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Magnetopiezoelectric effect and magnetocapacitance in SmFe3(BO3)4
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A giant magnetopiezoelectric effect has been revealed in samarium ferroborate. The effective piezomodulus is
increased more than twice in the antiferromagnetic phase and it is reduced by a high magnetic field. The nature
of the effect is in the joint contribution of both magnetoelectric and magnetoelastic interactions. The evolu-
tion of this contribution in the magnetic field is caused by the growth of the magnetic energy including the
spin reorientation. Additional data concerning the behavior of the high-frequency magnetocapacitance have been
obtained. The parameters of magnetoelectric and magnetoelastic couplings and the magnetic anisotropy constant
in the basal plane have been determined.
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I. INTRODUCTION

Rare-earth ferroborates [with the general formula
RFe3(BO3)4, where R stands for a rare-earth element] belong
to the family of ferroelectromagnetics (multiferroics). These
materials combine the properties of magnetically ordered
and ferroelectric media. Following the terminology proposed
in Ref. [1], they can be defined as type-II multiferroics,
the materials in which the antiferromagnetic ordering is
accompanied by the onset of an improper ferroelectricity.
The interest in the study of ferroelectromagnetics in general
and ferroborates in particular is caused by the prospect of
their practical application [2], as well as by the wide range
of various physical effects there. Up to now, a remarkable
amount of information concerning their structure, magnetic,
dielectric, magnetoelastic, and magneto-optical parameters
has been already accumulated, and has been partially reviewed
in Refs. [3,4].

Apparently, the greatest interest is in the study of the
specific for ferroelectromagnetics “crossing” effects—the
influence of the magnetic variables on the ferroelectric char-
acteristics and vice versa. In particular, in some ferroborates,
the spontaneous polarization caused by antiferromagnetic
ordering and the one induced by the magnetic field have
been detected [4]. The intensity of the latter is especially
manifested in compounds that are “easy plane”-like anti-
ferromagnetically ordered. First of all, this is related to
samarium and neodymium compounds. Magnetodielectrical
anomalies (the magnetocapacitance), i.e., the growth of the
effective permittivity in an antiferromagnetic phase and its
reduction to the value inherent in the paraelectric phase in a
magnetic field, are closely associated to these phenomena. A
giant magnetodielectric effect (∼100%) was revealed in the
low-frequency characteristics of SmFe3(BO3)4 (Ref. [5]) and
HoFe3(BO3)4 (Ref. [6]) single crystals. At the same time in
the neodymium compound the magnetocapacitance is much
smaller [4].

The crystal structure of ferroborates belongs to the noncen-
trosymmetric piezoactive class 32, similar to the well-studied
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α quartz [7]. However, the attention of the physics community
to the piezoelectric characteristics of ferroborates was not so
high until recently. There is only one experimental work [8]
known to us in which by measuring the polarization charge
arising under the static loading, the piezoelectric modulus
(e11) of GdFe3(BO3)4 was evaluated at room temperature.
According to those measurements, the piezoelectric modulus
became nearly two times less than the one of the α quartz. This
is why this compound was classified as a weak piezoelectric.
It was incorrect to extrapolate that conclusion to the whole
ferroborate family without additional experiments, and we
have tried to fill this gap in knowledge. In our paper [9], the
piezoelectric moduli (PM) of single crystals of SmFe3(BO3)4

and NdFe3(BO3)4 were evaluated using the acoustic method. It
was found that in those compounds the value of the modulus e11

in the paraelectric phase (∼1.4 C/m2) was almost an order of
magnitude higher than that of the α quartz, and, therefore, such
compounds may be recommended for technical applications.

The choice of compounds studied in Ref. [9] was not
accidental. From general considerations, it could be assumed
that phenomena like the magnetocapacitance can be observed
in the piezoelectric response also. It appeared that the samar-
ium compound demonstrates a giant magnetopiezoelectric
effect—the effective PM is increased more than twice in the
antiferromagnetic phase and it is suppressed by a magnetic
field.

In addition, we have extended the measurements of the
dielectric constant to a higher-frequency range (∼55 MHz)
than in Ref. [5]. The magnetodielectric effect has been ob-
served at these frequencies also. These measurements permit
to estimate quantitatively the parameters of magnetoelectric
and magnetoelastic couplings and to determine the effective
constant of the easy-plane anisotropy.

