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The conditions of the appearance of conical incommensurate structures have been studied analytically for a
ferrimagnet with the geometrically frustrated exchange between spins in different magnetic positions (subsys-
tems) and the competition between exchanges in one of the subsystems. The phase transition temperatures to
the conical states have been determined. The types of phase transitions have been determined by the numer-
ical minimization of the free energy and (temperature–exchange parameters) phase diagrams have been
obtained.
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Interest in studying incommensurate magnetic
structures in the last decade is mainly due to magneto-
electric effects accompanying this type of magnetic
ordering [1–3]. The possibility of controlling the
direction of the electric polarization by a low magnetic
field at room temperature is of a great applied interest.
Ferrimagnets with the conical type of incommensu-
rate ordering are multiferroics with the corresponding
magnetoelectric characteristics [2–6]. The necessary
condition of controlling the direction of the ferrimag-
netic moment by low magnetic fields is the small mag-
nitude of the magnetic anisotropy. The formation of
the conical ordering in such isotropic (or nearly iso-
tropic) magnets is a particular case of non-collinearity
caused by the frustration (competition) of isotropic
exchanges. A specific type of the non-collinear mag-
netic order is determined first of all by the spatial dis-
tribution of exchange bonds in a crystal and the sym-
metry of the location of magnetic ions in the consid-
ered magnetic structure. Cubic spinel AB2O4 is the
only example of the conical incommensurate ordering
studied in detail theoretically [7, 8]. The three-cone
incommensurate structure in it is determined by three
positions of magnetic ions A, B1, and B2 nonequiva-
lent with respect to the direction of the modulation
vector of the magnetic structure k [1, 1, 0] [3, 8, 9]. In
this work, we theoretically consider conical incom-
mensurate structures arising in the isotropic Heisen-
berg model, where magnetic ions are in two nonequiv-
alent positions both crystallographically and with
respect to the arising magnetic structures. The number
of independent variables of the problem is determined
by the spin dimensionality and the number of non-
equivalent positions (magnetic subsystems) and allows

a relatively simple analytical solution on magnetic
structure parameters in the considered two-subsystem
case. In addition, there is a series of solutions with the
coplanar orientation of spins within such a model [10–
12]. Correspondingly, the conditions of the existence
of conical solutions, i.e., exchange interactions and
temperature at which their appearance is possible, as
well as the types of phase transitions between states,
can be determined by comparing free energies of dif-
ferent states.

Two types of frustrated exchanges are taken into
account in the model: the geometrically frustrated
exchange between spins in different subsystems and
competing exchanges between nearest and next near-
est magnetic neighbors in one subsystem. The direc-
tions of frustrated exchange bonds determining the
direction of the modulation vector of the magnetic
structure are the same in the considered model. This
provides the conservation of the given direction under
the variation of the type of incommensurate structure
(Fig. 1). Such a scheme of exchange interactions is
implemented in tetragonal ferrimagnet CuB2O4 [10,
11]. As will be shown below, it gives both f lat and con-
ical solutions. The Hamiltonian of the model has the
form

 (1)

where i and j are the indices of spins of A and B sub-
systems, respectively; zab (zba) is the number of mag-
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netic neighbors in the position B (A) for the spin in the
position A (B); and Ja, Jb1, and Jb2 are exchanges inside
the subsystem. The numbers of magnetic neighbors zab
and zba for the intersubsystem exchange Jab are related
to the numbers of magnetic ions in subsystems Na and
Nb by the relation

.

The antiferromagnetic exchange in the unfrustrated A
subsystem is considered dominant. This makes it pos-
sible to use the mean field approximation (MFA)
when considering the states arising at temperatures
below the antiferromagnetic ordering temperature TN
in the A subsystem (in the antiferromagnetic phase).
We consider the cases of antiferromagnetic (Jb1 > 0)
and ferromagnetic (Jb1 < 0) exchanges between the
nearest magnetic neighbors in the B subsystem giving
different conical solutions. In the mean field approxi-
mation, the Hamiltonian is additive over spins:

 (2)

where Sa, i and Sb, j are the vectors of average spins in
the A and B subsystems, respectively. The necessary
condition for the existence of stationary states in the
mean field approximation is the collinearity of average
spins to the corresponding total fields [13]. This
requirement is equivalent to the constraint imposed on
the effective fields acting on spins: the transverse com-
ponents of the fields should be zero. In our case of two
nonequivalent magnetic positions, the fields on spins
hi, j are functions of four angles of the orientation of
spins θa, b and φa, b (polar and azimuthal angles in the
local spherical coordinates of the corresponding spins)
and two average values Sa and Sb. Four collinearity
conditions and two self-consistency equations for the
average values of spins in the mean field approxima-
tion [14] form a complete system of nonlinear equa-
tions for the variables of the problem:
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, (4)

where  are the transverse fields directed along vec-

tors  and  of local coordinate systems, ha, b are
transverse fields, and  is the Brillouin function

for the spins . In local coordinate systems, Sa, b > 0
and ha, b < 0. We define the dimensionless exchange
parameters of the model and the longitudinal effective
fields normalized to the complete exchange interac-
tions between A spins, as well as the frustration param-
eter of exchanges between B spins R and the tempera-
ture t normalized to the Néel temperature of the A
subsystem:

