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Cooperative phenomenon in a rippled graphene: Chiral spin guide
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We analyze spin scattering in ballistic transport of electrons through a ripple at a normal incidence of an electron
flow. The model of a ripple consists of a curved graphene surface in the form of an arc of a circle connected
from the left-hand and right-hand sides to two flat graphene sheets. At certain conditions the curvature-induced
spin-orbit coupling creates a transparent window for incoming electrons with one spin polarization simultaneously
with a backscattering of those with opposite polarization. This window is equally likely transparent for electrons
with spin up and spin down that move in opposite directions. The spin-filtering effect that is small in one ripple
becomes prominent with the increase of N consequently connected ripples that create a graphene sheet of the
sinusoidal type. We present the analytical expressions for spin-up and spin-down transmission probabilities as a

function of N connected ripples.
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I. INTRODUCTION

The extraordinary properties of graphene have attracted
enormous experimental and theoretical attention for a decade
(see, e.g., Refs. [1,2]). Graphene, being a zero-gap semicon-
ductor, has a band structure described by a linear dispersion re-
lation at low energy, similar to massless Dirac-Weyl fermions.
Such a band structure leads to exceptionally high mobility
of charged carriers. A question of possible mechanisms that
would allow us to throttle the mobility and, consequently, to
control conductivity is a topical subject in graphene physics
due to its fundamental as well as technological significance.

Among various mechanisms that might affect the mobility,
the scattering that could be induced by a ripple (see, for
example, discussion in Ref. [3]) appears to be the most natural
one since graphene sheets are not perfectly flat. Moreover,
periodic ripples can be created and controlled in suspended
graphene, in particular, by thermal treatment [4] and by placing
graphene in a specially prepared substrate. Indeed, curvature of
the surface affects the 7 orbitals that determine the electronic
properties of graphene. It results in enhancement of spin-orbit
coupling that could serve as a source of spin scattering. We
recall that the intrinsic (intra-atomic) spin-orbit interaction in
flat graphene is weak [1,2,5]. It makes spin decoherence in
such a material weak as well; that is, scattering due to disorder
is supposed to be unimportant. In order to get deep insight into
the nature of curvature-induced scattering, it is desirable to
elucidate, among many questions, the basic one: What are the
distinctive features of curvature-induced spin-orbit coupling?
One can further ask how to employ these features to guide
electron transport in a graphene-based system at the theoretical
and, quite likely, practical levels.

A consistent approach to introduce the curvature-induced
spin-orbit coupling (SOC) in the low-energy physics of
graphene has been developed by Ando [6] and by others
[7-9] in the framework of effective mass and tight-binding
approximations. Recent measurements in ultraclean carbon
nanotubes (CNTs) [10], i.e., in an extreme form of curved
graphene, revealed the energy splitting that can be associated
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with spin-orbit coupling. The measured shifts are compatible
with theoretical predictions [6,9], while some features regard-
ing the contribution of different spin-orbit terms in metallic
and nonmetallic CNTs are still debatable (see, for example,
discussion in [11-16]). Nowadays, nevertheless, there is a
consensus that for armchair CNTs one obtains two SOC
terms: one preserves the spin symmetry (a spin projection
on the CNT symmetry axis), while the second one breaks this
symmetry [6,14,15,17]. Thus, we have a reliable answer to the
first question, at least for armchair CNTs. In some previous
studies [6,9,14,15] the role played by the second term was
underestimated. In this paper we will attempt to answer how
full curvature-induced SOC, including the second term, could
be used to create a polarized spin current with high efficiency
in a rippled graphene system.

The structure of this paper is as follows. In Sec. II we briefly
discuss the explicit expressions for the eigenspectrum and
eigenfunctions of an armchair nanotube with full curvature-
induced spin-orbit coupling. By means of these results we
introduce a scattering model for one ripple and extend this
model for N continuously connected ripples. In Sec. III we
provide a discussion of our results in terms of simple estimates.
The main conclusions are summarized in Sec. IV.

