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In the framework of the t–J1–J2–V model, the integral equation determining the order parameter Δ(p) of the
superconducting phase is derived for an ensemble of strongly correlated fermions on a triangular lattice using
the diagram technique for the Hubbard operators. Taking into account the interaction between the Hubbard
fermions within two coordination spheres, we demonstrate that the exact analytical solution Δ2(p) of this
equation for the superconducting phase with the (  + idxy) symmetry can be expressed as a superposition
of two chiral basis functions. This gives rise to a new set of nodal points for the complex parameter Δ2(p).
Moreover, at some critical value xc of the charge carrier density, we obtain a gapless phase with six Dirac
points. The passing of x through x = xc is accompanied by the topological quantum transition corresponding
to the change in the topological parameter Q.
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1. INTRODUCTION
The discovery of superconductivity with Tc = 5 K in

water-intercalated NaxCoO2 · yH2O sodium cobaltite
(x ≃ 0.3) [1] initiated a considerable interest in studies
of this novel class of layered materials with a triangular
lattice. First, the problem concerning the nature of the
superconducting pairing appeared. The data on the
spin–lattice relaxation rate at T = Tc suggested the
existence of the anisotropic superconducting order
parameter and an unconventional nature of the super-
conducting pairing [2]. Similar results were provided
by the muon spectroscopy [3] and by the specific heat
measurements [4]. After that, the problem on the sym-
metry of the superconducting order parameter became
quite challenging. The studies performed using high-
quality NaxCoO2 · yH2O single crystals [5] demon-
strated a decrease in the spin contribution to the
Knight shift on cooling below Tc, which could indicate
the spin-singlet superconductivity. Moreover, this
suggested the existence of antiferromagnetic correla-
tions.

A significant interest in the fermion systems on the
triangular lattice is also related to the possible exis-
tence of the superconducting order parameter with the
(  + idxy) type of symmetry. Such a superconduct-
ing state with broken time reversal symmetry was stud-

ied earlier for the t–J model in the framework of the
mean-field description of the state of resonance
valence bonds [6, 7]. It was also considered based on
the variational approach for the Gutzwiller approxi-
mation [8] and was discussed in the framework of the
slave-boson approximation [9]. These studies involved
the suggestion that the interaction between fermions
occurs only within the first coordination sphere.
Then, the nodal points for the chiral Δ2(p) parameter
are located only at the center and boundaries of the
Brillouin zone. Therefore, the chiral d + id supercon-
ducting phase remains gapped at all admissible doping
levels. However, this contradicts the available NMR
data [2].

A way for overcoming this discrepancy was sug-
gested in [10]. The authors of that work argue that only
involving the pairings of electrons located at the next-
nearest-neighbor sites can give rise to the nodal points
of the complex order parameter Δ2(p) appearing inside
the Brillouin zone. This important result means that,
at a certain electron density, when the Fermi surface
intersects the set of zeros of Δ2(p), the spectrum of the
fermion excitations in the superconducting phase is
characterized by six Dirac points. At the same time,
the superconducting phase becomes gapless. This is in
agreement with the experimental data [2].
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The importance of the conclusion on the existence
of Dirac points in the superconducting phase is also
related to the increasing activity in the studies con-
cerning the possibility of observing Majorana fermi-
ons in spin-singlet superconductors with the spectrum
containing nodes [11].

In this connection, the existence of the nodal
points of Δ2(p) within the Brillouin zone owing to the
pairing strictly for the second coordination sphere,
whereas the similar coupling is absent for the nearest
neighbors, seems to be quite artificial. If the system
exhibits the couplings both in the first and second
coordination spheres, the superconducting phase for
which the Δ2(p) parameter is determined only by the
basis functions related to the second coordination
sphere does not meet the necessary conditions of self-
consistency. This is the main problem. In this work,
we propose a solution to this problem in the frame-
work of the t–J1–J2–V model on the triangular lattice.
This model takes into account the exchange interac-
tion between the neighbor sites within two coordina-
tion spheres, as well as the charge f luctuations for the
nearest-neighbor ions.

