄m. The iron atoms have two nonequivalent crystal-
lographic positions in fcc lattice, namely, Fe(1)and Fe(2) have
different nearest surroundings: Fe(1) has eight Fe(2) nearest
neighbors which form a cube, whereas the Fe(2) is in the
tetrahedral surrounding of both Si and Fe(1) atoms.

The iron disilicides have several structural modifications.
The most stable phases are α-FeSi2 (right, Fig. 1) and β-FeSi2
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FIG. 1. (Color online) Crystal structures of Fe3Si (left) and
α-FeSi2 (right). Blue balls show Si atoms. Fe(1) are denoted by light
and Fe(2) by dark gray balls in Fe3Si; light gray balls in α-FeSi2 stand
for Fe atoms.

phases [34,35]. The compound α-FeSi2 has tetragonal lattice
with P 4/mmn space symmetry group with one molecule per
unit cell. Each iron atom here is located in the center of the
cube, consisting of the silicon atoms. This structure contains
the planes which are formed by only iron and by only silicon
atoms. These planes are orthogonal to the tetragonal axis. Two
planes formed by silicon atoms are separated by wide empty
cavity, which does not contain the iron atoms.

The rhombohedral cell has been used for the Fe3Si
calculations. The equilibrium parameters and the distances
between nearest Fe and Si atoms for the Fe3Si and α-FeSi2
structures have been found from the full optimization of the
structure geometries within GGA and are shown in Table I.
The G0W0 and scGW calculations have been performed with
the same structural parameters.

Both spin-polarized GGA and G0W0 result in metallic
states, ferromagnetic for Fe3Si and paramagnetic with zero-
spin Fe atoms for α-FeSi2. For this reason, all further
calculations for α-FeSi2 have been performed within a non-
spin-polarized version of VASP. The structural inequivalence
of the Fe atoms’ surroundings in the Fe3Si reflects itself
in both magnetic moment values and the contributions of
Fe ions’ d states into the electron density of states. The
magnetic moment MFe(1) of Fe(1) atom is higher than the
free-atom moment MGGA

Fe(1) = 2.52μB and MGWA
Fe(1) = 2.55μB .

The Fe(2) atom has much lower moment MGGA
Fe(2) = 1.34μB

and MGWA
Fe(2) = 1.40μB. As will be seen from the analysis of

DOS, the latter moments are formed by the delocalized d

states. The experimental values reported in works [36,37] are
slightly different: Mexpt

Fe(2) = 1.2μB , Mexpt
Fe(1) = 2.4μB in Ref. [36]

and M
expt
Fe(2) = 1.35μB , M

expt
Fe(1) = 2.2μB in Ref. [37].

TABLE I. Relaxed lattice parameters and the equilibrium dis-
tances between nearest ions. The experimental values [34] are given
in brackets.

Fe3Si α-FeSi2

a = 5.60 Å(5.65 Å) a = 2.70 Å(2.69 Å)

R(Fe(1)-Fe(2)) = 2.45 Å c = 5.13 Å(5.13 Å)

R(Fe(2)-Si) = 2.45 Å zSi = 0.27 (0.28)

R(Fe(1)-Si) = 2.83 Å R(Fe-Si) = 2.30 Å

R(Si-Si) = 2.56 Å

III. COMPARISON OF GGA AND G0W0 DENSITIES OF
ELECTRON STATES AND BAND STRUCTURE

Figure 2 displays comparison of the GGA and G0W0

densities of electron states (DOS) for Fe3Si and α-FeSi2. The
GGA part of the results coincides with previous calculations of
Fe3Si [36,38,39] and α-FeSi2 [35,38,40]. The general features
of the DOS in both compounds and approximations are that
the bands in the interval [−5,+5] eV around Fermi energy are
formed by the d electrons of iron with a slight admixture
of s and p electrons of Si and Fe. The Si valent s and
p electrons are delocalized in the wide energy region with
smeared maximum around −4 eV in both compounds. G0W0

changes the intensities of the peaks mainly in the energy region
deeply under Fermi surface, but the changes in Fe3Si and
α-FeSi2 are different. If in the GGA DOS of the Fe3Si the
peak located at E ∼ −3.5 eV is shifted by G0W0 for about
0.5 eV and made sharper, the GGA peaks in α-FeSi2 DOS in
approximately the same energy region (I, II in left panel of
Fig. 2) are washed out within the G0W0 calculations.