II. SCATTERING PROBLEM

In order to model a scattering problem on a ripple we
consider a curved surface in the form of an arc of a circle
connected from the left-hand and right-hand sides to two
flat graphene sheets. The solution for flat graphene is well
known [1,2]. The solution for a curved graphene surface can
be expressed in terms of the results obtained for armchair CNTs
in an effective-mass approximation, when only the interaction
between nearest-neighbor atoms is taken into account [17].

A. Low-energy spectrum of the armchair nanotube

Let us recapitulate the major results [17] in the vicinity of
the Fermi level £ = 0 for a point K in the presence of the
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curvature-induced spin-orbit interaction in an armchair CNT.
The y axis is chosen as the symmetry and the quantization
axis. In this case the eigenvalue problem is defined as

Lo {0 F\[(FX\ _ _(Ff
(o))

with the following definitions:

A A a Sy’ - 28yp,
f=ylk:— lky)‘i‘lﬁffx(r) - To-yv
k ; 0 k ;0 2)
x = —lo—, ky=—i_—,
R3O 7 dy

6.(F) = 6, cosf — 6, sin6.

Here, 6, , . are standard Pauli matrices, and the spinors of two

sublattices are
K
Y 3)
Fg,

The following notations are used: y = —\/§V[’fpa /2 = yoa,
y' = \/§(V1‘,’p —Vya/2=ya, p=1-=3y'/8y (see, eg.,
Ref. [6]). The quantities V;p and Vp’; are the transfer integrals
for o and 7 orbitals, respectively, in a flat graphene; a =
3d ~ 2.46 A is the length of the primitive translation vector,
where d is the distance between atoms in the unit cell.

The intrinsic source of the SOC § = A /(3€¢,,) is defined
as

3h v aV

=i S By — S pal)s 4
l4m§c2<xl|8xpy aypl)’z) “)

where V is the atomic potential and €, = egp —€3,. The
energy €3, is the energy of o orbitals, localized between carbon
atoms. The energy egp is the energy of m orbitals, directed
perpendicular to the curved surface.

By means of the unitary transformation

N 0
U(@) = exp (izﬁy) ® 1, 5)
where [ isa?2 x 2 unity matrix, one removes the 6 dependence

in Hamiltonian (1), transformed in the intrinsic frame, and
obtains

A = U0©)AU"(6) = A, + Hsoc,

N 1
Hyin = —iy(fy®18y+fx®lﬁag>, (6)
Hsoc = —Ayty ® 6, — Aoty ® 6,y

Here, the operators %, , . are the Pauli matrices that act on
the wave functions of the A and B sublattices (a pseudospin
space), and

Ay =y(1+43p)/(2R), Ay =8y'/(4R) (N

are the strengths of the SOC terms. In the Hamiltonian (6) the
term ~A, conserves, while the other one (~A,) breaks the spin
symmetry in the armchair CNT.
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The operator fy, being an integral of motion [ILAI ,J}] =0,
is defined in the laboratory frame as

N N 6'y . 6'y
J_V:I® Ly-f-? =IQ® —189+7 s (8)

while in the intrinsic frame it is

Jy = J, =040 =1 (—id). ©9)
This integral allows us to present the wave functions as
A
F'(0,y) = ™ er W = ¢t g . (0
D

These wave functions are also the eigenfunctions of the other
integral of motion, the operator IQ( = lgy. Here,m = +1/2, &+
3/2, ... is an eigenvalue of the angular momentum operator
J y’ For the components of the eigenvector F’(6,y) the relations
|A] = |D| and |B| = |C| are fulfilled at real values of m
and k.

Solving the eigenvalue problem A’'F’ = EF’, one obtains
the eigenspectrum

E=+En, Eng= \/z; 12422+ 22+ 2Dy,

Dy = ayA2(3 +33) + 1232,

g = +l, (11)

where 1, = ym/R, t, = yk,.

