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 1. INTRODUCTION

In a single�electron approximation, ballistic elec�
tron transport in a directional quantum wire of width
d is given by the wavefunctions

, (1)

where the Fermi energy of electron

(2)

in terms of E0 = , and

. (3)

How can an electron be localized in a clean wire? The
first way is to bend the wire. That gives rise to a single
bound state below the continuum of the wire for EF <
π2/d2 [1, 2]. This bound state is a result of the new
length exceeding d because of bending. Olendski and
Mikhailovska in pioneering work [3] demonstrated
that, for a selected radius of bending, a localized
bound state occurs with the energy above π2/d2 of the
wire. However, experimental observation of such BSC
faces difficulties in governing the bending radius.

There is a different way to capture a propagating
electron using the Fano resonance [4]. Let us insert the
in�channel scattering Anderson impurity in the direc�
tional wire which splits the transmission into two

 ¶The article was translated by the authors.
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paths: one path through the impurity and the second
path which avoids the impurity. Interference of these
paths can become fully destructive, resulting in com�
plete reflection at some incident energy. Correspond�
ingly, two identical impurities can realize a Fabry–
Perot resonator (FPR). Such a FPR is capable of trap�
ping an electron if the distance between impurities is
fitted to an integer number of half De Broglie wave�
lengths. The FPR mechanism of electron localization
was first considered by Shahbazyan and Raikh [5] for
two impurities in the waveguide. Later, this mecha�
nism was developed in temporally periodically driven
one�dimensional wire [6] and quantum wire between
quantum dots [7–10]. In [11], it was shown that the
phenomenon of resonant capture in textured wires has
the same origin as the bound states in the continuum
(BSC) considered by von Neumann and Wigner [12]
in a specially constructed spatially oscillating attrac�
tive potential. The localized BSC is the result of full
destruction of resonant states [13–16]. Recently, the
FPR mechanism of the BSC was considered in photo�
nics [17, 18], which stimulated experimental observa�
tion of the phenomenon [19–24].

In the present work, we consider a zigzag quantum
wire with a symmetrically positioned finger gate above
the wire as shown in Fig. 1. We show that such a wire is
capable of supporting two types of BSC. A positive fin�
ger gate potential can support the BSC by the FPR
mechanism where bends of the wire can be considered
as FPR “mirrors” at some electron Fermi energies,
while the gate potential tunes effectively the distance
between the “mirrors.” For a negative potential, the
finger gate realizes the BSC because of cancellation of
coupling of resonance inner states of the horizontal
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domain shown in deep blue in Fig. 1 with external
propagating states (1) in vertical parts of the wires
shown in light blue. That mechanism named “acci�
dental” in [24–26] will be considered in the second
section.

2. ELECTRON TRANSPORT 
THROUGH A ZIGZAG WIRE

Electron, microwave, and acoustic transmission in
singly and doubly bent waveguides was considered in a
number of works to demonstrate many features [27–
30]. Among them, the transmission zeros and narrow
resonance peaks shown in Fig. 2 are important for the
present work. Each right�angle bend of the quantum
wire gives a single transmission zero which is split in
the doubly bent wire. It is easy to explain the resonant
behavior of the conductance in the zigzag wire if we
use the S�matrix description of electron transmission
[31–35]

, (4)

where

(5)

is the non�Hermitian effective Hamiltonian. Here,

 is the Hamiltonian of the inner rectangular
domain of the wire B colored in gray in Fig. 1, and the

matrix  is responsible for coupling of the inner states

Ŝ Ŵ E+ Ĥeff–[ ]
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Ŵ

ψb(x, y) with the propagating waves (1) in waveguides.
For the finger gate long compared to the wire’s width
d, the inner states can be written as follows:

(6)

where transversal eigenfunctions φn(y) coincide with
the solutions in waveguides (1), ψm(x) are the longitu�
dinal eigenfunctions in a rectangular hard well of
width L with implied potential Vg(x) of the finger gate
of width Lg. This potential is given by inverse trigono�
metric functions [36]. However, if the gate is spaced
very close to the two�dimensional electron gas, the
potential can be approximated by a rectangular shape
with the height Vg and the width Lg [37]. In that case,
the eigenfunctions φm(x) and eigenenergies �(Vg) are
given in textbook [38].

For the first channel, the transport matrix elements
of the coupling matrix equal [34, 35, 39]

(7)

The domain of integration is shown in Fig. 1 by bold
red lines. The eigenfunctions of the inner part of the
zigzag wire ψm(x) are normalized to the length L.
Therefore, the larger the ratio L/d, the smaller the
overlapping integral given by Eq. (7) and, correspond�
ingly, the narrower the resonances. The resonances are
positioned at the eigenenergies Eb = �m + π2n2/d2.
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Fig. 1. (Color online) View of the zigzag wire with the fin�
ger gate shown in brown. Arrows show electron transport.

