II. Experimental Procedure

(1) Sample Preparation

All the samples were synthesized by a solid-state reaction method with starting materials of SrCO₃(A.R.), In₂O₃(99.995%), Er₂O₃ (99.995%), Yb₂O₃(99.995%). The samples of SrIn₂O₄: $0.1Yb^{3+}/0.01Er^{3+}$ with sintering temperatures (1100°C, 1200°C, 1300°C, 1400°C, and 1500°C) were prepared to exploring the synthesis route, and $0.1 Yb^{3+}$ $x \text{Er}^{3+}$ (x = 0.002, 0.005, 0.01, 0.03, 0.05) codoped, single Er^{3+} or Yb³⁺-doped SrIn₂O₄ were synthesized at 1400°C to discuss the structure and luminescent properties of SrIn₂O₄based UC phosphors. Some CaIn₂O₄-based samples were also prepared by using this method. Starting materials were weighted, mixed, and grounded in an agate mortar according to stoichiometric ratio. After all the materials were ground thoroughly, the mixtures were placed into alumina crucibles and then synthesized at the above-mentioned temperatures (1100°C, 1200°C, 1300°C, 1400°C, and 1500°C) for 3 h, with the heating rate of 5°C/min. These samples were cooled to room temperature naturally. After that, all the samples were washed for three times by the deionized water and dried for the following measurement.

(2) Characterization

X-ray diffraction measurement (D8 Advance diffractometer, Bruker Corporation, Karlsruhe, Germany, with CuK_{α} and linear VANTEC detector, $\lambda = 0.15406$ nm, 40 kV, 30 mA) was used to examine the phase composition and for the structure refinement. The powder diffraction data for Rietveld analysis were collected on the 20 range 5°-100° with the step size of 0.02°, and the counting time was 3 s per step. Rietveld refinement was performed by using TOPAS 4.2 (Bru-ker Corporation).²⁶ The morphology of samples was characterized by a field-emission scanning electron microscopy (JSM-7001F; JEOL, Tokyo, Japan). The UC luminescent spectra were recorded on a Hitachi F-4600 spectrophotometer equipped with an external power-controllable 980 nm semiconductor laser (Beijing Viasho Technology Company, Beijing, China) as the excitation source. The Fourier-transform infrared spectroscopy spectra (FTIR) were recorded with PerkinElmer Spectrum 100 (Waltham, MA). Diffuse reflection spectra were measured on a UV-vis-NIR spectrophotometer (Shimadzu UV-3600, Kyoto, Japan) attached to an integral sphere, and BaSO₄ was used as a reference standard. All the measurements were carried out at room temperature.

III. Results and Discussion

To optimize the synthesis temperature of SrIn₂O₄ compounds doped with stoichiometric $0.1 \text{Yb}^{3+}/0.01 \text{Er}^{3+}$, the phase composition of as-prepared samples at different temperatures (1100°C-1500°C) were analyzed, and their XRD patterns are drawn in Fig. 1(a) and compared with the standard PDF diffraction lines of SrIn₂O₄ (JCPDS No.72-0801). The UC luminescent properties of these compounds were then measured, and the corresponding UC luminescence spectra under 980 nm laser excitation are shown in Fig. 1(b). The inset in Fig. 1(b) depicts the UC emission intensities $(Er^{3+}, at$ 663 nm) upon different sintering temperatures. It is easy to find that the XRD patterns of samples from 1200°C to 1500°C fit well with the standard PDF diffraction lines of SrIn₂O₄. This result demonstrates that pure-phase structure of SrIn₂O₄ compounds were synthesized successfully. No other phases of Er and Yb ions can be detected, illustrating that the doped Er^{3+} and Yb^{3+} were well dissolved into the $SrIn_2O_4$ host lattice. From Fig. 1(b), obvious visible emissions at around 550 and 663 nm were observed, indicates Yb^{3+}/Er^{3+} -doped $SrIn_2O_4$ compounds with excellent UC luminescent properties have been prepared successfully.