B. Scattering model for one ripple

Keeping in mind what will be discussed below, we analyze
the following geometry (see the construction profile in Fig. 1).
It consists of one arc of a circle that is connected from the
left-hand side to a flat graphene sheet. This (direct) arc is
continuously connected to the inverse arc of the same radius
that is connected to the right-hand flat graphene sheet. We put
the origin of the coordinate at the center of the direct arc of
the circle.

To give better insight into the scattering phenomenon in our
model of aripple, we study first only the direct arc of the circle
connected to two flat surfaces. Two flat surfaces are (i) the
region L, defined in the interval —oo < x < —R cos 6, and
(1) the region R, defined in the interval R cos6fy < x < oo.
Region I is part of a nanotube of radius R, defined as
—Rcosfy < x < Rcosby. At 6y = 0, the ripple is half of the
nanotube, while at 6y = 7 /2 the ripple does not exist. For
the sake of analysis we introduce the angle ¢ = 7w — 26,.

X

FIG. 1. (Color online) The rippled graphene system.
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To describe the scattering phenomenon one has to define
wave functions in different regions: flat (L, R) and curved
(I) graphene surfaces.

Regions L and R are described by the Hamiltonian

Hy = y(tcke + 2k ® 1,
which does not mix spin components. For the sake of sim-
plicity, we consider the electron motion at normal incidence,
with the electron wave vector k = (k,,0). One solves the

stationary Schrodinger equation HyW = EW and obtains the
corresponding eigenstates,

12)

Ey = Lylk,l, (13)
U = exp (ik,x)V] (ky), (14)
1 [sgn(yky Eq)®f
Wik, = = , 15
qes 2( o (1s)

Gy P =0 ®f, P = (ilr)’ o ==l (16)

Evidently, the wave functions in regions L and R can be
written as a superposition of all possible solutions for flat
graphene. To proceed, with the aid of eigenspinors (15) and
(16), we introduce an auxiliary matrix My (4 x 4) for a given
value of energy at the normal incidence

Mo = (W (KD, W5 (KO, W3 (=K, W5 (—K). (17)

Here, we define the variable K, = sgn(y Ey)|k,| to ensure
that the first two columns of the matrix M, correspond to
eigenstates that move in a positive x direction, while the last
two columns correspond to eigenstates that move in a negative
x direction.

The matrix Mo is unitary, i.e., Mgl = Mg. It allows us
to define a general form of the wave function W, p for flat
graphene,

Wy r(x) = Moexpli K (x — x1, )ICL g,

where K = diag(K,,K,, — K., — K,) is a diagonal matrix,
xp g are x coordinates where flat and curved surfaces are
connected, and Cy g are corresponding vectors with four
unknown, yet normalized, coefficients in each region. Note
that we do not consider inelastic scattering. Therefore, since
the electron energy is conserved, we use the same vector
k = (k,,0) for the left and right flat graphene surfaces.

For the curved surface we use eigenspinors of the Hamil-
tonian (6). The general form of these eigenspinors is defined
in the intrinsic frame [17]. Therefore, we apply the inverse
transformation (5) to these eigenspinors in order to analyze
the scattering problem in the laboratory frame. At k, = 0 the
spectrum (11) and the eigenspinors are particularly simple,

(18)

En=+/12 +)2+ sk, s==%l, (19)
W = exp (imf) W (1), (20)
o (s
W (tn) = (a),CDj(tm))’ (21)
(1) = 26 it 22
a(fm) = exp <_l§(7y> by — (SEx — i) . (22
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FIG. 2. (Color online) The spectrum (19) at k, = 0 as a function
of the quantum number m. Dashed red and solid blue lines are
associated with states characterized by the quantum number m;__,
and m,_., respectively. The values of +m; at the energy Er =
0.2 eV (solid horizontal line) are indicated by vertical dashed lines.
The parameters of calculations are R = 10 10%, 8§ =0.01, p=0.1,
y=2142 A eV, y =y& A =2(1/2+20p) =032 eV, 1, =

8§y . g . .
ﬁ = 0.0043 eV. The arrow indicates the gap displayed on the inset.

