ISSN 0030-400X, Optics and Spectroscopy, 2015, Vol. 119, No. 5, pp. 770—775. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © V.G. Arkhipkin, S.A. Myslivets, 2015, published in Optika i Spektroskopiya, 2015, Vol. 119, No. 5, pp. 745—750.

BASIC PROBLEMS
OF OPTICS

Transmission and Reflection Spectra
of a Raman Induced Grating in Atomic Media!

V. G. Arkhipkin®? and S. A. Myslivets®®

¢ L.V, Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia
b Siberian Federal University, Krasnoyarsk, 660041 Russia
e-mail: avg@iph.krasn.ru
Received March 23, 2015

Abstract—The spectral properties of an electromagnetically induced grating that is based on the spatial mod-
ulation of the Raman gain in the field of a standing pump wave in a three-level homogeneous medium have
been discussed. It has been shown that, by varying the intensity or the frequency of the pump field, one can
control the transmission and reflection spectra, while the transmission and reflection coefficients of the
probe (Raman) wave can simultaneously be greater than unity. The influence of the nonideality of the stand-
ing wave on the spectral characteristics of the grating has been studied.
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INTRODUCTION

Propagation of light in periodic structures (media)
is a field of active research in modern optics with
unique possibilities for controlling the propagation of
light waves [1]. The optical properties of media with a
periodic spatial modulation of the refractive index
fundamentally differ from those of homogeneous
media. One of the basic properties of these media is
the occurrence of bands that are allowed and forbid-
den for the propagation of light. These structures are
known as photonic-crystal structures or photonic
crystals [2]. Dynamically controlled periodic struc-
tures with the tunable spectral characteristics are of
great interest. They can be set up on the basis of elec-
tromagnetically induced transparency [3] in the field
of a standing controlling wave [4, 5]. As a standing
controlling wave interacts with a probe wave in a three
level atomic medium, a periodic spatial grating of
atomic coherence (an off-diagonal element of the
density matrix of a Raman transition) is induced in the
medium, which leads to a spatial modulation of the
absorption coefficient and nonlinear refractive index
for the probe field—an electromagnetically induced
absorption grating [6]. Such structures can lead to
unusual quantum-optical phenomena. For example,
they can give rise to tunable band gaps [4, 7, 8], gener-
ation of stationary pulses [9, 10], squeezing of probe
pulse [4], tunable reflection (controllable mirror) [11],
and light pulse splitting [12].

For controlling light, the Raman interaction of
laser fields in atomic media is of great interest [ 13—15].
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Unlike electromagnetically induced transparency,
here, the gain rather than the absorption is controlled.
In this work, we discuss an alternative scheme for the
realization of dynamically tunable periodic structures
on the basis of the Raman effect in the field of a stand-
ing pump wave, which gives rise to spatially modulated
regions with the Raman gain in antinodal regions of
the standing wave, i.e., to an induced Raman grating.
These gratings can be induced in a three-level atomic
medium when a weak Raman (probe) field interacts
with a standing pump wave. Particular features of the
propagation of the probe wave in this structure and its
transmission and reflection spectral characteristics are
investigated.

MODEL AND BASIC EQUATIONS

The scheme of the Raman gain is presented in
Fig. 1. As a weak probe (Raman) wave at frequency w2
interacts with a coherent pump wave at frequency wl,
it is gained if the frequency difference wl — w2 is close
to the frequency of Raman transition [2)—|0). As in the
case of spontaneous Raman scattering, gain occurs
because the pump energy is transferred to the Raman
wave. The intensity of the pump radiation is chosen
such that the threshold of the stimulated Raman scat-
tering would not be exceeded, but it should be high
enough for the probe wave to be noticeably gained. As
distinct from spontaneous Raman scattering, here, as
in the case of stimulated Raman scattering, atomic
oscillations in the volume occupied by light waves are
phased but no uncontrollable instabilities arise. The
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TRANSMISSION AND REFLECTION SPECTRA

Fig. 1. Scheme of the Raman interaction. Initially, atoms
reside in ground state |0). Transitions [0)—|1) and |[2)—|1) are
dipole-allowed, while Raman transition |0)—|2) is forbid-
den. Two oppositely directed horizontal arrows indicate
that the pumping is a standing wave.