Different chemical surroundings of the Fe atom positions,
the cubic one for Fe(1) by Fe(2) atoms and the tetrahedral one for
the Fe(2) atoms by the Fe(1) and Si atoms as nearest neighbors
reflect themselves in different behavior of partial d-electron
DOS. It is illustrated in Fig. 3.

As seen from Figs. 3(a) and 3(b), the contribution to the
magnetic moment on Fe(1) from Eg orbitals [positive DOS in
Fig. 3(a)] compensated by the contribution from T2g orbitals
[the negative middle peak in Fig. 3(b)]. This means that the T2g

orbitals are responsible for formation of the large quasilocal
magnetic moment at Fe(1) atoms. It is also interesting that the
usual splitting of the d shell into T2g and Eg symmetries is
violated here by the contribution from exchange interaction:
as seen from Figs. 3(a) and 3(b) the Eg peak is in-between
two T2g peaks. Contrary to that, d DOS of Fe(2) is spread in a
wide region of energies. The d electrons of both T2g and Eg

symmetries contribute to formation of magnetic moment of
Fe(2). The delocalization of Fe(2) d electrons reflects itself in
the smaller moment than the one on Fe(1). Thus, the magnetism
in Fe3Si has mixed localized-delocalized nature.

The d DOS of iron in α-FeSi2, where Fe atoms also have Si
atoms as neighbors, displays behavior similar to Fe(2) partial
DOS for d electrons in Fe3Si. However, only these delocalized
electrons are not able to form magnetism in α-FeSi2. The
absence of magnetism in α-FeSi2 is easy to understand on
the basis of well-known Stoner’s model for a magnetism
of the delocalized electrons: the criterion Jg(εF ) > 1 is not
fulfilled since the density of electron states g(εF ) at the
Fermi energy εF is too small (here J is exchange integral
between delocalized electrons). An alternative mechanism
of the magnetism suppression would be a formation of the
low-spin state within the localized d-electron picture. This
state could be formed if the crystal-field splitting of the
d shell was stronger than the Hund-exchange one. However,
the density of d-electron states does not contain bright peaks
which might be interpreted as former d levels split in the
crystal field. Thus, one can conclude that if GGA and G0W0 are
good approximations for α-FeSi2, the key mechanism of the
magnetism destruction in this compound is the delocalization
of d electrons.
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FIG. 2. Left panel: The spin-polarized density of electron states for Fe3Si in the interval of energies [−4,+2] eV. Since the GGA and the
G0W0 approximations produce different Fermi energies εGGA

F (Fe3Si) = 7.88 eV and εGW
F (Fe3Si) = 8.44 eV, the plots are aligned for comparison

by placing the zero in the energy axis of both plots at Fermi energy. Right panel: The DOS for α-FeSi2 in the energy interval [−5,5] eV with
the same type of alignment of the energy axes: εGGA

F (α-FeSi2) = 9.34 eV and εGW
F (α-FeSi2) = 10.03 eV.

The most pronounced changes in G0W0 compared to GGA
are experienced by T2g electrons. It is illustrated on Fig. 4 for
α-FeSi2: two peaks (I and II) seen in the GGA DOS which
are washed out in the G0W0 are formed by T2g electrons. The
same is valid for the “down”-spin T2g states in the vicinity

of the Fermi level in Fe3Si [Fig. 3(d)]. At the same time, the
well-expressed localized peaks formed by Eg orbitals remain
intact.

We report here the results of the comparison only for the
part of the GGA and G0W0 band structures which are within

(a) (b)

(c) (d)

FIG. 3. The partial spin-polarized d-electron DOS for Fe3Si . Left panels display the contribution to DOS from dz2 and dx2−y2 states (Eg),
while the right ones show the contribution from dxy , dxz, and dyz states (T2g).
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FIG. 4. The partial spin-polarized d-electron DOS α-FeSi2 . Left panel displays the contribution to DOS from dz2 and dx2−y2 states (Eg),
while the right one shows the contribution from dxy , dxz, and dyz states (T2g).

several electron volts vicinity of the Fermi energies (remind
that GGA and G0W0 generate different Fermi energies, see the
caption to Fig. 2).