Note that energies in flat graphene and in a curved surface
are different Eg = E4 + A(%)2 (see details in Ref. [18]). This
effect is caused by different hybridizations of & electrons in
flat graphene and a graphene-based system with curvature.
In particular, A =5/6,7/12 eV in the armchair and zigzag
nanotubes, respectively.

At a fixed energy of the electron flow Ey < E 4, Eq. (19)
yields four possible values of the quantum number m:

R
mims::l:;\/(sEA—)\x)z—)\%, s=+1.  (23)

Since the angular momentum is no longer the integral of
motion, we have to consider the mixture of eigenfunctions
with all possible values of m at a given energy.

As an example of the spectrum (19), a few positive
energy branches as a function of the quantum number m
are shown in Fig. 2. The branches are distinguished by the
index s = =£1. There is an anticrossing effect between energy
states characterized by the same m;_,; quantum number.
This anticrossing is brought about by the interaction ~A,
that breaks the spin symmetry (see Sec. Il A) in the curved
graphene surface. It results in a gap of 24, near £, = A,,
indicated by the arrow (see the inset in Fig. 2). A similar gap
occurs near E£4 = —A, for the m states with index s = —1.
As a consequence of these gaps, evanescent modes arise
at energies A, — A, < |E| < A, + A, in our system. For the
sake of illustration the positive spectrum (19) of m states is
crossed by the horizontal line that mimics the Fermi energy.
The crossing points determine quantum numbers m that have
nonquantized values when the curved surface (arc of a circle)
is connected to the flat one.

With the aid of eigenspinors (21) and (22) and the unitary
transformation (5), we introduce an auxiliary matrix for a given
value of energy at a curved surface,

MA(Q) = (‘I"f]\(t’m)’\I’Xl(tm—l)’\y/l&(_tml)’wgl(_tm—l))
= U(—0)M4(0). (24)
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As a result, in region I the wave function can be written as
a superposition of all solutions for a curved surface in the
form W;(0) = My (0) exp(im0)C;. Here, C is a vector of four
unknown coefficients, and m = diag(m,m_;, —my, —m_;)
is a diagonal matrix.

The overlap of eigenspinors of the flat and bent regions can
be readily calculated with the aid of Egs. (15) and (21), which
results in

(¥g) (W3) = [—sgn(yk, Eo)s + o]
, 0 ]
x(q>g)Texp(—i§6y)(cbj4). (25)

Evidently, the overlap is zero at o = sgn(yk, Ey)s. Note that
already this result implies that some of the four channels
between the flat and curved regions could be closed.

Matching the wave functions at the boundaries of regions
L, I, and R, for an incoming electron flow from the left-hand
side, leads us to the following equations:

Up(xp) = Vi(=¢/2)
= Mo(“j) = Ma(—¢/2C1,  (26)

Yr(xg) = Vi(+¢/2)

= My (6) = Ma(+¢/2) exp(ime)Cr.  (27)

We recall that the angles 6y and ¢ determine the x; g coor-
dinates: x; = R cos(6p + ¢), xg = Rcosby. Here, t = (;EZ;}.

and r = (;Ef;ﬁ.) are transmission and reflection coefficients,
respectively, %or incoming an electron either with a spin up
1) = (;) or with a spin down || ) = (ji).

Solutions of Eqs. (26) (and similar equations for an
incoming electron flow from the right-hand side) yield the
following probabilities:

KDL = 1 (R)! P = ﬁ 28)
H(L)] > = [t(R)] > = T (29)
P = Ir(RYP =1 TLV (30)
DY = r(R)P =1 m G1)
Here, we have also introduced the variable zg,
. Ay sin(mg¢) _ M sin(msq))’ _ i1, 32)

I, 14 mg
related to the characteristics of the curved surface (see
Sec. I1 A).