Fig. 1. (a) XRD patterns of $0.1 Yb^{3+}/0.01Er^{3+}$ -doped SrIn₂O₄ compounds with different sintering temperatures (1100°C, 1200°C, 1300°C, 1400°C, and 1500°C) and the standard PDF diffraction lines of SrIn₂O₄; (b) UC luminescence spectra of these corresponding samples under 980 nm laser excitation, and the inset shows the variation in UC emission intensities (Er³⁺, at 663 nm) upon different sintering temperatures.

1400°C is the suitable temperature for gaining these kinds of phosphors.

Figures 2(a) and (b) show the SEM images of the $0.1Yb^{3+}/0.01Er^{3+}$ -doped $SrIn_2O_4$ sample that sintered at 1400°C, and Fig. 2(b) is the enlarged part of (a). The grains are relatively regular and well-faceted with size of around 2–4 um.

Yb³⁺/Er³⁺ codoped (SrIn₂O₄: 0.1Yb³⁺/xEr³⁺, x = 0.002, 0.005, 0.01, 0.03, 0.05) and single Er³⁺-doped (SrIn₂O₄: 0.01Er³⁺) SrIn₂O₄ compounds were also prepared at the optimal temperature of 1400°C. Figures 3(a) and (b) show the Rietveld refinement plots of SrIn₂O₄:0.1Yb³⁺/0.01Er³⁺ (1) and SrIn₂O₄:0.01Er³⁺ (2), respectively. All peaks of compound (1) were indexed by orthorhombic cell (*Pnma*) with parameters close to those earlier reported for SrIn₂O₄.¹³ Almost all peaks of compound (2) were indexed by *Pnma* orthorhombic cell as well, and only several small peaks belongs to the impurity In₂O₄ was taken as starting model for Rietveld refinement.

In the structure of $SrIn_2O_4$, there are one Sr site and two In sites. The dopant ions can be substituted in all of them. First of all, we tried to place Yb^{3+} and Er^{3+} ions in the Sr site. However, Rietveld refinement showed that the thermal parameters of Sr ion were not good in this case, and some discrepancies were found in difference plots. After that it was decided to test another model with Yb^{3+} and Er^{3+} ions in

Fig. 2. (a) SEM images of the $0.1Yb^{3+}/0.01Er^{3+}$ -doped $SrIn_2O_4$ sample; (b) enlarge part of (a).

Fig. 3. (a) Difference Rietveld plot of $SrIn_2O_4$: $0.1Yb^{3+}/0.01Er^{3+}$ (1) and crystal structure of $SrIn_2O_4$: Yb^{3+}/Er^{3+} ; (b) Difference Rietveld plot of $SrIn_2O_4$: $0.01Er^{3+}$ (2), impurity phase of In_2O_3 are marked by lowest row of blue sticks.

In1 and In2 sites. The R-factors became smaller in this second refinement (Table I, Fig. 3), all thermal parameters had good values (Table II) and bond distances were in good range (Table III). So it is reasonable to allocate Yb^{3+} and Er^{3+} in In1, 2 sites instead of Sr sites. Moreover, from ionic radii IR (Yb^{3+} , CN=6-8) = 0.868–0.985 Å, IR (Er^{3+} , CN = 6-8) = 0.89–1.004 Å, IR (In^{3+} , CN = 6) = 0.8 Å, IR (Sr^{2+} , CN = 8) = 1.26 Å, ¹⁴ one can conclude that if Yb^{3+}/Er^{3+} ions incorporate in Sr site then the unit cell volume should decrease, but if Yb^{3+}/Er^{3+} dopants incorporate in In sites then cell volume should increase. It was found that compound (1) with bigger dopant concentration has larger value of cell volume in comparison with compound (2) (Table I), so this is in good agreement with suggestion that Yb^{3+}/Er^{3+} ions are in In1/In2 sites instead of Sr site. In addition, it was found that compound (2) has bigger cell volume (V = 369.14 Å³) in comparison with pure compound