The Kohn-Sham band structure calculated within GGA
does not differ from the known results for Fe3Si [36,39] and for
α-FeSi2 [35,40,41]. Figures 5 and 6 show the band structure
for Fe3Si in the directions X and L, and for α-FeSi2

FIG. 5. The GGA and GW spin-up (top) and spin-down (bottom)
bands for Fe3Si. Zero in the energy axis of GGA and G0W0 plots is
chosen at corresponding Fermi energies.

in the directions X, M , and Z, where  = (0,0,0),
X = (2π/a)(1,0,0), L = (π/a)(1,1,1), M = (2π/a)(1,1,0),
Z = (2π/c)(0,0,1).

The bands are named in accordance with their symmetries
in the  point. The closest to the Fermi energy three filled
spin-up bands for the Fe3Si in Fig. 5 (upper panel) near
the  point, the doublet Eg and the triplet T2g are formed
by the d electrons of Fe atoms. The first empty band (A1g) near
the  point is formed by the s states of both Fe and Si atoms.

The GGA and G0W0 band structures for α-FeSi2 are shown
in Fig. 6. Here, the closest to the Fermi energy filled bands
formed by the d orbitals of Fe atoms near the  point are
B1g( dx2−y2 ), A1g (dz2 ), the doublet Eg (dxz,dyz) and B2g( dxy).
The lowest shown band (A2u) is formed by the s electrons of
Fe and p electrons of Si. The same tendency is seen: namely
the delocalized states, in this case, s and p states, show the
largest difference in GGA and G0W0. If the band formed by d

electrons close to the Fermi energy remains almost untouched,
the lowest sp band is shifted in G0W0 by ∼1 eV. The first
empty band near the  point is formed by the s and p states of
both Fe and Si atoms. In general, the GGA versus G0W0 shift
is about one electron volt for the excited states, while the band
shape remains the same. As seen at the right panel of Fig. 6
in the Z direction, the purely d bands are completely flat,
while the dispersion which arises near the boundaries is due

FIG. 6. The band structure of α-FeSi2; zero in the energy axis of
GGA and G0W0 plots is chosen at corresponding Fermi energies.
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to the admixture of s and p states. Analogous admixture of sp

electrons is observed around the boundary points X and M .

IV. SPECTRAL WEIGHTS

As was mentioned in the Introduction, the spectral weights
of quasiparticles are felt by the spectroscopic methods.
However, an analysis of their behavior in the Brillouin zone
provides also a deeper understanding of nature of a material
for the following reason. Being defined by Eq. (1), the spectral
weight Znk indicates how much weight in many-electron
systems can be ascribed to the single-particle excitations. Ac-
cording to Migdal’s theorem [42], it determines the magnitude
of the jump in Fermi distribution for the bands which cross
Fermi surface. In a noninteractiing system, Znk = 1 whereas in
the systems with interacting fermions Znk < 1 and, moreover,
the stronger the interaction, the less is Znk . For this reason, it
may be viewed also as an indicator of the interaction strength
in k space. Since the states with s, p, and d origin experience
different strength of the interaction due to their different degree
of localization, it makes sense to perform an analysis of k

dependence of the spectral weights together with the character
coefficients Ckn, which show the partial contribution of s, p,
and d states into formation of a band in question. Here, the
coefficients Ckn are calculated by projecting the orbitals onto
spherical harmonics using a quick projection scheme for PAW
pseudopotentials [30]. Both Figs. 7 and 8 show that the spectral
weights Zkn within the G0W0 are strongly decreased.