II. EXPERIMENTAL TECHNIQUE AND THE RESULTS

SmFe3(BO3)4 and NdFe3(BO3)4 single crystals were grown
by the method described in Ref. [10]. Samples were x-ray
oriented and had typical sizes of nearly 2 mm.

All measurements were performed in a pulse (time of flight)
regime at frequencies ∼55 MHz. The details of the measuring
setup were described in Ref. [11]. Below, we describe in
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more details some features of our experiments and the results
obtained.

p experiment. The nonresonant acoustoelectric transfor-
mation is investigated. In one of the faces of the sample
oriented in the piezoactive direction (in our case it was
perpendicular to the face, i.e., oriented along the x axis) the
high-frequency longitudinal deformation is exited (introduced
via a delay line). It creates two normal modes: the acoustic
wave, renormalized by the piezoelectric interaction, and the
polarization one (some type of a “retarded potential”) [12].
The electrical responses associated with these signals are
registered by an electrode on the opposite face of the sample.
In the time of flight experiment, we have two separated
in time components. The fast electromagnetic component
appears almost instantly in the relevant time scale. The slow
component arrives at the receiving interface after a time of
sound delay (nearly 0.25 μsec for our samples). One can
estimate the magnitude of the fast component using simple
“radio technical” considerations. There are many arguments
(for example, the border conditions) that in the absence of
an external electric field the induction in a sample is D = 0.
In the case of piezoelectrics (and ferroelectrics), it leads to
the equation εxx

∂ϕin

∂x
+ 4πe11

∂ux

∂x
= 0, see Ref. [13] (ϕin is the

electric potential at the exciting interface created by the elastic
displacement, ux is the amplitude of this displacement, and
e11 is the piezomodulus). Integrating this equation results in
the potential ϕin = − 4πe11

εxx
ux . This potential via the capacity

formed by the sample (∼0.2–0.5 pF), is transmitted to a
receiving contact loaded onto the coaxial feeder. Since the
input impedance of the matched receiving feeder differs a little
from the wave resistance, R0 = 50 Ohm, for our frequencies
we deal with the differentiating circuit. Its transfer coefficient
is proportional to the time constant τ (τ = R0εC1, C1 is the
geometric factor) and therefore to the permittivity. Thus the
dependence of the potential registered by the receiver on ε

is dropped out, and the amplitude of the fast signal reflects
the behavior of only PM, or the polarization created by the
sound wave. Below, all the results concerning the behavior of
e11 are obtained by using the fast component (later called the
p response). The amplitude of the slow component is of an
order of magnitude comparable with the amplitude of the fast
component. Its value is determined by the balance between
the electromagnetic energy supplied to the interface and the
rate of its scattering on the input impedance of the receiving
system. As a result, the amplitude of the slow mode reflects
the behavior of both PM and ε. It is also affected by the sound
absorption and reflection coefficient of the receiving interface.
For these reasons, an analysis of the behavior of the slow
component was not carried out.

ε experiment. The sample under investigation is placed
between the capacitor plates; the capacitor is used as a
capacitive coupling element between the input and output
feeders. Basically, this configuration resembles the ones
discussed above. The difference is that in this case the potential
on the exciting interface is specified externally. All the
considerations on the regime of differentiating circuit remain
in place. Obviously, in this setting, the fast transmitted signal
(below, the ε response) is proportional to the permittivity. A
calibration of the system for quantitative measures is easily

FIG. 1. Temperature variations of electrical parameters for stud-
ied ferroborates in a magnetically ordered phase. (a) Change of
piezomoduli in samarium (1) and neodymium (2) ferroborates (H=0).
(b) Change of permittivity in SmFe3(BO3)4: E||x, H=0 (1), E||y, H=0
(2), E||x, H=2.5 T (H||[110]) (3). Inset: the temperature behavior of
the ratio of relative changes in the dielectric constant and piezoelectric
coefficient (H=0).

performed by replacing the sample with a known capacity of
nearly the same magnitude. This approach avoids the problems
of accounting the matching quality of the receiving feeder. We
note that in the ε experiment as well as in the p experiment
with piezoelectric materials the energy is transmitted to the
receiving interface via two channels, albeit with a different
ratio of the amplitudes of the fast and slow components. In
our experiments, due to the use of sufficiently thick samples
(∼2 mm) and the time of flight technique, it was possible to
distinguish the contribution of these components. Actually, in
the ε experiment, the slow component does not exceed the
level of a few percent of the fast one. But at lower frequencies,
we fall into an area of piezoelectric resonances [7], where the
acoustic channel gives the principal contribution (2–10 MHz
for our samples). Unfortunately, the available sizes of the
samples under investigation do not allow realizing the time
of flight regime at such low frequencies and differentiation of
these contributions requires a different approach.