Fig. 2. (Color online) First channel conductance in the
(solid line) zigzag wire and (dashed line) single bent wire.
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Figure 3a shows the Landauer–Büttiker conduc�
tance [31] versus the Fermi energy and the finger gate
potential which for the first channel transmission
equals G = | t |2 in terms of 2e2/�. The transmission
amplitude t is given by the scattering matrix (4). In
order to see features in the conductance, we presented
also the conductance on a log scale in Fig. 3b.

The positions of the BSC in parametric space can
be defined at those points where maximal unit trans�
mission touches the zero one [15, 16, 19] marked in
Fig. 3 by open circles and stars. At these points, a col�
lapse of the Fano resonance occurs [40]. In order to
demonstrate these peculiarities, we presented the fine
structure of the conductance in the vicinity of the BSC
in Figs. 3c and 3d. Rigorously, the BSC can be found
from zeros of the resonance width Γr = –2imag(z(Er))
for variation of the potential Vg, where Er = real(z(Er))

[7, 8, 16, 33]. Calculation of poles of the scattering
matrix is another way to find the BSC when a pole
touches the real axis for variation of Vg [9, 10, 41, 42].

Evolution of real and imaginary parts of complex
eigenvalues zλ(E) of the effective Hamiltonian (5) with
variation of the finger gate potential Vg is shown in
Fig. 4a. Only resonances embedded in the first chan�
nel continuum from  E = 25 to E = 38 are presented.
For positive Vg, the FPR mechanism for two BSC of
the first type takes place with degenerate energies of
34.947 marked by red open circles. Figure 4b shows
that these two BSC occur for different potentials. At
Vg < 0, multiple BSC arise because of destructive inter�
ference of resonances (second type of BSC) marked in
Fig. 4 by crosses. We show in Fig. 4b only a few BSC of
the second type at 0 > Vg > –100. For a wire 100 nm in

Fig. 3. (Color online) (a) Conductance of the zigzag wire with L = 4d in the first channel p = 1 effected by finer gate potential
with the width Lg = d/2. (b) The same on a log scale. The brightest part corresponds to maximal conductance and the darkest
corresponds to zero conductance. Details of the conductance in the vicinity of BSC with E = 34.95, Vg = 102.3 (c) and E =
35.34898, Vg = –70.4532 (d).
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width based on an In�doped GaAs interface, we have
E0 ~ 0.1 meV. Then, the dimensionless potential of 100
corresponds to 0.1 V.

The BSC wavefunctions presented in Fig. 5 clearly
show a difference between the first and second types of
BSC. One can see from this figure that the first two
BSC are the result of the FPR mechanism with bends
as “mirrors.” The second type is the result that the

overlapping integrals Jm =  in Eq. (7)

diminish as Vg decreases, as one can see from Fig. 6. In
the inset in Fig. 6, we show how, in particular, integral
J6 tends to zero because the inner longitudinal eigen�
function φ6(x) is subjected to deformation with growth
of Vg.

3. CONCLUSIONS

We have considered electron transport in a zigzag
quantum wire, where transport is maintained in the

dxψ1 x( )
0

1

∫ φm x( )

first conduction channel. This problem has a long his�
tory [27–30]. The novelty of this work is in the predic�
tion of the localization of a transport electron between
bends owing to the forming of bound states with dis�

Fig. 4. (Color online) (a) Evolution of resonance positions
and widths with Vg. (b) Resonant widths vs. Vg. Red crosses
and open circles mark points where the resonance widths
go to zero, which correspond to the BSC marked in Fig. 3
by stars and circles. The parameters of the wire are the
same as in Fig. 3a.

Fig. 5. (Color online) Patterns of BSC wavefunctions at the
following parameters: (a) E = 34.947, Vg = 90.95; (b) E =
34.947, Vg = 102.3; (c) E = 30.225, Vg = –18.908; (d) E =
35.34898, Vg = –70.4532; and (e) E = 26.779, Vg =
⎯79.8495. The finger gate is shown at the center.
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crete energies in the continuum in the electron propa�
gation band in the wire. Interest in bound states in the
continuum has recently grown, particularly because of
experimental visualization in photonics [19–24].
Bound states in the continuum shown in Fig. 5 clearly
demonstrate that they are also not exotic in quantum
wires. Furthermore, the proposed zigzag wire with a
finger gate can be treated as a transistor that can con�
trol not only the transport properties, but also reso�
nances until to vanishing of the resonance width (see
Fig. 6). It is difficult to directly observe bound states in
the continuum in microelectronic systems. However,
they can be identified by features in the conductivity,
where the collapse of Fano resonances occurs (see
Fig. 3). The existence of such features was experimen�
tally confirmed for the first time in [19] in a dielectric
resonator placed in a microwave waveguide.

This work was supported by the Russian Founda�
tion for Basic Research (project no. 14�12�00266).
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