As seen, the increase of Zkn arises everywhere where an
admixture of delocalized electron states is present. Indeed, one
observes that near the X point of the Brillouin band it is the
admixture of s and p electrons to d states for the band T

(1)
2g of

Fe3Si causes the increase of the Zkn [see Fig. 7(b)]. The picture
for the empty bands is different: the s and p states of Si and d

states of Fe are mixed in the center of the band, whereas the
contribution of the d states is increased around boundary points
X and L [Figs. 7(c) and 7(d)]. The quasiparticle energies of
the excited states are lower than their Kohn-Sham counterparts.
Again, the largest difference is observed in the those parts of
the energy spectrum where the contributions from s and p

states become significant.
As seen from Fig. 8, the spectral weights Zkn of the

quasiparticles in α-FeSi2 also show a strongly nonmonotonous
dependence on k. For example, the spectral weight Zk,B1g

of
the B1g band in the direction X [second from top panel in
Fig. 8(b)] shows sharp changes in the interval 0.55 < Zk,B1g

<

0.8. The lower part of Fig. 8(b) explains the reason: again, the
closer to the X point the higher the contribution from the
delocalized s electrons. Thus, the behavior of spectral weights
indeed shows that the s electrons, being more delocalized,
interact weaker than the d electrons. The conservation of the
full spectral weight (it is equal to one as follows from the
commutation relations for the orthonormal basis) gives birth
to the question to be investigated: To which states is transferred
the remaining weight 1 − Z?

V. INFLUENCE OF SELF-CONSISTENCY ON THE QP
BAND STRUCTURE

Since semilocalized d electrons are poorly described by
GGA, it is expected that these errors are transferred to the one-

FIG. 7. Fe3Si quasiparticle filled bands (top panels), their spectral
weights Zk (second from the top), and the s, p, d character coefficients
Ck(bottom panels). The letters label different characters: d and p

stand for the empty and filled circles, correspondingly, the black
squares denote s character. The filled bands are shown in (a) and (b)
panels, while (c) and (d) display the empty ones. The dashed and
solid lines on (a) denote the nondegenerate bands Eg . The dashed
and solid lines on (b) and (d) denote nondegenerate and double-
degenerate bands T2g .

shot G0W0. For this reason, we inspected the role played by
the self-consistency in the formation of the QP band structure.
As was mentioned in the Introduction, the self-energy in the
present self-consistent GW calculation includes the vertex
correction in the form δ(1,2; 3) = δ(1,2)fxc(2,3), suggested
in Ref. [25]. The self-consistency is performed with respect to
both QP energies and wave functions.

The band structures of electrons in Fe3Si calculated within
GGA, G0W0, and scGW are shown on Fig. 9. While the
difference between the bands generated by GGA and G0W0

calculations is quite weak, the scGWd-electron bands change
their positions quite noticeably. First (down from Fermi level),
three majority spin scGW bands formed by d electrons
of both Fe atoms are shifted down from Fermi energy by
(0.15–0.2) eV. Similar shifts experience two minority-spin
filled bands formed by T2g electrons of both Fe(1) and
Fe(2): their shape is not changed, however, they are shifted
upward, towards the Fermi level; the first band is shifted by
(0.15–0.2) eV.

An interesting change of the band structure arises near the
X point for the minority-spin bands: if the GGA calculation
predicts a small pocket on the Fermi surface (Fig. 9, right
column in the bottom panel), G0W0 removes it, pushing these
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FIG. 8. The α-FeSi2 bands. The notations are the same as in
Fig. 7, but the filled bands are imaged in panels (a)–(c), while the
empty one is shown in (d).

states slightly above (0.1 eV) Fermi energy, while scGW lifts
them farther by ∼0.4 eV upward. At the same time, the pocket
for majority-spin states within scGW (Fig. 9, left column in
the bottom panel) even increases its size compared to GGA.
Thus, scGW predicts different topology of the Fermi surfaces
for majority- and minority-spin states compared to GGA. This
allows to expect, thus, that this difference can be observed, e.g.,
in the de Haas–van Alphen effect measurements. Besides, two
almost flat scGW bands of Eg symmetry move apart. This
tendency has been observed already in G0W0 calculation,
but there it was quite weak. Thus, one can conclude that
self-consistency with fXC correction shifts all, localized and
delocalized, d-electron states. The observed fact that scGW
changes the spectral weights negligibly, by 2%–5% in spite
of noticeable changes in scGW band structure compared to
G0W0, says that the energy dependence of the self-energy
remains almost the same [∂�()/∂E ≈ 0].