In Fig. 1(a), we present the results of p experiments for
the longitudinal wave propagating along the piezoactive x
direction in the absence of the magnetic field. In NdFe3(BO3)4,
the influence of the magnetic ordering on PM is negligible.
In the samarium compound below the Neel temperature, a
significant increase of the p response is observed, which is
quite unusual for an improper ferroelectric. By the form of
the temperature dependence and the scale of the effect, the
phenomenon is similar to the behavior of the permittivity in
SmFe3(BO3)4 observed in Ref. [5]. Therefore we present the
results of our own high-frequency ε experiments in samarium
ferroborate [Fig. 1(b)]. The growth of permittivity below
the Neel temperature in the absence of the magnetic field
is sufficiently great, but it is about two times lower than
reported in Ref. [5] at low frequencies. The assumption on
the decrease of the ε response already at the frequencies used
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(a)

(b)

(c)

FIG. 2. (Color online) Magnetic field dependencies of p and ε

responses. T = 1.7 K, H||x (1), H||y (2), H||[110] (3). (a) Piezomod-
ulus, inset: angle dependence of relative changes in piezoresponse,
experimental data (solid line), sin2(2ϕH ) (dashed line). (b) Permittiv-
ity E||x and (c) permittivity, E||y.

in our experiments has not been confirmed. The increase of
the operating frequency up to 250 MHz results even in a
small growth of the changes of ε (∼20%). The reason for
this discrepancy with the results of Ref. [5] is unclear. Note
the absence of a noticeable anisotropy under the reorientation
of the field direction between x and y axes.

The behavior of responses in both experiments in the
magnetic field at T = 1.7 K is shown in Fig. 2. In certain
directions of the field, the recorded values return to the
paraelectric phase values already in the field of ∼2 T, but there
are directions where 5 T is not enough to suppress the influence
of antiferromagnetism. The obvious similarity of the results
of different experiments, their pronounced anisotropy, and
diametrically opposite behavior under changes of the direction
of the electric field [Figs. 2(b) and 2(c)] attract the attention.
In the paraelectric phase, the magnetic field of any orientation
does not change the p and ε responses. The field, oriented
along the z axis, has practically no effect on the p response.

We also note that the values given in Fig. 1 are not
strictly defined—even in the same sample, the results for
different cooling cycles vary in value by 10%–15% with a
good reproducibility of the temperature dependencies. One
might think that this variability appears due to an incomplete
reproducibility of details of the domain structure.

III. DISCUSSION OF THE RESULTS

Let us give a phenomenological interpretation of the results
of the performed experiments. First of all, we note that the
frequency used is small compared to the characteristic energies
of the excitation spectrum of the antiferromagnet, so that at
any time the system is in the equilibrium (stationary) state.
Therefore we can use a purely thermodynamic approach.
When recording the thermodynamic potential, we believe that
all material vectors have no z components. In the “elastic”
part of the problem we, for simplicity, restrict ourselves to the
propagation of the longitudinal sound wave along the piezoac-
tive C2 axis. The problem is easily solved by using strain and
electric field as independent variables in the thermodynamic
potential [14]. Based on the results obtained, we conclude the
main contribution to the behavior of discussed characteristics
comes from the magnetoanisotropic interaction.