2. HAMILTONIAN AND GREEN’S 
FUNCTIONS IN THE ATOMIC 

REPRESENTATION

We describe an ensemble of Hubbard fermions
within the t–J1–J2–V model

 (1)

The first two terms of this Hamiltonian describe the
one- and two-electron states at the sites of the triangu-
lar lattice in terms of the Hubbard operators in the
atomic representation [12, 13]. Here, ε is the energy of
the one-electron state, μ is the chemical potential of
the ensemble, and U is the Hubbard repulsion energy.
The off-diagonal Hubbard operators describe the
transitions between the one-site states. The third term
in the Hamiltonian corresponds to the process where
the transition from the state with two electrons to the
one-electron state with the spin projection  (annihi-
lation of an electron with the spin projection σ) occurs
at the mth site and the transition from the one-elec-
tron state  to the state with two electrons |2〉 accom-
panies the creation of an electron with the same spin
projection at the fth site. The probability amplitude
for such electron hopping is determined by the param-
eter tfm. The fourth term in the Hamiltonian corre-
sponds to the exchange interaction in the t–J model in
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the representation of Hubbard operators [14]. Here,
Jfm is the exchange integral describing the coupling of
ions in the one-electron states at the f and m sites. The
last term in the Hamiltonian accounts for the exis-
tence of charge f luctuations in the system. These f luc-
tuations arise owing to the Coulomb repulsion
between electrons located at the nearest-neighbor sites
(δ is the vector connecting the nearest neighbors).
Here, V is the parameter characterizing the magnitude
of such correlations. The operator describing the num-
ber of electrons at site f is given by the expression

.
To describe the superconducting phase, we use the

diagram technique for the Hubbard operators [13]. We
introduce the normal and anomalous Matsubara
Green’s functions in the atomic representation

To contract the expression below, we compose the
matrix Green’s function

and take into account that this function is related to
the function  and the force operator 
by the formula  =  · .

The Dyson equation for the function  in
graphical form is shown in Fig. 1.

After putting the analytical expressions into corre-
spondence with the graphical elements, we obtain

,
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operator is defined as
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Fig. 1. Diagrammatic representation of the Dyson equa-
tion for the Hubbard fermions. The double line denotes
the Green’s function corresponding to the collective exci-
tations.
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and two thin lines correspond to the cooperative func-
tion for the Hubbard fermions in the loopless approx-
imation

,

where ξp = ε + N2σtp is the μ spectrum of the Hubbard
fermions, N2σ = N2 + Nσ is the well-known Hubbard
renormalization factor, and N2 and Nσ are the occupa-
tion numbers of the one-site states with two electrons
and with one electron with the spin projection σ,
respectively.

3. SELF-CONSISTENT EQUATION
FOR THE SUPERCONDUCTING ORDER 

PARAMETER

Further, we limit ourselves to the study of the char-
acteristic features of the superconducting phase with
the (d + id) symmetry of the order parameter. For this
reason, we consider only such contributions to the
mass operator that are responsible for the formation of
this phase. Accordingly, we shall not represent the dia-
grams contributing to the anomalous components of
the mass operator, which are related to the kinematic
interaction of the Hubbard fermions [13]. Then, in the
mean-field approximation, the anomalous compo-
nents of the mass operator should be determined by
three diagrams. Two upper diagrams in Fig. 2 describe
the contribution of the exchange interaction (the wavy
line) to the anomalous mass operator, whereas the
lower diagram is related to the Coulomb interaction
(the dashed line). The indices near the lines corre-
sponding to the Green’s functions specify the root
vectors [12]. Putting the analytical expressions into
correspondence with these figures, we find

(2)

Using the expression for the matrix Green’s func-
tion , we obtain the following self-consistent
equation for the superconducting order parameter
after the summation over the Matsubara frequencies
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and taking into account the properties of the Green’s
functions:

where Eq =  is the excitation spectrum of
the superconducting phase.

4. CHIRAL d + id SUPERCONDUCTING PHASE

For the triangular lattice, the terms in the kernel of
the integral equation have the form

 (3)

It is easy to check that the solution of the equation
for the superconducting gap with the d + id symmetry
(with the orbital angular momentum l = 2) can be
written in the form of the superposition

, (4)

where the chiral basis functions

(5)

correspond to the first and second coordination
spheres [10].

Substituting (4) into the equation for the supercon-
ducting gap, we obtain a set of two algebraic equations
for the amplitudes
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Functions Aij involved in these equations are given
by the expressions

(7)

where Lq = tanh(Eq/2T)/ Eq.
The set of equations (6) describes the temperature

dependence of Δ2(q). The ordering temperature Tc is
determined by the existence at Δ2(q) = 0 of a nontrivial
solution of the equation

. (8)
In Fig. 3, we illustrate the effect of the Coulomb

correlations on the electron density dependence of
temperature of the transition to the superconducting
phase with the d + id symmetry. The Coulomb inter-
action leads to the enhancement of the relative contri-
bution of the second basis function. Owing to that, the
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transition to the superconducting phase does not dis-
appear in spite of the suppressed tendency to the Coo-
per pairing, which is due only to the exchange interac-
tion within the first coordination sphere.