Contrary to the situation with Fe3Si, scGW calculation
on α-FeSi2 does not reveal qualitative difference in the band
dispersion with the one in the one-shot approximation G0W0

(see Fig. 10). A general feature of scGW approximation for
both compounds is the tendency of bands to converge to
the GGA bands. Especially, this tendency manifests itself in
α-FeSi2. Notice that the scGW lifts upward all bands, and the
bands of excited states now are higher than those obtained in
GGA. Since the spectral weights for this compound remain
almost the same too, i.e., Z

G0W0
k ≈ ZscGW

k , we can conclude
that the used vertex-corrected part of the self-energy just adds
almost energy-independent potential into the self-energy.

It is also interesting that influence of scGW is weaker in
the energy region in vicinity of Fermi energy and stronger
apart from it (for both excited and filled bands). Similar
effect has been observed in Ref. [43]. There are, however,

FIG. 9. (Color online) Comparison of Fe3Si band structures in
some of symmetrical directions: GGA (dashed lines), G0W0 (dotted
lines), and scGW (solid lines). From top to bottom: the filled bands,
the bands of excited states, and the energy region in the vicinity of
the Fermi level.

qualitative differences between the results if scGW applied to
semiconductor GaAs and to metal α-FeSi2. In the former case,
G0W0 and scGW move the bands downward in energy while in
α-FeAs2 these approximations act in opposite direction. Such
unambiguous influence scGW on the bands in Fe3Si is not
observed.

VI. OPTICAL PROPERTIES OF Fe3Si

Although the optical properties have been calculated in all
three approximations for both iron silicides, experimentally
only the samples of Fe3Si thick films have been grown and
investigated. For this reason, we present here the theoretical
results only for Fe3Si.

A. Fe3Si experiment

The Fe3Si film was grown on 1◦ miscut vicinal n-Si(111)
wafer with resistivity of 5–10 � cm at 160 ◦C by the
method of thermal evaporation in ultrahigh vacuum condi-
tion (UHV) in modernized molecular-beam epitaxy (MBE)
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FIG. 10. (Color online) Comparison of α-FeSi2 band structures
in some of symmetrical directions: GGA (dashed lines), G0W0 (dotted
lines), and scGW (solid lines). From top to bottom: the filled bands,
the bands of excited states, and the energy region in the vicinity of
the Fermi level.

chamber Angara [44], equipped with reflection high-energy
electron diffraction (RHEED). Prior to growth, Si wafer was
chemically cleaned by a technique described in Ref. [5]. In
UHV (base pressure 6.5 × 10−8 Pa), a Si wafer was exposed
to gradual thermal treatment for 3 h to 650 ◦C at rate of
4 ◦C/min. In order to obtain an atomically clean silicon
surface, the wafer was flashed at 850 ◦C–900 ◦C until well-
ordered (7 × 7) reconstruction appeared in RHEED pattern.
After the sample was cooled down to 160 ◦C, Fe and Si
were deposited simultaneously with growth rates of 0.772 and
0.44 nm/min. The as-grown RHEED pattern clearly displays
symmetrical streaks, which implies a good two-dimensional
growth of the Fe3Si film on Si(111) surface. X-ray diffraction
measurements of the Fe3Si/Si(111) were performed on a
PANalytical X’Pert PRO diffractometer equipped with a
solid-state detector PIXcel on Co Ka radiation. The in-plane
epitaxial orientation was analyzed using the asymmetrical φ

scans of reflections 224 from the Fe3Si film and Si substrate
(Fig. 11), which revealed the following orientation relations:
Fe3Si(111)[1 − 21]||Si(111)[11 − 2]. For the crystal-structure
analysis, a series of characteristic reflections 111, 222, 224,
and 440 from the Fe3Si film were measured choosing respec-
tive tilt angles and φ orientations of the sample (Fig. 12). To

FIG. 11. Two-dimensional images for φ scans of reflections 224
from Fe3Si film and Si substrate.

reduce the 111 reflection from the Si substrate, an additional
tilt of 1◦ was applied. The cubic (Fm3m) lattice parameter
a = 5.6650(2) Å and the occupancies of Fe and Si positions in
the crystal structure (Table II) were determined from the XRD
pattern by the derivative difference minimization method [45].