A simple algorithm for the construction of possible in-
variants for a trigonal crystal using the transition to complex
coordinates can be found in Ref. [13]. Eventually, taking into
account the two-component order parameter for the “easy-
plane” states, there exist the following invariant combinations
of external fields with magnetic variables describing the
interaction: (a) magnetoelectrical, Ex(L2

x − L2
y) − 2EyLxLy ,

and (b) magnetoelastic, (uxx − uyy)(L2
x − L2

y) + 4uxyLxLy .
Turning to the module of the antiferromagnetism vector L

and angle ϕ, which determines its position in the easy-plane
(cos ϕ = Lx/L, sin ϕ = Ly/L), we obtain

F̃ = F0(L2,Lz) + K cos 6ϕ + 1

2
C11u

2
xx − εE2

8π
+ e11Exuxx

+ a

2
(Ex cos 2ϕ − Ey sin 2ϕ) + b

2

[(
uxx + u0

xx − u0
yy

)
× cos 2ϕ + 4u0

xy sin 2ϕ
] − 1

2
MH. (1)

In Eq. (1), we keep only the terms related to the experimen-
tal results obtained above (with uxx �= 0). The first term is the
independent of ϕ contribution, responsible for the emergence
of the “easy-plane” antiferromagnetic ordering. The second
one is the anisotropy in the basal plane, the following two
terms are the elastic energy and the contribution of the
electric field, respectively. The next terms are the piezoelectric,
magnetoelectric, and magnetoelastic contributions. The latter,
besides the interaction with the elastic wave (uxx), contains
the interaction with the inhomogeneous static deformation
(marked with the upper index “0”). The final term is the
spin energy in the magnetic field. In the simplest equal-
sublattice approximation of the antiferromagnet, it is equal
to 1

2χH 2 sin2(ϕH − ϕ) (χ is the magnetic susceptibility; ϕH

is the angle between the direction of H and the x axis). It is
assumed that all the coefficients in Eq. (1) are independent
of the field variables and of ϕ angle, but they depend on L,
and therefore on the temperature. Note that for the analysis we
use the Gaussian nonrationalized system (CGS), but the final
numerical values are presented in SI.

The stationary condition of the ∂F̃ /∂ϕ = 0 means that ϕ

is an implicit function of the electric field and elastic defor-
mation. Using the standard formulas σxx = ∂F̃

∂uxx
= C11uxx +

e11Ex + b
2 cos 2ϕ and e = ∂σ/∂E [13], for the effective PM,
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we obtain

eeff
11 = e11 − b sin 2ϕ

∂ϕ

∂E
= e11 − ab sin2 2ϕ

∂2F̃ /∂ϕ2
. (2)

To derive Eq. (2), we have used the rule of the differentiation
of implicit functions. The external fields E and u can be
chosen arbitrarily small, so when we find the derivative (2)
they are not taken into account. This, however, does not
relate to the static deformations, which, in principle, can be
significant, and in some cases should be taken into account [5].
Nevertheless, at sufficiently large magnetic fields, due to the
growth of the magnetic energy the second term in Eq. (2)
vanishes and PM returns to its paraelectric value as follows
from the experimental results. It is seen from Eq. (2) that the
renormalization of the PM is indeed an indirect process. It
is a joint action of the magnetoelectric and magnetoelastic
mechanisms: the acoustic deformation activates the angular
modulation of the antiferromagnetic vector position, resulting
in the changes of the polarization and the electric field (or vice
versa).

Let us now discuss the behavior of the dielectric constant.
Using the equations D = −4π ∂F̃

∂E
and ε = ∂D

∂E
[13], we find

that the effective permittivity coinciding with the one from
Ref. [5] looks like

εeff
xx = εxx + 4πa sin 2ϕ

∂ϕ

∂Ex

= εxx + 4πa2 sin2 2ϕ

∂2F̃ /∂ϕ2
, (3)

εeff
yy = εxx + 4πa cos 2ϕ

∂ϕ

∂Ey

= εxx + 4πa2 cos2 2ϕ

∂2F̃ /∂ϕ2
. (4)

Thus, in the antiferromagnetic state, the crystal becomes
the biaxial one. The above-mentioned absence of anisotropy
of the dielectric properties with the change of the direction of
the electric field [Fig. 1(b)] is explained by the averaging over
the three types of domains, which arise to preserve the original
trigonal macroscopic symmetry. According to (2) and (3), the
behavior of eeff

11 and εeff
xx is described by similar expressions.

Since in the steady state ∂2F̃ /∂ϕ2 > 0, from the growth of eeff
11

below T N we can conclude that the coefficients a and b have
opposite signs.