 (5)

In this notation, self-consistency equations (4) have
the form

 (6)

The system of Eqs. (3) and (4) determines all solutions
with two nonequivalent magnetic positions. To find
the solution with the minimum free energy,

 (7)

where Za, b are the single-particle partition functions,
the free energy is varied over the variables of the prob-
lem

. (8)
Structures with two cones in the subsystem with the
main unfrustrated exchange that are located symmet-
rically with respect to the plane of spins of the second
subsystem are conical structures where magnetic
moments have a three-dimensional orientation and
the number of nonequivalent magnetic positions is
two (Fig. 2). When the symmetrical distribution of the
projections of spins of the subsystem A on the plane of
B spins is preserved (Fig. 2b), the conditions of van-
ishing of two transverse components on the spins Sb, j

and the  component on the spins Sa, i are fulfilled
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Fig. 1. Scheme of exchange interactions and orientations
of spins in the antiferromagnetic f lat helix at Jb1 > 0.
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automatically. The requirement of vanishing of the
component  imposes the additional constraint on
the angles and average spins

, (9)

giving three solutions:

(i) cos(φ/2) = 0. The solution arises for the antifer-
romagnetic exchange (Jb1 > 0) and corresponds to the
antiferromagnetic ordering in both subsystems of the
“cross” type [15] with the ground state degenerate
with respect to the mutual orientation of the antiferro-
magnetism vectors of the subsystems. This state is
globally unstable and transfers into a f lat incommen-
surate structure at any infinitesimally small values of
the intersubsystem exchange [11].

(ii) cosθ = 0, corresponding to an antiferromag-
netic f lat helix (AFH) at Jb1 > 0 and a f lat triangular
Yafet–Kittel (YK) structure [15] at Jb1 < 0.

(iii) Symmetrical conical helices (SCHs) with the
opening angles of the cone determined by the relation

. (10)

The upper and lower signs in Eqs. (9) and (10) and
below refer to the cases of antiferromagnetic and ferro-
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magnetic exchanges Jb1, respectively. For SCH solu-
tions, the transverse fields on spins have the form

 (11)

The substitution of Eq. (10) into Eqs. (11) makes it
possible to exclude the angle θ from the independent
variables of the problem:

 (12)

In the conical phase, the decrease in the exchange
field on A spins owing to their non-collinearity is
exactly compensated by the field from B spins. As a
result, this field remains equal to the field at the anti-
parallel orientation of antiferromagnetic sublattices of
A spins and depends neither on average Sb values nor
on the helix step φ. For the B subsystem, the interac-
tion with A spins is reduced to the additional effective
exchange between B spins. Thus, the minimization of
the free energy given by Eq. (8) is reduced to the vari-
ation of the longitudinal field  (12) over the helix
step that gives the standard expressions for R > 1/4:

. (13)

At R < 1/4, φ = π and solutions specified by Eq. (10)
at finite Sb do not exist. Substituting Eq. (13) into
Eqs. (10) and (12), we obtain

 (14)

 (15)

Thus, conical phases arise from the antiferromagnetic
phase with the appearance of the magnetization of B
sites when the threshold condition is fulfilled. The
opening angle of the cone increases continuously with
the further decrease in the temperature: A spins tend to
the B plane.

We find the temperature of the (antiferromagnet ⇒
symmetrical conical helix) second-order phase transi-
tion by linearizing the self-consistency equation (6)
for Sb with allowance for Eq. (15):
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Fig. 2. (a) Orientations of spins in symmetrical conical
helices at Jb1 > 0 and Jb1 < 0 and (b) the projections of
spins of the helix plane.
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The exchange energy of frustrated interactions leading
to the considered incommensurate structures has dif-
ferent dependences on the average values Sa and Sb:

,

Different temperature dependences of the magnetiza-
tion of subsystems lead to different temperature
dependences of the free energy in the AFH and SCH
states. At t ≪ 1, spins Sa are close to saturation and,
when AFH appears first, the faster decrease in the free
energy of the SCH state with a further decrease in the
temperature can lead to the change in the type of
incommensurate ordering. To determine the type of
such phase transition, we perform the numerical min-
imization of the free energy given by Eq. (4) for the
particular case  and n = 1 with the fixed
parameters jab = jba, jb, and R. Figure 3 shows the tem-
perature dependences of the free energy of the AFH
and SCH1 states normalized to the number of spins Na
and the total exchange between neighboring A spins
zaJa. The type of incommensurate ordering changes at
tc and the angle θ varies stepwise to the value θc. The
helical step and magnetizations of the subsystem also
vary stepwise. The further decrease in the temperature
leads to the increase in the angle θ, while the helical
step remains constant (see Eq. (13)). Thus, the transi-
tion between the f lat and conical incommensurate
phases is a first-order phase transition.