Compound	$\frac{SrIn_{2}O_{4}\!\!:0.1Yb^{3+}}{0.01Er^{3+}}(1)$	$SrIn_2O_4: 0.01Er^{3+}$ (2)
Sp.Gr.	Pnma	Pnma
a, Å	9.8527(1)	9.8317(1)
b, Å	3.27418(4)	3.26623(5)
<i>c</i> , Å	11.5221(1)	11.4950(2)
$V, Å^3$	371.698(7)	369.14(1)
Z	1	1
2θ-interval, °	5-100	5-100
Number of reflections	233	231
Number of parameters of refinement	57	65
$R_{\rm wp}, \%$	7.03	9.61
$R_{\rm p}^{1}, \%$	4.97	6.12
$R_{\rm exp}^{\prime}, \%$	6.65	6.76
χ^2	1.06	1.42
<i>R</i> _B , %	1.73	2.67

Table I. Main Parameters of Processing and Refinement of the $SrIn_2O_4$: $0.1Yb^{3+}/0.01Er^{3+}$ (1) and $SrIn_2O_4$: $0.01Er^{3+}$ (2)

Table II.	Fractional	Atomic	Coordinates	and	sotropi	С
Displaceme	ent Paramet	ters (Å ²)	of Compour	nds (1) and (2	.)

	x	у	Z	$B_{\rm iso}$	Occ.
SrIn ₂ O ₄	$1 : 0.1 \mathrm{Yb}^{3+} / 0.01$	Er ³⁺ ((1)		
Sr	0.24503 (16)	0.25	0.65203 (11)	0.63 (6)	1
In1	0.08051 (10)	0.25	0.39328 (8)	0.51 (6)	0.945
Yb1	0.08051 (10)	0.25	0.39328 (8)	0.51 (6)	0.05
Er1	0.08051 (10)	0.25	0.39328 (8)	0.51 (6)	0.005
In2	0.57073 (10)	0.25	0.61145 (7)	0.42 (6)	0.945
Yb2	0.57073 (10)	0.25	0.61145 (7)	0.42 (6)	0.05
Er2	0.57073 (10)	0.25	0.61145 (7)	0.42 (6)	0.005
01	0.2859 (8)	0.25	0.3353 (8)	0.94 (12)	1
O2	0.1195 (8)	0.75	0.5223 (7)	0.94 (12)	1
O3	0.0176 (10)	0.75	0.2852 (7)	0.94 (12)	1
O4	0.4188 (9)	0.75	0.5804 (7)	0.94 (12)	1
SrIn ₂ O ₄	$: 0.01 \mathrm{Er}^{3+}$ (2)				
Sr	0.2452 (2)	0.25	0.65337 (16)	0.38 (9)	1
In1	0.08099 (15)	0.25	0.39406 (11)	0.24 (9)	0.995
Er1	0.08099 (15)	0.25	0.39406 (11)	0.24 (9)	0.005
In2	0.56923 (15)	0.25	0.61152 (11)	0.31 (9)	0.995
Er2	0.56923 (15)	0.25	0.61152 (11)	0.31 (9)	0.005
O1	0.2911 (12)	0.25	0.3322 (12)	0.65 (18)	1
O2	0.1209 (12)	0.75	0.5207 (10)	0.65 (18)	1
O3	0.0215 (14)	0.75	0.2777 (11)	0.65 (18)	1
O4	0.4207 (13)	0.75	0.5793 (10)	0.65 (18)	1

 $(V = 366.67 \text{ Å}^3)$,¹³ so Er^{3+} also incorporated in In1, 2 sites instead of Sr site. The final crystal structure of $\text{Yb}^{3+}/\text{Er}^{3+}$ -doped SrIn₂O₄ is shown in Fig. 3(a).