In the following, we will operate with the relative variations
of measured values: δe11(T ) = (eeff

11 (T ) − e11(TN ))/e11(TN )
and δεxx(T ) = (εeff

xx (T ) − εxx(TN ))/εxx(TN ). In terms of those
variations, the ratio between coefficients a and b has the form

δe11(T )/δεxx(T ) = −bεxx(TN )/4πae11(TN ), (5)

From the form of the temperature dependencies presented
in Fig. 1, it follows that the constants a and b vary with
temperature by a similar manner so that their ratio is practically
temperature independent [Fig. 1(b), the inset]. The change of
the dielectric constant under the influence of the magnetic field
is called magnetodielectric effect or magnetocapacitance. The
behavior of the piezoelectric response described above can be
similarly defined as the magnetopiezoelectric effect. Do not
confuse it with the piezomagnetoelectric effect [15,16]. The
latter corresponds to the term ElHmuik in the thermodynamic
potential and provides the direct contribution of magnetic
variables to the piezoelectric response. This interaction is
forbidden for the magnetic point group 21′ to which the Sm
compound belongs [16]. However, from the symmetry point

of view, the thermodynamic potential may contain some other
terms that lead to a direct influence of the magnetic variables
on the piezoelectric effect. For example, the existence of an
invariant (an actual for us part) proportional to the combination
Exuxx(L2

x − L2
y) is possible. In terms of Ref. [16], this com-

bination could be called piezobimagnetoelectric interaction.
However, the renormalization of PM in this case would be
also in the limit of a large magnetic field, and it changes the
sign under rotation of H from the x to y axes. As follows from
Fig. 2(a), such a behavior is not observed.

Let us now discuss how the transformation of the electrical
parameters influences the elastic modulus, which determines
the behavior of the sound velocity. As before, we restrict
ourselves only with the longitudinal sound propagating along
the piezoactive x direction. In accordance with the basic
equation of motion of the elasticity theory (ρüx = ∂σxx/∂x),
we calculate the term ∂σxx/∂x:

∂σxx

∂x
= C11

∂uxx

∂x
+ e11

∂Ex

∂x

− b sin 2ϕ

(
∂ϕ

∂uxx

∂uxx

∂x
+ ∂ϕ

∂Ex

∂Ex

∂x

)
. (6)

To exclude the electric field from Eq. (6), we use the equation
of the electrical neutrality:

∇ · D = ε
∂Ex

∂x
− 4πe11

∂uxx

∂x

+ 4πa sin 2ϕ

(
∂ϕ

∂uxx

∂uxx

∂x
+ ∂ϕ

∂Ex

∂Ex

∂x

)
= 0. (7)

As a result, we obtain

∂σxx

∂x
=

[
C11 + 4π

(
eeff

11

)2

εeff
xx

− b2 sin2 2ϕ

∂2F̃ /∂ϕ2

]
∂uxx

∂x
. (8)

The combination in square brackets represents the effective
elastic modulus. Two contributions are competing: the hard-
ening due to the piezoelectric interaction and the softening
due to the magnetoelasticity. In order to understand in which
direction the modulus will be changed below TN , we need
to subtract its value at the transition point [Ceff

11 (T � TN ) =
C11 + 4πe2

11
εxx

] [13]. As a result, the change in the sound velocity
is

�s

s
= Ceff

11 (T ) − Ceff
11 (TN )

2Ceff
11 (TN )

= − δεxx

1 + δεxx

(
δe11

δεxx

− 1

)2 2πe2
11

εxxρs2
Lx

. (9)

Here, sLx is the velocity of the longitudinal mode in the x
direction and ρ is the density. All the factors in Eq. (9) are
positive, i.e., the sound velocity in x direction must always
decrease in all the compounds of this symmetry, at least
near TN . Figure 3 compares the dependence of the velocity
expected from (9) at H = 0 based on the results of Fig. 1
with the experimentally measured one. We used the average
value δe11/δεxx = 2.15 [see the inset in Fig. 1(b)], ρ =
4.5 g/cm3, sLx = 8.7×103 m/s (Ref. [9]), and e11 = 1.4 C/m2

(Ref. [9]). Notice the good qualitative agreement between
the dependencies. However, a close numerical coincidence is
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FIG. 3. (Color online) Change of the sound velocity for the lon-
gitudinal sound (q ||x) in the antiferromagnetic phase. SmFe3(BO3)4

(1), NdFe3(BO3)4 (2), calculation according to Eq. (9) for
SmFe3(BO3)4 (3).

probably accidental. The noted above variability of the results
presented in Fig. 1 can change up to two times the value of the
second factor in Eq. (9). Figure 3 shows the behavior of the
sound velocity in the neodymium compound also: the magnetic
ordering does not lead to any dramatic events in this case.