Evidently, there is no backscattering for incoming electrons
if A, = 0 [see Eqgs. (30)—(32)]. However, at A, # 0 backscat-
tering with a spin inversion takes place. The reflection proba-
bilities without the spin inversion are |r(L)1|2 = |r(L)f|2 =0.
The same is true for the transmission probabilities with a spin
inversion, i.e., |t(L)I|2 = |t(L)*|2 = 0. Thus, backscattering
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with a spin inversion is nonzero in the ripple due to the
curvature-induced SOC produced by the A, term. In addition,
incoming electrons with different spin orientations choose
different channels (different mg,s = £1).
The maximum transmission probability |t(L)$|2 = 1 takes
place at the condition
m_1¢p.=nn, n=12 ... (33)
[see Egs. (28) and (32)]. Evidently, this probability becomes
dominant at the minimum transmission |t(L)i |>. The lowest

minimum of the transmission |t(L)i |2 occurs at the condition
E4 = Ay, when my; becomes imaginary [see Eq. (23)].
In other words, the propagating mode transforms to the
evanescent mode for the channel m . Taking into account the
condition E4 = A, in Eq. (23), one obtains the critical angle
of the curved surface (in the form of the arc) for a maximum
of spin-up filter efficiency,

mn mn
=" = T (34)

Mol R (432 )2

where the SOC strengths A, , are defined by Eq. (7). For
parameters listed in the caption of Fig. 2 we have |¢.| =
0.9967 (n = 1). For the same critical angle ¢. and E4 = —A,
we obtain a maximum for the spin-down filter efficiency, when
m_; becomes imaginary.

Thus, there are different channels for the spin-up and spin-
down electron (hole) flows. Note that the deviation from the
energy value E4 = %A, could produce the equal transmission
for spin-up and spin-down electrons [see Fig. 3(a)]. Therefore,
it is important to choose the energy |E4| to be in the
close vicinity of the energy value ~A,. For the considered
parameters the filter efficiency is, however, small. So far this
result has met with only limited success.

C. Scattering model for N ripples

To increase the efficiency we suggest connecting the bent
parts sequentially, as shown in Fig. 1. In particular, the
construction with the direct plus inverse arcs (with the same
angle ¢) transforms Eqgs. (26) and (27) to the forms

A

Mo(“j") = MA(~¢/2C, (35)
Mo (g) = MGt — ¢/2) exp(—irig)

<M (p)2 — 1)Ma(+¢/2) exp(+ie)C;.
(36)

Since in the inverse arc the phases, accumulated from
the point of connection with the direct arc to the point of
connection with a straight line (flat graphene), have a sign
opposite that of the first one, we use exp(Zirnip).

Matching the wave functions at the boundaries of regions
L, I, II, and R for electrons coming from the left-hand (L)
and right-hand (R) sides of the construction leads us to the
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FIG. 3. (Color online) Dependence of transmission probabilities
|t(L)1 | (blue dashed lines) and |t(L)t |? (red solid lines) on the energy
E, at ky =0 for (a) 1, (b) 20, (c) 100, and (d) 200 sequentially
connected ripples (v arcs). The parameters are the same as in Fig. 2.

following nonzero probabilities:

2
(L)} = [ } = |t(R){I’, 37)

1
14 2(z-1)?

2
)2] = [t((R)] %, (38)

if =
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(D)2 =1— ()P = r(R){, (39)

Ir(L);? = 1— (L)} = [r(R)]*. (40)

Thus, the transmissions through one and two (direct plus
inverse) arcs are accompanied by the inverse backscattering.
The considered cases imply that the larger the number of arcs
is, the stronger the inverse backscattering is for one of the spin
components.

Following the recipe described in Ref. [19] (interfering
Feynman paths) and combining S matrices for N connected
arcs, we obtain

- -2
H(D]P = ﬁ —iRIE, @
Ll - N
(DI = | o | =l @)
| G G
Here, the variable C® is defined as
CH =14 (z,)* £z,, s==%£1. (43)

Evidently, at z; = O the transmission probability is 1 for
any number of arcs, while z; # 0 leads to the decrease of
the transmission probability with the increase of the number
of arcs. The suppression is, however, different for various
transmission probabilities due to their different dependence
on the quantum number ;.