Raman interaction in a three-level medium is

described by Raman susceptibility x (®,) [16]:

1 \d,[ldy)

XR=_3 2| 21|| 10| . (1)
47" 8;(85 + iY2)

Here, 0, =06,—-0, =w,, —(w, —w,) is the

Raman detuning, §,, = w,;, — ®,, is the single-pho-
ton detuning, w,, and w,, are the frequencies of the

atomic transitions, v, is the halfwidth of the Raman
transition, dj; is the dipole transition matrix element,

and # is Planck’s constant. Formula (1) is valid for
motionless atoms provided that the conditions

[0, > |Q,},v,, are fulfilled, where 2Q, = d,,E,/h isthe

Rabi frequency of the pump field and v, is the half-
width of transition |1)—[0).

Here, unlike the ordinary Raman interaction, we
will assume that the pump wave E, is a standing wave
that is a superposition of two counterpropagating trav-

eling waves E, 1/2{E, exp|—i(w¢ — ki2)] +
E,_expl—i(w,f + k;2)]}, where E,, and FE,_ are the
amplitudes of the forward and backward waves,

respectively. Then, we will assume that they are real-

valued quantities and that £, = E,_ = E|, which cor-
responds to an ideal standing wave. In this case, £, =

Eexp|—i(w,#)]cos(k,z), and the Rabi frequency of the
standing pump wave can be represented as
Q, =2Q,cos(kz), where Q, = d, E,/2h. The weak
probe wave E, =1/2)E, exp[—i(w,t — ky2)]
(|E,| < |E,|) also propagates along the z axis and inter-
acts with transition |1)—|2). In order to obviate absorp-
tion, the frequency of the pump field is tuned off the
resonant frequency of transition |1)—|0). The nonreso-
nant standing wave interacts with the probe traveling
wave, which leads to a spatial modulation of the
dielectric permittivity due to a Raman nonlinearity.
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The dielectric permittivity for the Raman wave has the
form

£,(2) = 1+ 4NX, + 4Ny 2| E,|” cos’(k,2)

(2)
=&,y + Ae(l + cos(2k,2)),

where

4nld, |'N
612(620 + 1Y)

€59 = 14+ 4nNY,, X, is the off-resonant linear suscep-
tibility for the probe field, and NV is the atomic concen-
tration.

The dielectric permittivity is periodically modu-
lated in space as cos(2k;z) due to the standing pump
wave. Physically, this is caused by the fact that a grat-
ing of atomic coherence is induced for Raman transi-
tion |0)—[2) (off-diagonal element of the density
matrix). This leads to a spatial modulation of the gain
coefficient and refractive index (at d,, # 0). Gain
occurs in antinodal regions of the standing pump
wave. We call this structure the electrodynamically
induced Raman grating. Due to the spatial modula-
tion, a weak probe wave propagates in the medium as
in a one-dimensional grating with a spatial period
A;/2, where A, is the wavelength of the pump radia-
tion. Under these conditions, the probe wave propa-
gates not only forward, but also backward; i.e., a
reflected Raman wave arises.

Upon normal incidence, the wave equation for
E5(z) in a medium with a spatially modulated dielec-
tric permittivity has the form [17]

Ae = 2y N|E|* = Q; cos’(k2).

d’E,

2+ ke, (2)E, = 0.
dz

3)
Taking into account (2), Eq. (3) takes the form

d’E,

2

(C))

+ k1 + B + cos 2k,2) |E, = 0,

where k,y = w,/c, k; = kayey, and B = Ae /.

Using the coupled waves method [18], the solution
of Eq. (4) can be represented as a superposition of two
counterpropagating waves:

E,(2) = A(z)e™ + B(z)e ", 5)

where A(z) and B(z) are the amplitudes of the forward
and backward waves, respectively. Substituting (5) into
(4) and using the slowly varying amplitudes approxi-

mation (d°E,/dz” < k,dE,/dz), we obtain a system
of two coupled equations for A(z) and B(z),

dd _ iaA + ioBe™", dB _ B - ioAe % (6)

dz dz
where a = k,3/2, 0 = k,8/4, and Ak = k, — k,.
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Linearly independent solutions of system (6) are

proportional to exp(isz), where s = +/(Ak — oc)2 -0’

while amplitudes A(z) and B(z) prove to be modulated
with spatial frequency s,

A(z) = eik‘z(aleisz +ae ™), (7

B(2) = e M (be™ + be™), (8)

Kw,) =k, +\J(Ak —a)’ —0° =k, *s. 9)

Here, a,, and b, are constants of integration,
which are determined by the boundary conditions,
while expression (9) for k(w,) is the dispersion rela-
tion. Formulas (7) and (8) define linearly independent
solutions or normal waves in the approximation
|Ag| <1 (small modulation depth) and |Ak| << |k,|.
Therefore, forward and backward probe waves are
superpositions of two spatial harmonics, which can
interfere.