5. EFFECT OF THE COULOMB 
CORRELATIONS ON THE EVOLUTION 

OF THE NODAL POINTS

The importance of involving the Coulomb correla-
tions is related, in particular, to the additional possi-
bility of inducing the quantum topological transition
by an increase in the charge carrier density. It is well
known that the changes in the topological characteris-
tics of the superconducting phase with the complex
order parameter Δ2(q) = ReΔ2(q) + iImΔ2(q) occur
when the Fermi surface crosses the nodal points of
Δ2(q). The existence of the real and imaginary parts
makes it more difficult to meet this condition. As is
shown in [10], the existence of a single basis function
corresponding to the second coordination sphere
leads to zeros of Δ2(q) located inside the Brillouin
zone.

The inclusion of the interactions from two coordi-
nation spheres can change the situation qualitatively
because the positions of zeros in the case of two basis
functions depend on the ratio of the amplitudes 
and  of the complex order parameter Δ2(q) =

2 ϕ21(q) + 2 ϕ22(q). In this case, the “old” zeros
can disappear and the new ones with the positions
strongly dependent on the system parameter can arise.
Such a situation is demonstrated below. In Fig. 4, we
show the positions of the nodal points of Δ2(q) within
the Brillouin zone and the Fermi contour at two values
of the electron density n in the case where the intersite
Coulomb interactions are neglected. The growth of n

0
21Δ

0
22Δ

0
21Δ 0

22Δ

Fig. 3. Critical temperature of the transition to the super-
conducting phase versus the electron density at V = (solid
line) 0 and (dashed line) 0.3.

c

Fig. 4. (Color online) Nodal points for Δ2(q) and the
Fermi contour disregarding intersite correlations. With the
growth of the density of Hubbard fermions, the set of nodal
points moves faster than the Fermi contour, and hence the
quantum topological transition does not take place. The
used values of the parameters (in units of |t1|) are J1 = 0.3,
J2 = 0.2, and t2 = t3 = 0.
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results in changes in the /  ratio. This leads to
the displacement of nodal points toward the center of
the Brillouin zone. This displacement is more pro-
nounced than that of the Fermi contour. As a result,
the change in the fermion density in this regime
should not be accompanied by the topological phase
transition. This is a manifestation of one of the signif-
icant features related to the superposition type of the
chiral order parameter. Let us recall that the nodal
points when Δ2(q) = 2 ϕ22(q) do not move and the
Fermi contour crosses these points with the growth of
n and this crossing is accompanied by the topological
phase transition.

When Coulomb correlations are taken into
account, the situation can change drastically. In par-
ticular, there is a range of parameters (V ~ J1) within
which an interplay of the nodal points and the Fermi
contour changes qualitatively (see Fig. 5). In this case,
the displacement of nodal points is relatively slow and
the Fermi contour has time to “overtake” them. At the
critical value of the charge carrier density, the set of
nodal points of Δ2(q) is located at the Fermi contour.
Thus, the Coulomb correlations between the Hubbard
fermions from the first coordination sphere not only
suppress the tendency to the pairing but, modifying
the partial amplitudes ϕ21(q) and ϕ22(q), can
significantly affect the dynamics of nodal points, thus
initiating the quantum topological transition in the
superconducting state.

When V ≫ J1, the set of nodal points becomes
closer to that determined only by the second basis
function. Moreover, the behavior of the system with
the variation of the charge carrier density corresponds
to the scenario described in [10] and the enhancement
of the Coulomb interaction manifests itself only as the
lowering of the superconducting transition tempera-
ture.

6. QUANTUM TOPOLOGICAL TRANSITION 
IN THE SUPERCONDUCTING PHASE

WITH THE SUPERPOSITION-TYPE
CHIRAL d + id ORDER PARAMETER

The complex form of the chiral  + idxy super-
conducting order parameter Δ2(q) manifests itself in
the topological features of the superconducting phase.
The introduction of the unit vector m = {mx, my, mz}
[16] with the components

makes it possible to find the correspondence between
the points of the Brillouin zone and those of the unit
sphere. Then, the motion over the Brillouin zone is
put into correspondence with the motion over the unit

0
21Δ 0
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22Δ

2 2x yd −

2 2Re ( ) Im ( ), , q
x y z

q q q

q qm m m
E E E

ξΔ − Δ= = =

sphere. To identify different classes of such trajecto-
ries, the topological index is usually introduced [10]