The dielectric permittivity has been calculated via variable
angle spectroscopic ellipsometry using the method described
in detail in Ref. [46]. In the calculations, we used the optical
model involving a homogeneous isotropic film with unknown
thickness and dielectric permittivity on an isotropic Si sub-
strate with known optical characteristics. The measurements
were performed at T = 296 K using the Ellips-1891 high-
speed spectral ellipsometer. As opposed to the work [46], all

FIG. 12. (Color online) Observed, calculated, and difference
XRD patterns for four characteristic diffraction peaks of Fe3Si after
crystal-structure refinement.
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TABLE II. Occupancies of Fe and Si positions in Fe3Si crystal
structure.

Wyckoff position 8c (Fe(1)) 4a (Fe(2)) 4b (Si)

Fe 0.95(1) 0.70(1) 0.40(1)
Si 0.05(1) 0.30(1) 0.60(1)

combinations of ellipsometric data measured across the whole
wavelength range at six different angles were used to calculate
average parameter of the film thickness, which was revealed to
be 501.4 nm. Such optical characteristics as complex refractive
index, reflectivity, absorption coefficient, and electron energy
losses have been calculated from the dielectric permittivity
using formulas given in corresponding figure captions.

B. Comparison of theoretical and experimental results

As mentioned in Sec. II, we obtained real and imaginary
parts of permittivity (ε′ and ε′′) from our ab initio calculations
and other optical characteristics are calculated from the
permittivity using formulas in the captions to Figs. 15–19.
The calculated optical characteristics show only qualitative
agreement with experimental ones. In comparison to the
sharp features observed on theoretical curves, the experimental
ones are quite smooth. There are several mechanisms which
may contribute to the measurements on real samples, which
wash out the sharp peaks, found theoretically. There can be
dislocations and stacking faults arising in the course of the
island coalescence, the disorder in the positions of Si and Fe
atoms (see Table II). In addition, a contribution to the tailing
of the spectra can come from the thermal processes. None of
these mechanisms are taken into account by any of the approx-
imations used, GGA, G0W0A, and GWA. Nevertheless, we did
not introduce a phenomenological smoothing into theoretical
curves, hoping that future experiments (particularly, at low
temperature), possibly, will reveal more detailed structure. For
this reason, at present we are able to perform only qualitative
comparison of experiment and theory.

Let us start with permittivity (Figs. 13 and 14). As seen
from Fig. 13, theoretical curves describe the experiment well
in the interval of frequencies ω ∈ (2.2,5) eV. In the interval
ω ∈ (1.2,2.2) eV, both theoretical curves are lower than the
experimental one. However, the position of the peak ω0

G0W0
	

1.7 eV obtained within G0W0 is shifted by scGW to the right
position ω0

scGW 	 1.25 eV.
The main clearly observed feature in the imaginary part

of the experimental dielectric permittivity (Fig. 14) is a wide
peak at ∼1.5 eV. The approximation G0W0 generates the peak
at ∼1.8 eV, while the scGW one shifts this peak towards
experimentally observed position, ∼1.5 eV. The analysis
shows that the main contribution to formation of this peak
comes from the minority-spin states. Indeed, there are two
close to the Fermi surface filled spin-down bands in the
direction X (flat band at the −1.2 eV and the partially filled
band at the −0.3 eV) and partially filled band near the L point.
The transitions from these bands to the almost flat in the same
k-direction empty band matches well to the photon energy
∼1.5 eV. Since part of considered bands are flat, the phase

FIG. 13. (Color online) Real part of permittivity ε ′ = Re(ε) of
Fe3Si. Squares denote experimental data, (red) dashed line presents
result of G0W0, (green) solid lines displays the result of the scGW
calculation.

volume contributing to permittivity is large, which results in
the peak in question.

The shift of the peak in the scGW calculation compared
to the G0W0 one is due to shift of the filled scGW T2g

minority-spin band up by 0.3 eV from the G0W0 value. One
can expect also that the greater value of disorder occurring
between Fe(2) and Si sites in the Fe3Si film discussed above
(see Table II) results in a peak broadening at photon energies
∼2.5 and ∼3.5 eV while a two times smaller disorder between
Fe(1) and Si sites is less destructive.