In order to determine constants of integration in
formulas (7) and (8), we set boundary conditions from

the following considerations. Since |Ag <1, we can
neglect the Fresnel reflection from boundary layers
and take into account only the volume reflection. In
this case, the boundary conditions take the form of
those for the perfectly matched layer of thickness L
[18]: A(z =0) = A,, B(z = L) =0, where 4, is the
amplitude of the incident probe wave. With these
boundary conditions, the solutions of (7) and (8) can
be represented as

A(z)=Aylscoss(L—z)+i(Ak —a)sins(L—2z)]/D, (10)
B(z) = Ao sins(L — z)/D, (11)

where D = scos(sL) + i(Ak —a)sin(sL), and L is the
length of the specimen.

We will introduce the notation #(z) = A(z)/A, and
r(z) = B(z)/A,. Using (10) and (11), we obtain

Hz) = scoss(L —z)+i(Ak —a)sins(L — z)’
scos(sL) + i(Ak —a)sin(sL)
Hz) = osins(L — 2) ‘
scos(sL) + i(Ak —a)sin(sL)
Correspondingly, the energy transmission and
reflection coefficients T = |A(z = L)/A0|2 and R =
|B(z = 0)/A4,|° can be written as T = |(z = L)|* and

R=|rz =0).

(12)

(13)

RESULTS AND DISCUSSION

For numerical calculations, we will use parameters
that correspond to the D1 line of motionless Na atoms.
Transition |0)—|2) corresponds to a hyperfine splitting
of the ground state 35, v;p = 27t X 10 MHz, v,, =
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v10/100, and N = 10'2cm~3. Then, Rabi frequencies of
the pump field will be expressed in units of y,,, while
the Raman detuning will be expressed in units of yy,.

Figure 2a shows typical dependences of
Im(x(w,)) = Im(s(w,)) and Re(s(w,)) as functions of
the Raman detuning for Rabi frequency of the pump
field Q, = v,o. Qualitatively, the behavior of Ims and
Res does not depend on the magnitude of the intensity
of the pump field. In the range &,, < 0, Ims > 0, while
Im(—s) < 0. At 8,y > 0, the contrary is the case. Upon
passage through the resonance, a jump takes place.
Figures 2b, 2¢, and 2d present dependences of the
intensities of the forward and backward probe waves in
a specimen with a length of L = 5004, as functions of
the normalized coordinate z/L. Their behavior at a
given length of the specimen, strongly depends on the
Raman detuning and the intensity of the pump field.
It is seen that the forward and backward waves in the
specimen are inhomogeneous; i.e., they can either be
gained or decay.

We will represent the complex amplitudes of the
spatial harmonics for forward wave (7) as a;, =
A ,exp(i@,), where A, , are the real-valued ampli-
tudes and @, are the phases. Figure 3 shows the spa-

tial distributions of real amplitudes 4, , and phases @, ,
of forward wave A(z) inside of the specimen for differ-
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Fig. 2. (a) Imaginary (/, 2) and real (3, 4) parts of s as
functions of the Raman detuning 0, (in units of v,q).
(b, ¢, d) Spatial distributions of the normalized intensity
for the (1, 3) forward (|t|2) and (2, 4) backward (|r12) waves
in the specimen at different values of the Rabi frequency
Q, of the pump field and Raman detuning 8,y: (b) Q; =
0.5'\{10, 620 = (], 2) 0 and (3, 4) 05'Y20, (C) Q] = '\{10, 620 =
(1, 2) 0 and (3, 4) 0.95v,¢; and (d) Q| = 1.5vy9, 039 =
(1, 2) 0 and (3, 4) 1.6yy.
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Fig. 3. Dependences of normalized real amplitudesAl’z/AO and phases @, /7 on the coordinate z/L inside of a specimen for fre-

quency detunings &,y = 0 and 6,y = +1.6y,(, which correspond to transmission peaks at Q; = 1.5vy.

ent values of the Raman detuning 9,,. It is seen (a, b,
¢) that one of the harmonics is gained, while the other
harmonic decays; it is also seen (d, c, f) that they can
be either in phase or out of the phase; i.e., they can
interfere either constructively or destructively.