,

where summation is performed over all triangular
plaquettes and the vectors m1, m2, and m3 are calcu-
lated at the apexes of such plaquettes. The value of Q
characterizes the topological structure of the super-
conducting phase. It is related to the arrangement of
the nodal points of Δ2(q). If the changes in the charge
carrier density lead to the intersection of the Fermi
contour of the normal phase with the nodal points, the
topological quantum transition occurs. In our case
where Δ2(q) = 2 ϕ21(q) + 2  ϕ22(q), such transi-
tion may be initiated by the Coulomb interaction. In
Fig. 4, we can see that the growth of the charge carrier
density in the absence of the Coulomb interaction is
not accompanied by any changes in the topological
parameter Q = –2. If the Coulomb interaction is taken
into account, then (as we can see in Fig. 5) the Fermi
contour of the normal phase intersects the set of nodal
points of Δ2(q) at some critical value of the charge car-
rier density and the topological transition takes place.
At the critical charge carrier density, the topological
parameter changes from Q = –2 to +4.

7. CONCLUSIONS
The main results of our work can be summarized as

follows.
(i) Using the diagram technique for Hubbard oper-

ators and taking into account the interactions of elec-
trons within two coordination spheres for the triangu-
lar lattice, we have obtained the integral equation
determining the order parameter for the supercon-
ducting phase.

1 2 3
1 [ ]

8
Q

Δ

= ⋅ ×
π∑

m m m

0
21Δ 0

22Δ

Fig. 5. (Color online) Nodal points for Δ2(q) and the
Fermi contour with the inclusion of intersite correlations.
With the growth of the density of Hubbard fermions, the
Fermi contour moves faster than the nodal points are dis-
placed. The quantum topological transition occurs in the
superconductor. The used values of the parameters (in
units of |t1|) are J1 = 0.3, J2 = 0.2, and t2 = t3 = 0.
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(ii) It has been shown that the exact solution of this
equation in the d + id channel is determined by a linear
superposition of two chiral basis functions φ21(q) and

φ22(q): Δ2(q) = 2 φ21(q) + 2 φ22(q).
(iii) For the system of Hubbard fermions interact-

ing at the nearest- and next-nearest-neighbor sites,
the formation of the set of nodal points for the chiral
order parameter Δ2(q) can occur according to two
qualitatively different scenarios.

In the first scenario, the set of nodal points {qα} is
determined only by the first (second) chiral basis
function and is displaced only slightly after the inclu-
sion of the second (first) basis function. This occurs,
for example, if the interaction with the nearest fermi-
ons is taken into account at a fixed interaction with the
next-nearest neighbors. If the pairing potential of such
interaction is substantially weakened by the Coulomb
repulsion of electrons from the sphere of the nearest
neighbors, the amplitude  can be small and the
nodal points of the order parameter Δ2(q) could be
close to those of the basis function φ22(q). Just this
case was discussed in [10].

A qualitatively different scenario for arising nodal
points {qα} of the chiral order parameter Δ2(q) takes
place when the basis functions φ21(qα) and φ22(qα) at
the points {qα} are about unity rather than zero. Then,
the new set of nodal points appear as the superposition
Δ2(q) = 2 φ21(q) + 2 φ22(q) and a nonzero value

of φ21(qα) is compensated by a nonzero value of

φ22(qα). It is essential that the set of nodal points
{qα} obtained in such a way strongly depends on the

ratio of the amplitudes  and . Since these ampli-
tudes are determined from the solution of the self-
consistent equations, the location of {qα} in the Brill-
ouin zone will appreciably vary with changes in the
parameters characterizing the interactions, the density
of Hubbard fermions, and generally the temperature.
From the above discussion, it follows that the new set
of nodal points {qα} should exhibit a pronounced
dynamics (within the first scenario, the nodal points
are nearly immovable) with the change, for example,
in the density of Hubbard fermions. Such a behavior is
illustrated in the figures presented above, which
demonstrate this dynamic feature.

(iv) With the variation of doping at the point x = xc
when the Fermi contour crosses the new set of nodal
points {qα}, the superconductor exhibits the topologi-
cal quantum transition at which the topological
parameter Q changes –2 to +4.

0
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22Δ

0
21Δ

0
21Δ 0

22Δ
0
21Δ

0
22Δ

0
21Δ 0

22Δ

(v) The revealed features of the charge carrier
dependence of the new set of the nodal points are
essential for finding the conditions of the implementa-
tion of the Majorana fermions. The location of the
nodal points for the chiral order parameter on the
Fermi surface of the normal phase at some critical
doping level xc leads to the formation of the gapless
superconducting phase. Moreover, the spectrum of
Fermi excitations has six Dirac points, the existence of
which is a well-known starting point for finding the
Majorana fermions [11].

This work was supported by the Russian Founda-
tion for Basic Research, project nos. 13-02-00523 and
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