The behavior of the refractive index (Fig. 15) is similar
to the one of the real part of permittivity: scGW shifts main
peak in right direction compared to the one-shot approximation
G0W0. Surprisingly, however, this is not so for the extinction
coefficient (Fig. 16): the G0W0 describes the position of the
peak at ω 	 2 eV better than scGW. The dip at ω 	 4.4 eV,
predicted by both G0W0 and scGW, possibly, is smeared

FIG. 14. (Color online) Imaginary part of permittivity ε ′′ =
Im(ε) of Fe3Si. Squares denote experimental data, (red) dashed line
presents result of G0W0, (green) solid lines displays the result of the
scGW calculation.
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FIG. 15. (Color online) Refractive index n = {[|ε| + Re(ε)]/
2}1/2 of Fe3Si. Squares denote experimental data, (red) dashed line
presents result of G0W0, (green) solid lines displays the result of the
scGW calculation.

out by large errors inherent to the experiment in this region
of frequencies. The last statement is valid in this region of
frequencies also for the reflectivity (Fig. 17), electron energy
loss function (Fig. 18), and absorption coefficient (Fig. 19).

Thus, the low-energy peaks, predicted by both G0W0 and
scGW, in real part of permittivity, reflectivity, extinction, and
absorption coefficients, are not seen in experimental curves.

VII. DISCUSSION AND CONCLUSIONS

The comparison of the band structures obtained in the ab
initio calculations within the VASP for Fe3Si and α-FeSi2 in
GGA and GW shows that in general the bands’ shape is
similar. The difference between GGA and GW bands becomes
more pronounced in those parts of the Brillouin zone where
the delocalized states give noticeable contribution into quasi-
particle energies. This observation is somewhat unexpected
since both approximations are designed for description of

FIG. 16. (Color online) Extinction coefficient k={[|ε|−Re(ε)]/
2}1/2 of Fe3Si. Squares denote experimental data, (red) dashed line
presents result of G0W0, (green) solid lines display the result of the
scGW calculation.

FIG. 17. (Color online) Reflectivity R = {[(n − 1)2 + k2]/[(n +
1)2 + k2]} of Fe3Si. Squares denote experimental data, (red) dashed
line presents result of G0W0, (green) solid lines display the result of
the scGW calculation.

well-delocalized (Fermi-liquid-like) electrons. There are at
least two sources which can contribute to this difference.
First is the fact that the standard GGA is not free from the
self-interaction while GW takes into account Fermi statistics
by construction. The second source is that GGA and GW
are quite different approximations, as was discussed in the
Introduction. Particularly, it is worth noting that even if the
exchange-correlation potential vXC was found from the Sham-
Slüter equation for some approximation of the self-energy
�(ω), it would not mean that the perturbation theory with
respect to the difference vXC − �(ω), used in the widely used
one-short approximation G0W0, is good. The reason is that the
Dyson’s equation for the Green’s function should be fulfilled at
each energy point, while the Sham-Slüter equation is written
for integrals over all energies. From this point of view, the
origin of such a close similarity of the Kohn-Sham bands with
the energies of quasiparticle excitations remains unclear.

The observed decrease of the spectral weights Zkn of the
quasiparticle bands Ekn arises in any approximation with

FIG. 18. (Color online) Electron energy loss function L =
Im(ε)/|ε|2 of Fe3Si. Squares denote experimental data, (red) dashed
line presents result of G0W0, (green) solid lines display the result of
the scGW calculation.
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FIG. 19. (Color online) Absorption coefficient α = 2ωk/c of
Fe3Si. Squares denote experimental data, (red) dashed line presents
result of G0W0, (green) solid lines display the result of the scGW
calculation.

energy-dependent self-energy � since d�/dE < 1 [42]. The
GW calculations produced this decrease almost by a half
even for the systems with well-delocalized electrons at the
densities of real metallic systems. This fact is well known from
the calculations for homogeneous electron gas (see detailed
discussion in the Mahan’s book [47]). In order to check this
conclusion, we performed the GW calculations for Na metal.
The obtained spectral weights are found in the interval 0.5–0.6
as expected for such density of the gas. One can assume that the
GW shifts the remaining part of the weight to the incoherent
part of excitations.