 Table III.
 Main Bond Lengths (Å) of Compounds (1) and (2)

$SrIn_2O_4: 0.1Yb^3$	$^{+}/0.01 \mathrm{Er}^{3+}$ (1)		
Sr—O1 ⁱ	2.689 (7)	In1—O2 ⁱⁱ	2.197 (8)
Sr—O2	2.539 (6)	In1—O3	2.148 (5)
Sr—O3 ⁱⁱ	2.687 (10)	In2—O1 ^{iv}	2.248 (6)
Sr—O3 ⁱⁱⁱ	2.797 (9)	In2—O3 ⁱⁱⁱ	2.183 (8)
Sr—O4	2.508 (7)	In2—O4	2.247 (6)
In1—O1	2.131 (8)	In2—O4 ^v	2.213 (8)
In1—O2	2.245 (6)		
SrIn ₂ O ₄ : 0.01Er ³	³⁺ (2)		
Sr—O1 ⁱ	2.650 (11)	In1—O2 ⁱⁱ	2.214 (12)
Sr—O2	2.547 (9)	In1—O3	2.191 (9)
Sr—O3 ⁱⁱ	2.739 (14)	In2—O1 ^{iv}	2.230 (8)
Sr—O3 ⁱⁱⁱ	2.702 (14)	In2—O3 ⁱⁱⁱ	2.108 (13)
Sr—O4	2.523 (10)	In2—O4	2.222 (9)
In1—O1	2.185 (12)	In2—O4 ^v	2.196 (11)
In1—O2	2.223 (8)		

Symmetry codes: (i) -x + 1/2, -y, z + 1/2; (ii) -x, -y + 1, -z + 1; (iii) -x + 1/2, -y + 1, z + 1/2; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z + 1.

Figure 4(a) displays the UC luminescence spectra of asprepared SrIn₂O₄: $0.1Yb^{3+}/xEr^{3+}$ and SrIn₂O₄: $0.01Er^{3+}$ phosphors upon 980 nm laser excitation, and the insets shows the variation in UC emission intensities (Er^{3+} , at 663 and 550 nm) of these corresponding samples. As can be seen that, the sample SrIn₂O₄: $0.01Er^{3+}$ where no Yb³⁺ was doped showed very weak UC luminescence. For SrIn₂O₄: $0.1Yb^{3+}/xEr^{3+}$, strong green and red UC emissions with the peak centered at 525, 550, and 663 nm were observed, which are assigned to the characteristic Er^{3+} ion transitions of ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, and ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, respectively. ${}^{1.4,20-22}$ Compared with SrIn₂O₄: $0.01Er^{3+}$, luminescent intensity of SrIn₂O₄: $0.1Yb^{3+}/0.01Er^{3+}$ increased greatly, indicating the addition of Yb^{3+} ions improved the UC properties for these materials. UC emission intensities of red emission (663 nm) and green emission (550 nm) arrived maximum in SrIn₂O₄: $0.1Yb^{3+}/0.03Er^{3+}$ and SrIn₂O₄: $0.1Yb^{3+}/0.01Er^{3+}$ increase first and then decrease at either 663 or 550 nm with the increasing Er^{3+} concentration, suggesting that the concentration quenching occurred. The over-doped Er^{3+} ions lead to the decreasing distance between Er^{3+} and $Yb^{3+}(or Er^{3+})$ ions, which limited the energy transfer (ET) of $Yb^{3+} \rightarrow Er^{3+}$, followed by decreasing luminescent intensity of Er^{3+} ions.¹⁰ In addition, Fig. 4(b) gives the diffuse reflection spectra of pure SrIn₂O₄: $0.03Er^{3+}$, SrIn₂O₄: $0.1Yb^{3+}$, SrIn₂O₄: $0.1Yb^{3+}$, and

SrIn₂O₄: 0.1Yb³⁺/0.03Er³⁺ samples. Single Er³⁺-doped SrIn₂O₄ shows apparent absorption band at 522, 653, 796 nm, however, the absorption at 978 nm was slight. Therefore, the weak UC luminescence may be owing to the ground absorption of Er³⁺ and phonon energy. In contrast, the Yb³⁺ single-doped SrIn₂O₄ only possessed strong absorption at 899 and 978 nm, which were assigned to the characteristic ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ transition of Yb³⁺ ions. For SrIn₂O₄: 0.1Yb^{3+/}/0.03Er³⁺, absorption band at 522, 653, 796 nm and strong absorption at 899 and 978 nm were observed simultaneously. Considering that Yb³⁺/Er³⁺ codoped SrIn₂O₄ showed much higher UC intensity than single Er³⁺-doped SrIn₂O₄, it is reasonable to believe that the increasing absorption in 980 nm is mainly from the energy state transition of Yb³⁺ ions, and ET of Yb³⁺ →Er³⁺ played a significant role in the UC luminescent process.