As shown above, conditions (33) and (34) determine the
dominance, in particular, of the transmission probability of
spin-up incoming electrons at E4 > 0. Indeed, a set N > 1
of an exact replica of the consistently connected ripples (see
Fig. 1) does not affect this dominance (= 1) for the m,__,
channel. However, this set suppresses the spin-down transmis-
sion probability for the m,—, channel that is proportional to
x<1=xV =0

We would like to point out that Egs. (41) and (42) are valid
for odd and even numbers of consistently connected ripples.
In our model the only requirement is that the direct ripple
has to be connected to the inverse one, the inverse ripple to
the direct one, etc. From our consideration it follows that,
if at a certain energy, for example, E4 > 0, there is a high
transmission probability for spin-up electrons from the left
side of our system, one obtains the same magnitude for the
transmission probability for spin-down electrons from the right
side.

III. DISCUSSION
A. N factor

To obtain a simple picture of the physics behind the
enhancement of the spin-filtering effect, let us consider the
transmission at the energy E4 =~ A,, when m,; becomes
imaginary [see Eq. (23)] and the propagating mode transforms
to the evanescent mode for the channel m,;. In light of
Egs. (23) and (7), one obtains

/

L ~ 0.007. (44)
4y

miyp=i—>A, =ix, x=
14
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As aresult, the variable z, [Eq. (32)] transforms into the form
7 = xp L 1. (45)

Taking into account Egs. (43)—(45), one can readily estimate
thatat N > 1,

N _\N
CH" )" = 24 (Nxg)? (46)

2
= [H(L)]]* ~ [ ] . @D

2+ (Nx¢)?

With our choice of parameters and ¢ ~~ 7, this result yields

1
t(L)]? < 1 &= N> — N 45, (48)

The illustration of this phenomenon is displayed in Fig. 3
for the transmission probabilities through 1, 20, 100, and 200
sequentially connected ripples (7 arcs). Here, we consider
the transmission as a function of the curved surface energy
E, of the incoming electrons (holes). A small difference
between spin-up and spin-down transmission probabilities
for one ripple [Fig. 3(a)] at E4 > 0 evolves to ~100%
efficiency for the spin-up transmission probabilities for the
left-side incoming electron at N = 200 ripples [Fig. 3(d)]. The
opposite picture takes place for the spin-down transmission
probabilities at E4 < 0. To realize such a situation one might
use the SiO, substrate as a gate of the curved surface, which
helps control the concentration of charge carriers in graphene.
As a result, one can change the charge carrier type from
electron to hole [20].

B. Spin filtering and ripple parameters R and ¢

In light of the above analysis, without loss of generality,
we can consider m;¢ < 1 in order to observe the suppression
effect [see Eq. (48)]. With the aid of Eq. (23), taking into
account that A, >> A,, this requirement leads to the following
inequality:

|4 14
Ax Ro < |Eal <X + R’

To remain at the maximum, for example, the transmission
probability |t(L)1|2 =1, it is necessary to fulfill condition
(33). Asaresult, in light of Eq. (23) and the condition A, >> A,
taking into account Eq. (7), we obtain

RNL(E—,B), 5=w. (50)

(49)

~|EAl\ ¢ 2
Combining this equation with Eq. (49), we have
T —1 T+1
51
TE ¢<— 5 61V

Thus, Egs. (50) and (51) determine the region of feasibility
of the parameters R and ¢, where the spin-filtering effects
could exist at fixed system (graphene) parameters such as y,
8, and the electron energy E 4. From this observation, two
arguments follow in favor of our findings. First, even at ¢ # ¢,
[see Eq. (34)] one of the spin components in the incoming
electron (hole) flow is suppressed for a large enough number
of ripples at some particular energy region. Second, we assume
that all ripples are identical. Practically, the graphene surface is

PHYSICAL REVIEW B 92, 205432 (2015)

randomly curved, and it is a real challenge to create identical,
consequently connected ripples. However, it is our belief that
modern technology will allow us to realize this situation sooner
or later. Whatever the case, the spin-filtering effect should
survive if small variations of radii and angles of consequently
connected ripples are subject to conditions (50) and (51) at a
fixed value E4 of the electron energy flow.