Both GGA and GW band structures and, correspondingly,
the density of electron states, show that the d electrons of
those Fe atoms which have Si nearest neighbors, namely,
Fe(2) atoms for Fe3Si and all Fe atoms in α-FeSi2, are more
delocalized than the d electrons of Fe(1) atoms in Fe3Si, which
are surrounded only by the other Fe atoms. The partial density
of states of Fe(1) d electrons with Eg and T2g symmetry in
the  point has well-expressed peaks, the positions of which
could be ascribed to a splitting in the crystal field. However,
this splitting does not correspond to the standard picture of the
quasiatomic levels ε0

T2g,σ
d
†
tσ dtσ + ε0

Eg,σ
d
†
eσ deσ , from which the

bands are formed; the interactions renormalize these “levels”
ε0
T2g,σ

→ εT2g,σ in such a way that their sequence becomes
εT2g,↑ < εT2g,↓, εEg,↑ < εT2g,↑.

The reduction of the spectral weight predicted by our GW
calculation may be verified by the ARPES experiments. If the
DFT-GGA band structure was correct and could be interpreted
as a QP spectrum, the momentum distribution curve would
reveal the uniform distribution of the spectral weight along
the Fermi surface. Thus, the ARPES experiments on iron
silicides would be of great help in further understanding of
these compounds and, possibly, could motivate more advanced
theoretical approach to the problem.

The optical experiments on Fe3Si thick films performed in
this work allowed us to obtain real Re(ε) and imaginary Im(ε)
parts of the permittivity ε and, correspondingly, the refractive
index n, reflectivity R, electron energy loss function L, ex-
tinction k, and absorption α coefficients. Our G0W0 and scGW

calculations show that Re(ε), Im(ε), R, k, α display low-energy
peaks at energies ∼(1.5–1.8) eV. The detailed structure of these
peaks is not seen in experiment, however, its position in Re(ε)
and Im(ε) calculated within scGWA is closer to experiment
than the G0W0A one. At the same time, these peaks are com-
pletely washed out in experimental R, k, and α. As has been
discussed in the beginning of Sec. VI B, quasiparticle band
structure suggests that these peaks originate from particle-hole
transitions between the flat-filled and empty bands.

One can assume that a possible reason for the observed
discrepancy might be the spin-orbit coupling which is not taken
into account in our calculations. However, as it is known from
the experiment [48], the orbital moment in the stoichiometric
Fe3Si is quite small, only 0.051μB . Our calculations within
the GGA give the orbital moment in Fe3Si 0.046μB on Fe(1)

and 0.02μB on Fe(2) (average orbital moment calculated in
Ref. [48] is 0.029μB ), whereas in α-FeSi2 it is 0.00005μB .
Thus, the spin-orbit interaction is too small to be able to remove
the discrepancy.

The clear physical origin of these peaks, derived from ab
initio calculations, raises the following: either the G0W0 and
the scGW approximations are not good enough, or further
experiments are needed on better quality samples and at low
temperature. This also can be solved in ARPES experiments: if
the flat bands will be found and, therefore, the approximation
used correctly reflects the quasiparticle properties, the reason
for discrepancy with results of the optical experiments should
be ascribed to insufficient accuracy of experiment. And,
vice versa, if ARPES will not reveal these flat bands, a
better approximation for calculation of quasiparticle properties
should be developed.

One more difference between the GGA and GW results
is worth mentioning. Although the Fermi surface was not
calculated in this work, it is clear from the comparison of GGA
and GW band structures that the GW generates different Fermi-
surface topology for the majority- and minority-spin states: the
small pocket existing near the X point in GGA disappears in
in GW calculations. In this respect, the measurements of the
de Haas–van Alphen effect on Fe3Si would be of help.

The technological impact of this paper is straightforward.
The possibility of single-crystalline MBE films of Fe silicides
on the Si substrate growth [3–5] opens the way to (ferromag-
netic metal)/(nonmagnetic semiconductor) heterostructures
with silicide layers,where Fe3Si layers should work as spin
injectors. The example of MBE structure Fe3Si/Ge/Fe3Si/Si
has been demonstrated in the paper [49]. The in situ spectral
magnetoellipsometry allows to control the optical parameters
(real and imaginary parts of the diagonal component of
dielectric permittivity tensor) and magnetic properties (off-
diagonal components) [50], that are directly related to the
quality of silicide nanolayers. To get the material parameters
from the magnetoellipsometry measurements, the theoretical
knowledge of the spectral dependence of the dielectric permit-
tivity is necessary.
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