As we known, the phonon energy of host has important influence on the UC luminescent efficiency. Therefore, FTIR spectra of pure SrIn₂O₄ and CaIn₂O₄ were studied and shown in Fig. 5(a). Compared with $CaIn_2O_4$ (489, 637 cm⁻¹), the strong absorption bands of $SrIn_2O_4$ (467) 598 cm^{-1}) were shifted to the smaller wave number, suggesting that the phonon energy of $SrIn_2O_4$ (467 cm⁻¹) was lower that that of $CaIn_2O_4$.¹⁰ Moreover, because of the difference of Sr^{2+} and Ca^{2+} , Yb^{3+}/Er^{3+} codoped $SrIn_2O_4$ maybe show more excellent luminescent properties than $\tilde{Y}b^{3+}/Er^{3+}$ codoped CaIn₂O₄, and this was proved by the comparison of UC luminescence spectra of $0.1 \text{Yb}^{3+}/x\text{Er}^{3+}$ (x = 0.005, 0.01, 0.03) codoped SrIn₂O₄ and CaIn₂O₄ samples in Fig. 5(b). From the inset of Fig. 5(b), the luminescent intensity of either SrIn₂O₄ or CaIn₂O₄ raised with the increasing of Er³⁺ $^{+}/{\rm Er}^{3+}$ (from 0.005 to 0.03), however, the intensities of Yb³ codoped SrIn₂O₄ were higher than that of CaIn₂O₄ for the corresponding concentration.

The UC emission intensity (I_{em}) depends on the pumping laser power (P_{pump}) which follows the relation:

$$I_{\rm em} \propto \left(P_{\rm pump}\right)^n \tag{1}$$

where *n* is the number of pump photons required for the transition from ground state to the upper emitting state. The value *n* can be obtained from the slope of a straight line that resulted from log $I_{\rm em}$ versus log $P_{\rm pump}$.^{5,20,25} Figure 6 shows the UC emission spectra of SrIn₂O₄: 0.1Yb³⁺/0.01Er³⁺ with different pumping powers and the inset shows the dependence of green and red UC emission intensities upon pumping power. The calculated slopes were 2.09 \pm 0.07 for the red emission(663 nm: ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$) and 1.81 \pm 0.06 for

Fig. 4. (a) UC luminescence spectra of $SrIn_2O_4$: $0.1Yb^{3+}/xEr^{3+}$ (x = 0.002, 0.005, 0.01, 0.03, 0.05) and $SrIn_2O_4$: $0.01Er^{3+}$ samples under 980 nm laser excitation, and the inset shows the variation in UC emission intensities (Er^{3+} , at 665 nm and 550 nm) of these corresponding samples; (b) The diffuse reflection spectra of pure $SrIn_2O_4$, $SrIn_2O_4$: $0.03Er^{3+}$, $SrIn_2O_4$: $0.1Yb^{3+}$, and $SrIn_2O_4$: $0.1Yb^{3+}/0.03Er^{3+}$ samples.

Fig. 5. (a) FTIR spectra of pure $SrIn_2O_4$ and $CaIn_2O_4$; (b) Comparison of UC luminescence spectra of $0.1Yb^{3+}/xEr^{3+}$ (x = 0.005, 0.01, 0.03) codoped $SrIn_2O_4$ and $CaIn_2O_4$ samples under 980 nm laser excitation.

Fig. 6. UC emission spectra of $SrIn_2O_4$: $0.1Yb^{3+}/0.01Er^{3+}$ with different pumping powers and the inset shows the dependence of green and red UC emission intensities upon pumping powers.