C. Effect of a finite k, momentum

In our model a single ripple is modeled as part of a nanotube
that is infinite in the y direction. Evidently, realistic ripples are
limited in space in both the x and y directions. In particular,
graphene nanoribbons are considered prominent candidates to
control the electronic properties of graphene-based devices.
This issue requires, however, a dedicated study and is the
subject of a forthcoming paper.

In order to have some idea of what should be expected
in graphene nanoribbons, we analyze the case with a finite
ky # 0. Nonzero k, could mimic the case of a ripple limited
in the y direction. Indeed, a finite width in the y direction
introduces the quantization of the £, momentum on the curved
surface. As a result, the eigenspinors at the curved surface
would depend on the mixture %k, values for s = £1, i.e,
altogether four-momentum k, (see details in Ref. [17]). In
this case analytical expressions are too cumbersome, even in
a simple case of one conserved momentum k, on the curved
surface. Therefore, we proceed with a numerical analysis that
provides a vivid presentation of a simple case with a single
value of the k, momentum on the curved surface.

Let us suppose that the incoming electron flow possesses a
momentum k = (ky,ky) in regions L and R. Evidently, in this
case Eg = £y vk + k%. For simplicity, we consider Ey > 0
and obtain for the momentum on the curved surface

ky =t,/y = (Eo/y)sin(a). (52)

The results of the calculations exhibit a degradation of
the spin-filter ability of our system. At a fixed value of
the energy Ey = X, the transmission probability |t(L)$|2
decreases drastically at || > 7 /8 [see Fig. 4(a)]. It seems
that the spin-filtering effects would survive at |¢| < /8.
Note, however, that this estimation depends on the system
parameters, such as y and Ej.

At a fixed value of the momentum k, the effectivity of
spin filtering is reduced by ~10% [see Fig. 4(b)]. At the same
time, our systems manifests a zero transmission for all spin
orientations for charge carriers at energies —0.06 eV < E4 <
0.06 eV due to our choice of the value k.

D. The graphene purity

We restricted our consideration to a ballistic regime. This
approximation is well justified due to the following factors.
The remarkable strength of the carbon honeycomb lattice
makes it quite difficult to introduce any defects into the lattice
itself. Charge impurities that could limit electron mobility in
graphene are still an open problem from both experimental
and theoretical points of view (see, for example, discussion in
Ref. [1]). It is also well known that the difference in conduc-
tivity in graphene between 7" =~ (0 and room temperature is no
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FIG. 4. (Color online) Transmission probabilities |t(L)1|2 (blue
dashed lines) and |t(L)i|2 (red solid lines) (a) as a function of the
incidence angle o at Ey = E4 = A, = 0.32 eV and (b) as a function
of the energy E, atk, = 0.01 A=, The calculations are done for 200
sequentially connected ripples (;r arcs). The other parameters are the
same as in Fig. 2.

more than a few percent. In other words, the electron-phonon
scattering plays a minor role.

We recall that a typical ripple size is ~7 nm (see Ref. [21]).
In our paper the ripple is modeled as the curved surface in
the form of an arc of a circle with a radius R = 1 nm. As a
result, our system length is w R x 200 &~ 640 nm. Taking into
account that a typical mean free path of electrons in single-
wall nanotubes is £ ~ 1 um (see, e.g., Ref. [2]), it seems our
consideration is on a reasonable basis.

Thus, in our model the basic mechanism that is responsible
for spin-filtering effects is an attenuation of one of the
transmitting modes. It transforms to the evanescent mode in
the energy gap created by the SOC in the curved surface.
The multiplicative action of a large enough number of ripples
suppresses this transmitting mode at certain conditions that
provide a high efficiency for the other one.