Magnetic field dependencies are also described by
Eqs. (1)–(4). Ideally, in a single-domain crystal at H = 0,
depending on the sign of K , the vector L is directed along
the x or y axis, or along the symmetry-equivalent directions.
When the magnetic field approaches the value of the spin flop
Hsf , the vector L is set perpendicular to H. As a rule it happens
via a jump. If ϕH �= 0, the electrical characteristics must
show divergences associated with the zeroing of the second
derivative ∂2F̃ /∂ϕ2. In experiments, the field dependencies of
e11 and ε sometimes displayed a small steplike feature, but
any significant jumps, or, moreover, divergences were never
observed. Such a situation is discussed in detail in Ref. [5]. The
authors of Ref. [5] suggested that due to inhomogeneous static
stress, a state in each domain corresponds to the continuous
array of fields Hsf . It results in that under increase in the
magnetic field the transition to a state with L⊥H becomes a
smooth one. We do not in any way object to that interpretation.
Moreover, as was revealed in our work [9], the samples
having a common origin with those studied in Ref. [5] show a
strong inhomogeneity. However, we would like to note that the
thermodynamic potential in the form of (1) and the subsequent
equations belong exclusively to the single domain state. Their
application to the polydomain sample by a simple algebraic
summation of the contributions of individual domains is
possible only in the absence of interdomain interactions
(appearing, for example, due to the contribution of long-range
strain fields). Otherwise, cross terms depending on the state of
all domains appear in the denominator of (2)–(4). It is not at
all obvious that the divergent solution will be retained.

Anyway, a detailed interpretation of the behavior of the
electrical characteristics in the fields below or comparable with
Hsf requires additional assumptions that are hardly amenable
to a rigorous justification. The situation is different in fields
exceeding Hsf—we are dealing with a single-domain sample,

FIG. 4. Magnetic field dependencies of inverse values of relative
changes of p and ε responses. In SmFe3(BO3)4, it shows the
square-law growth. (Inset) Magnetic field dependence of the ratio
of discussed parameters.

and all of the above formulas are applicable without any
restrictions. The interpretation of the dependencies shown in
Fig. 2 becomes quite transparent.

Since H > Hsf , then ϕ ≈ ϕH + π/2, and the angular
dependencies of δe11 and δεxx are described by the numerator
of (2)–(4), which is confirmed by the insert in Fig. 2(a).
At ϕH → 0,π/2 the numerator in Eqs. (2)–(4), sin22ϕ,
approaches zero, which leads to a rapid decay of the increments
of the discussed characteristics registered at those direction of
the field.

However, at ϕH = π/4, the numerator is maximum, and
the decrease of the corresponding quantities is only due
to the growth of the magnetic energy. As a result, for the
reciprocal value of the p response we have the expression
δe−1

11 (H ) = e11
|ab| (8bu0

xy + χ⊥H 2). In the discussed range of
fields, the quantity χ⊥ is practically independent on field [4];
so δe−1

11 is a linear function of H 2. A similar conclusion applies
to the ε response: at E ‖ x, we have

δε−1
xx (H ) = εxx

4πa2

(
8bu0

xy + χ⊥H 2
)
.

Figure 4 shows the data of Fig. 2 reconstructed in accor-
dance with this analysis. These dependencies are really close
to linear ones. The relationship between these responses is still
determined by the value b/a. At low fields (Fig. 4, the inset),
it is close to the previously defined [Fig. 1(b), the inset], but
with increasing H it increases slightly. A small displacement
of the dependencies in Fig. 4 from the origin can be associated
with the contribution of u0

xy . At least the evaluation of this
value (at known a and b, see below) gives the reasonable value
u0

xy ≈ 5×10−5.
At E ‖ y, as it follows from (4), and as are confirmed by the

dependencies shown in Fig. 2(c), all the conclusions remain
the same, but with the replacement of the characteristic angles,
and by substituting 2(u0

xx − u0
yy) instead of 8u0

xy .
We already know some constants in Eq. (1), e.g., e11 =

1.4 C/m2 (Ref. [9]), εxx = 13.5 (Ref. [5]), and χ⊥ ≈
5.4×10−4 (see Ref. [4]). The other parameters can be easily
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FIG. 5. (Color online) Temperature dependencies of magneto-
electric (the left scale) and magnetoelastic (the right scale)
coefficients.

estimated from the measurements in the field H ||[110] at
H > H sf . In that case, any corrections related to u0

xy in
∂2F̃ /∂ϕ2 can be neglected, and the latter is determined by
the last term in Eq. (1) only.