Fig. 7. Energy level diagram and the proposed UC luminescence mechanism in $SrIn_2O_4$: Yb^{3+}/Er^{3+} phosphors.

the green emission(550 nm: $^4S_{3/2} \rightarrow ^4I_{15/2})$, indicating that the UC luminescence in $Yb^{3\,+}/Er^{3\,+}$ codoped $SrIn_2O_4$ mainly is the two-photon process.

According to the above-mentioned photon process, the energy level diagram of ${\rm Er}^{3+}$ and ${\rm Yb}^{3+}$ ions and the proposed UC luminescent mechanism to produce green and red emission have been reveals in Fig. 7. First of all, infrared photon near 980 nm wavelength are absorbed by Yb^{3+} ions and elevates Yb^{3+} ion from ${}^{2}F_{7/2}$ to ${}^{2}F_{5/2}$ energy level. Then, the energy is transferred to the Er^{3+} ions, because nonradia-tive energy transition (ET) from ${}^{2}F_{5/2}$ of Yb^{3+} to ${}^{4}I_{11/2}$ of Er^{3+} is resonant or near resonant and thus very efficient. The first ET promotes an Er^{3+} ion from the ${}^{4}I_{15/2}$ to ${}^{4}I_{11/2}$ level, and the second ET elevates the Er^{3+} ion from the ${}^{4}I_{11/2}$ ₂ to the ${}^{4}F_{7/2}$ if the ${}^{4}I_{11/2}$ is already populated. Er³⁺ ions in the ${}^{4}F_{7/2}$ state decay nonradiatively to slight lower energy states of ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, so that the green light of 525 and 550 nm are emitted by Er^{3+} transition from ${}^{2}H_{11/2}$ to ${}^{4}I_{15/2}$ and ${}^{4}S_{3/2}$ to ${}^{4}I_{15/2}$ state, respectively. At the same time, Er^{3+} can decay to the ${}^{4}F_{9/2}$ via a nonradiative relaxation process, and then the red light (663 nm) was observed through the radiative transition from ${}^{4}F_{9/2}$ to ${}^{4}I_{15/2}$.^{17,20,22,25} Moreover, ${\rm Er}^{3\, +}$ in ${}^4I_{11/2}$ level can relax nonradiatively to the lower excited state of ${}^{4}I_{13/2}$, thus the second ET also can be taken place from the ${}^{4}I_{13/2}$ and promote Er^{3+} to ${}^{4}I_{9/2}$ level. The relative UC intensity of red light is larger than green light, indicating that the population of the ${}^{4}F_{9/2}$ was larger than ${}^{2}H_{11/2}$ and ${}^{4}S_{3/2}$ levels, and this is probably influenced by some factors such as phase structure and lattice defects.²

IV. Conclusions

Yb³⁺ and/or Er³⁺ codoped SrIn₂O₄ were synthesized by a traditional solid-state reaction method. SrIn₂O₄ was proved to be an excellent up-conversion (UC) host to exhibits UC luminescence which is better than CaIn₂O₄ owing to its lower phonon energy. Yb^{3+}/Er^{3+} codoped $SrIn_2O_4$ compounds showed great improvement in UC luminescence, with strong emission in the green (525, 550 nm) and red (663 nm) spectral ranges, which were assigned to the energy level transitions of ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ of Er^{3+} , respectively. The structures of $SrIn_2O_4$: 0.01 Er^{3+} and $SrIn_2O_4$: 0.1Yb ${}^{3+}/0.01Er^{3+}$ were refined by the Rietveld method and the larger unit cell parameters and unit cell volume of the doped compounds reveals that In^{3+} sites were substituted successfully by Yb³⁺ and/or Er³⁺ ions. From the FTIR spectra, SrIn₂O₄ possessed smaller phonon energy than $CaIn_2O_4$, indicating that Yb³⁺ and/or Er³⁺ codoped SrIn₂O₄ phosphors can achieve more high-efficiency UC emission than their CaIn₂O₄ counterparts. This indication was testified by the comparison of UC luminescence spectra of Yb^{3+}

 Er^{3+} codoped $\mathrm{SrIn}_2\mathrm{O}_4$ and $\mathrm{CaIn}_2\mathrm{O}_4$. The pumping powers study indicates that the energy transfer of $\mathrm{Yb}^{3+} \rightarrow \mathrm{Er}^{3+}$ in the $\mathrm{SrIn}_2\mathrm{O}_4$ host is a two-photon process.