(Temperature–exchange parameters) phase dia-
grams are shown in Figs. 4 and 5. At large values of the
frustration parameter R of competing exchanges in the
subsystem B, the conical SCH1 and SCH2 phases
arise at the decrease in the temperature from the anti-
ferromagnetic phase (AF), in which only spins of the
A subsystem are ordered, with the appearance of the
magnetization of the B subsystem through a second-
order phase transition. At small R values, either the

AFH a bE AS S∞ −
2

SCH  .bE BS∞ −

0 0 1/2a bS S= =

f lat incommensurate phase (AFH at jb > 0 in Fig. 4a)
or the triangular Yafet–Kittel structure (YK at jb < 0 in
Fig. 4b) appears from the AF phase also through a sec-
ond-order phase transition. In the former case, the
further decrease in the temperature can lead to the
first-order phase transition from the f lat phase to the
conical one. Since the mechanism of the formation of
the f lat incommensurate structure is the geometrical
frustration of the intersubsystem exchange and the
partial removal of degeneracy in such structures
occurs according to this exchange, the interface
between the f lat and conical SCH1 phases depends on
the exchange value. At the ferromagnetic exchange
(jb < 0), the interface between the triangular Yafet–
Kittel phase and the conical SCH2 phase remains
constant (R = 0.25) under the temperature variation
for different values of the intersubsystem exchange
(Fig. 4b). The conical phase arises starting from the
zero helical step and the rotation begins around the
axis lying in the plane of the triangular structure and
normal to the direction of spins Sb (Fig. 2a). The
SCH1 and SCH2 states are separated by the f lat
incommensurate phase, the width of which is deter-
mined by the intersubsystem exchange jab (Fig. 5). At

Fig. 3. Temperature dependences of the normalized free
energy of incommensurate AFH and SCH1 states.

Fig. 4. (Temperature–ratio of competing exchanges in the
B subsystem) phase diagrams at the fixed (a) antiferromag-
netic and (b) ferromagnetic exchanges jb and two values of
the intersubsystem exchange: jab = 0.25 and 0.5; P is the
paramagnetic phase, in which the spins of both subsystems
are disordered.
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the same R values setting the helical step, the conical
angles of these structures are different (see Eq. (14))
since they are determined by the angle ϕ/2 between
the projections of the spins of subsystems on the heli-
cal plane. In the long-wavelength limit (R → 0.25), the
expression determining the opening angle θ of the
cone for the conical SCH1 and SCH2 structures
should be used with ϕ/2 = π/2 and 0, respectively.

In the considered model, the increase in the frus-
tration of exchanges inside one subsystem is accompa-
nied by the formation of the three-dimensional
incommensurate structure because of the competition
of optimal non-collinearities different for different
partial subsystems. The large non-collinearity of B
spins is energy favorable at large parameters R. Such
cant of the antiferromagnetic sublattices of the unfrus-
trated A subsystem in the f lat helix becomes unfavor-
able with respect to the energy of the dominant
exchange Ja, and spins Sa come out of the helical
plane. As a result, the cant between sublattices
decreases and the initial exchange field on the spins of
the subsystem is recovered. This leads to the consider-
able decrease in the energy with respect to the case of
the f lat helix with the locally triangular orientation of
spins (Yafet–Kittel helix) considered earlier [12]. In
this case, the helical step is intermediate between the
optimal one determined by standard relation (13) and
zero favorable in terms of the dominant exchange. As
a result, the energy of exchange interactions in both
subsystems for such incommensurate structure

increases with respect to that of the conical helix. The
additional magnetic anisotropy of the “easy-plane”
type can make the f lat incommensurate structure
more energy favorable. At the same values of frus-
trated interactions, the three-dimensional orientation
of isotropic Heisenberg spins is an additional opportu-
nity to decrease the energy with respect to the aniso-
tropic Ising and XY spin systems. The model disre-
gards not only anisotropy but also the effect of magne-
tostriction playing a significant role first of all in the
appearance of the electrical polarization in incom-
mensurate magnets, e.g., via the inverse
Dzyaloshinskii–Moriya effect [3, 16]. The appear-
ance of such an additional mechanism of the incom-
mensurability of the magnetic structure, as well as the
striction change in isotropic exchanges, will not lead
to qualitative variation of phase diagrams and condi-
tions of the appearance of conical phases at the con-
sidered large values of frustrated exchanges of the
model.
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Fig. 5. (Temperature–exchange interaction in the B sub-
system) phase diagram jb at the fixed ratio of competing
exchanges R and two values of the intersubsystem
exchange: jab = (dashed lines) 0.5 and (solid lines) 0.7.
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