The temperature dependence of ε response in the presence
of the magnetic field [for example, the curve 2 in Fig. 1(b),
measured at H = 2.5 T and ϕH = π/4] allows to deter-
mine the temperature-dependent magnetoelecric coefficient a

[4πa2/εxx = δεxx(T ,H ) χ⊥H 2]. Some of the results obtained
in different magnetic fields that show the independence of a

from the magnetic field are presented in Fig. 5.
The magnetoelastic coefficient b, as follows from Eq. (5)

and the result presented in the inset in Fig. 1(b), coincides with
a up to a scale factor. The right scale in Fig. 5 determines its
value.

It is natural to assume that at H = 0 inhomogeneities do
not violate the equivalence of all domains. In each domain, a
coordinate system can be chosen such that the values of ϕ are
the same. Then the domains will differ from each other only
in the orientation of the electric field in them. To each domain
corresponds one and the same effective anisotropy constant:
∂2F̃ /∂ϕ2 = 36Keff = 36K + δKin (δKin is the contribution
of the inhomogeneities). Then Keff can be determined from
the behavior of ε response at H = 0 (3): Keff = 1

2
4πa2

36εxx

1
δεxx

.

The factor 1
2 appeared as a result of the summation of

the contributions of all domains. The dependence of Keff

is shown in Fig. 6. The calculated temperature dependence
of the spin-flop field, obtained by using the relationship
Hsf ≈ 6

√
Keff/χ⊥, is presented in the same figure.

If the estimate for u0
ik given above holds, the parameter Keff

is determined in the main part by the average value of elastic
inhomogeneities. In this case, the field Hsf is not associated
with a specific crystallographic direction and it should be
understood as an average field that creates a single-domain
state with L⊥H.

Finally, the limiting calculated value of the polarization,
which can be reached at T = 2K in a strong field, is
Plim = a/2 ≈ 335 μC/m2. Direct static measurements give
400 μC/m2 (see Ref. [5]) (500 μC/m2 from Ref. [4]). The
discrepancy between these values is small, but nevertheless
raises questions. It is unlikely that it is due to the properties of

FIG. 6. (Color online) Temperature dependencies of easy-plane
anisotropy parameter Keff (left scale) and the calculated value of the
spin-flop field Hsf (right scale).

specific samples, since in the spin-flop phase inhomogeneities
should not have a noticeable effect. Apparently, there is
some kind of frequency dispersion. It can be associated
with sufficiently deep traps which are “invisible” in dynamic
measurements.

IV. SUMMARY

The influence of the antiferromagnetic ordering on the acous-
toelectrical characteristics in samarium ferroborate has been
studied. A giant magnetopiezoelectrical effect, i.e., an abnor-
mally large increase of the effective piezoelectric modulus
below the Neel temperature and suppression of this growth by
a magnetic field, has been discovered. It is the main result of our
experiments. The origin of the effect is in the joint contribution
of both magnetoelectric and magnetoelastic interactions. The
evolution of this contribution in the magnetic field is caused
by the growth of the magnetic energy including the spin
reorientation. Ideologically, the magnetopiezoelectrical effect
is similar to the magnitodielectrical effect observed earlier
in Ref. [5], for which additional data on its dependence
on the direction of H are received in the present study.
Phenomenological relations that explain the behavior of the
effective piezoelectric modulus and sound velocity in the
antiferromagnetic phase have been obtained. It is shown that
under certain experimental geometry, even in the spin-flop
phase, the external fields (elastic and electric) modulate the
relative orientation of the vectors L and H. Measurements
in this geometry allowed us to estimate the numerical
values and temperature dependencies of some phenomeno-
logical parameters that are included in the thermodynamic
potential.
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