Acknowledgment

This present work was supported by the National Natural Science Foundations of China (grant no. 51202226), the Fundamental Research Funds for the Central Universities (grant nos. 292014125,2652013128, 2652013043), and the Research Fund for the Doctoral Program of Higher Education of China (grant no. 20130022110006).

References

¹F. Auzel, "Upconversion and Anti-Stokes Processes with f and d Ions in Solids," *Chem. Rev.*, **104**, 139–73 (2004).

²F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, "Tuning Upconversion Through Energy Migration in Core-Shell Nanoparticles," *Nat. Mater.*, **10**, 968–73 (2011).

³Y. H. Wang and J. Ohwaki, "New Transparent Vitroceramics Codoped with Er^{3+} and Yb³⁺ for Efficient Frequency Upconversion," *Appl. Phys. Lett.*, **63**, 3268–70 (1993).

⁴F. Wang and X. G. Liu, "Recent Advances in the Chemistry of Lanthanide-Doped Upconversion Nanocrystals," *Chem. Soc. Rev.*, **38**, 976–89 (2009).

⁵J. Zhang, Y. H. Wang, L. N. Guo, and P. Y. Dong, "Up–Conversion Luminescence and Near–Infrared Quantum Cutting in $Y_6O_5F_8$: RE^{3+} (RE = Yb, Er, and Ho) with Controllable Morphologies by Hydrothermal Synthesis," *Dalton T*, **42**, 3542–51 (2013).

sis." Dalton T, 42, 3542–51 (2013). ⁶Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, "Quantum Cutting in Tm³⁺/Yb³⁺–Codoped Lanthanum Aluminum Germanate Glasses," J. Am. Ceram. Soc., 93, 654–7 (2010).

⁷F. M. Li, L. Li, C. F. Guo, T. Li, H. M. Noh, and J. H. Jeong, "Up-Conversion Luminescence Properties of $Yb^{3+}-Ho^{3+}$ Co-Doped CaLa₂ZnO₅.," *Ceram. Int.*, **40**, 7363–6 (2014).

⁸J. W. Tang, Z. G. Zou, and J. H. Ye, "Effects of Substituting Sr^{2+} and Ba^{2+} for Ca^{2+} on the Structural Properties and Photocatalytic Behaviors of $CaIn_2O_4$," *Chem. Mater.*, **16**, 1644–9 (2004).

⁹J. H. Ye, Z. G. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M. Imai, and T. Shishido, "A Novel Hydrogen–Evolving Photocatalyst InVO₄ Active Under Visible Light Irradiation," *Chem. Phys. Lett.*, **356**, 221–6 (2002).

 $^{10}T.$ Li, C. F. Guo, and L. Li, "Up–Conversion Luminescence of $Er^{3+}-Yb^{3+}$ Co–Doped CaIn₂O₄," *Opt. Express*, **21**, 18281–9 (2013).

¹¹T. Li, C. F. Guo, Y. M. Yang, L. Li, and N. Zhang, "Efficient Green Up–Conversion Emission in Yb³⁺/Ho³⁺ Co–Doped CaIn₂O₄," *Acta Mater.*, **61**, 7481–7 (2013).

¹²A. Baszczuk, M. Jasiorski, M. Nyk, J. Hanuza, M. Maczka, and W. Strek, "Luminescence Properties of Europium Activated SrIn₂O₄," *J. Alloy. Compd.*, **394**, 88–92 (2005).