IV. SUMMARY

We have analyzed the transmission and reflection of
ballistic electron flow through a ripple in an effective-mass
approximation when only the interaction between nearest-
neighbor atoms is taken into account. In our consideration
a ripple consists of the curved surface in the form of an
arc of a circle connected from the left-hand and right-hand
sides to two semi-infinite flat graphene sheets. Considering
the curved surface as part of the armchair nanotube, we have

PHYSICAL REVIEW B 92, 205432 (2015)

shown that the curvature-induced spin-orbit coupling yields
backscattering [see Eqgs. (30) and (31)] with spin inversion.
This spin inversion is caused by the spin-orbit term that breaks
spin symmetry (a spin projection on the symmetry axis) in the
effective Hamiltonian of the armchair CNT.

In the energy gap created by the curvature-induced spin-
orbit coupling there is a preference for one spin orientation,
depending on the direction of the electron flow at normal
incidence. The width of the energy gap depends in inverse
proportion on the radius of the ripple. At this energy
range the ripple acts as a semipermeable membrane which is
more transparent for the incoming electrons with spin up from
the left-hand side and with spin down from the right-hand
side and vice versa for the holes. In other words, there is a
precursor of chiral transmission of spin components of the
incoming electron (hole) flow at a fixed energy. For one ripple
system this effect is, however, small. In order to enforce this
effect, we extended our consideration to a curved surface of
the sinusoidal wave type with N arcs. This step is of crucial
importance to suppress one of the spin components and to
support the spin inversion symmetry for the transmission
probability. The larger the number of consistently connected
ripples (arcs) is, the stronger the dominance of a specific spin
component is in comparison with the other in the transmission
from the same direction. There is a cooperative effect of chiral
spin transmissions produced by a large number of ripples.
To trace the N dependence we have derived a formula for
a composite transmission probability for well-polarized spin
components: (i) Eq. (41) for spin-up electrons and (ii) Eq. (42)
for spin-down electrons. Based on these results, we predict a
strong spin-filtering effect for a sufficiently large number of
arcs in the rippled graphene system. In contrast to the usual
waveguide that guides optical or sound waves of a chosen
frequency in a well-defined direction, our system guides spin
electron (hole) waves with a well-defined polarization in one
or another direction at a certain energy. It seems, therefore,
natural to name this system chiral spin guide.

We have considered only a curved surface that owes its
origin to an armchair nanotube. Evidently, our model can be
extended to other types of origins. However, the corresponding
analysis requires a separate study. We also neglected the
effective magnetic field that arises from the dependence of the
hopping parameter y on the curvature (see discussion in [3]).
This effect influences the local density of states [22]. It can
cause the localization of the electrons on the boundary between
flat graphene and the curved surface, similar to the boundary
state for some types of carbon nanoparticles [23]. As a result,
it might affect the efficiency of the spin guide. Last, but not
least, many-body effects such as electron-electron interaction
should be incorporated and analyzed as well. It is especially
noteworthy that electron-electron interaction, designed in the
form of a specific potential barrier on the graphene sheet [24],
leads to separation of spin-polarized states. In fact, this result
is in close agreement with our finding, obtained for one ripple.
As mentioned above, the curvature-induced SOC simulates a
penetrable barrier preferable for transmission of only one of
two spin components, depending on the direction and energy
of the incoming electron (hole) flow. It would be interesting
to study the interplay between the SOC and electron-electron
interaction on the electron transport in our system. Evidently,
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this consideration would allow us to study in more detail
the effect of impurities on the electron mobility in our
system.

In conclusion, the transparency and the mathematical rigor
of our results provide good grounds to believe that spin-
filtering effects found in this paper, giving rise to a chiral
spin-guide phenomenon, will be observable in experiment.

PHYSICAL REVIEW B 92, 205432 (2015)
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