¹³R. V. Schenk and H. Mueller Buschbaum, "Kristallstrukturuntersuchung an SrIn₂O₄," *Z. Anorg. Allg. Chem.*, **398**, 24–30 (1973).
 ¹⁴R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of

¹⁴R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," *Acta Cryst. A*, **32**, 751–67 (1976).

¹⁵H. L. Wang and L. H. Tian, "Luminescence Properties of $SrIn_2O_4$:Eu³⁺ Incorporated with Gd³⁺ or Sm³⁺ Ions," *J. Alloy. Compd.*, **509**, 2659–62 (2011).

¹⁶F. S. Kao, "A Study on the Luminescent Properties of New Green–Emitting SrIn₂O₄: XTb Phosphor," *Mater. Chem. Phys.*, **76**, 295–8 (2002).

¹⁷D. Matsuura, "Red, Green, and Blue Upconversion Luminescence of Trivalent-Rare-Earth Ion-Doped Y₂O₃ Nanocrystals," *Appl. Phys. Lett.*, **81**, 4526-8 (2002).

¹⁸R. T. Wegh, E. V. D. van Loef, and A. Meijerink, "Visible Quantum Cutting Via Downconversion in LiGdF₄: Er^{3+} , Tb^{3+} Upon Er^{3+} $^{4}\text{f}^{11} \rightarrow ^{4}\text{f}^{10}$ 5d Excitation," *J. Lumin.*, **90**, 111–22 (2000).

¹⁹X. Zou and T. Izumitani, "Spectroscopic Properties and Mechanisms of Excited State Absorption and Energy Transfer Upconversion for Er³⁺–Doped Glasses," *J. Non–Cryst. Solids*, **162**, 68–80 (1993).
²⁰Z. G. Xia, P. Du, and L. B. Liao, "Facile Hydrothermal Synthesis and

²⁰Z. G. Xia, P. Du, and L. B. Liao, "Facile Hydrothermal Synthesis and Upconversion Luminescence of Tetragonal Sr₂LnF₇: Yb³⁺/Er³⁺ (Ln=Y, Gd) Nanocrystals," *Phys. Status Solidi A*, **210**, 1734–7 (2013).

²¹C. N. Zhong, P. P. Yang, X. B. Li, C. X. Li, D. Wang, S. L. Gai, and J. Lin, "Monodisperse Bifunctional Fe₃O₄@NaGdF₄:Yb/Er@NaGdF₄:Yb/Er Core-Shell Nanoparticles," *RSC Adv.*, **2**, 3194–7 (2012).

²²J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, "Synthesis and Upconversion Luminescence OF Hexagonal–Phase NaYF₄: Yb, Er³⁺ Phosphors of Controlled Size and Morphology," *Adv. Mater.*, **17**, 2119–23 (2005).
²³F. Wang and X. G. Liu, "Emission from Lanthanide–Doped NaYF₄

²³F. Wang and X. G. Liu, "Emission from Lanthanide–Doped NaYF₄ Nanoparticles," *J. Am. Chem. Soc.*, **130**, 5642–3 (2008).

²⁴Z. L. Wang, J. H. Hao, and H. L. W. Chan, "Down- and Up-Conversion Photoluminescence, Cathodoluminescence and Paramagnetic Properties of NaGdF₄: Yb³⁺, Er³⁺ Submicron Disks Assembled from Primary Nanocrystals," *J. Mater. Chem.*, **20**, 3178–85 (2010).
²⁵Z. G. Xia, J. Li, Y. Luo, and L. B. Liao, "Comparative Investigation of

²⁵Z. G. Xia, J. Li, Y. Luo, and L. B. Liao, "Comparative Investigation of Green and Red Upconversion Luminescence in Er³⁺ Doped and Yb³⁺/Er³⁺ Codoped LaOCl," *J. Am. Ceram. Soc.*, **95**, 3229–34 (2012).

²⁶Bruker AXS TOPAS V4, General Profile and Structure Analysis Software for Powder Diffraction Data – User's Manual. Bruker AXS, Karlsruhe, Germany, 2008.