Figures 4a and 4b show the transmission and
reflection spectra as functions of the Raman detuning
for different values of Rabi frequency €2, of the pump
field. Here, we fix single-photon detuning &, of the
pump field and vary 0,. It can be seen that the trans-
mitted and reflected fields can be simultaneously
gained in a certain frequency range, which depends on
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Fig. 4. (a, b) Dependences of transmission and reflection
coefficients 7and R on the Raman detuning 8, at differ-
ent values of the Rabi frequency  (in units of y;¢): (solid

curve) 0.5, (dashed curve) 1, and (dotted curve) 1.5. (c, d)
Dependences of 7 and R on Rabi frequency 0 of the

pump field at different values of the Raman detuning 9,
(in units of v,(): (solid curve) 0.5, (dashed curve) 0.95, and
(dotted curve) 1.6.
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the intensity of the pump field. Therefore, the trans-
mission coefficient may be interpreted as a gain coef-
ficient. At weak pump fields, the transmitted and
reflected signals have maximal amplitude, which cor-
respond to the Raman resonance frequency. As the
pump intensity increases, a dip in the transmission
spectrum arises, the depth and width of which
increase as the pump intensity further increases. A
similar pattern is observed for the reflection, but the
dip arises here at a higher pump intensity than in the
case of the transmission In the range between the
peaks, the transmission tends to zero, whereas the
reflection coefficient remains to be greater than unity.
Far from the Raman resonance, 7 — 1 and R — 0;
i.e., the specimen becomes transparent.

Figures 4c and 4d present the dependences of the
transmission and reflection coefficients on Rabi fre-
quency Q,; of the pump field at different values of the
Raman detuning. The transmission and reflection
increase with increasing intensity of the pump field as
long as it exceeds a certain threshold value (subthresh-
old regime). Above this threshold, the transmission
decreases (down to zero) with increasing pump inten-
sity (superthreshold regime).

Figures 5a and 5b show, respectively, the transmis-
sion and reflection coefficients as functions of Q, and
0,9, Wwith positions of transmission and reflection
peaks being indicated.

Up to now, we have assumed that the standing
pump wave is ideal. In this case, the pump intensity
varies periodically from 0 (at nodes) to a maximal

value 4E; (at antinodes). Atoms that are located at
nodes do not gain the probe radiation. Under real con-
ditions, the standing wave is not ideal, because the
amplitudes of the counterpropagating waves are not
equal to each other. As a result, the pump field at
nodes differs from zero (quasi-nodes), while its maxi-
mum value at antinodes is smaller than that for the
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Fig. 5. Patterns of the transmission and reflection coeffi-
cients 7" and R in the plane Q; and 8,3. Numerals near
curves correspond to values of the transmission and reflec-
tion coefficients.

ideal standing wave. Therefore, the Raman gain takes
place here at quasi-nodes as well; but the contrast in
the grating decreases. In this case, formula (2) for the
dielectric permittivity can be represented as

€,(2) = €59 + Ag[l + pcos(2k,2)],
Ae = 2y xN(E}, + E[) = 2y xNE}.(1 + a°),

p=2E E,_/(E,+El)=2a/(1+a%), a=E_/E,,.

Figure 6 shows the dependences of the transmis-
sion and reflection coefficients that are similar to
those presented in Fig. 4, but that were determined at
different values of parameter a. Here, solid curves cor-
respond to the case of an ideal standing pump wave
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Fig. 6. (a, b) Transmission and reflection spectra 7"and R
as functions of Raman detuning 9, at ; = 1.5y;y and (c,
d) dependences of T and R on Rabi frequency Q; of the
pump field under the Raman resonance conditions &,y = 0
for the values of the parameter a equal to (solid curve) 1,
(dashed curve) 0.8, and (dotted curve) 0.5.

(a=1). It is seen that these dependences are not too
sensitive to the value of a. Using large values of the
intensity of the pump field, one can obtain character-
istics that are close to the case of an ideal standing
wave.

CONCLUSIONS

We have theoretically studied the spectral proper-
ties of an electrodynamically induced grating that is
based on the Raman interaction of a probe wave with
a standing pump wave in atomic media assuming that
atoms are motionless. In contrast to electrodynami-
cally induced absorption gratings, which are based on
the electromagnetically induced transparency, here,
the gain rather than the absorption is controlled. This
scheme also differs from the scheme of a Bragg grating
with fixed parameters in distributed feedback lasers,
where the linear dielectric permittivity is modulated.
We showed that the transmission and reflection coef-
ficients can both be simultaneously greater than unity
in a certain frequency range, while the transmission
and reflection spectra can be dynamically controlled
by varying the intensity or the frequency of the pump
field. At certain intensities of the pump field, the
transmission can be close to zero, and small changes in
the intensity can transfer the system from the transpar-
ent to an opaque state. This controllable transmission
may be of interest for optical switching. The necessary
pump intensity depends on the single-photon detun-
ing of the pump field, the width of the Raman reso-
nance, the length of the medium, etc. and can be
1—100 mW/cm? or lower. The obtained results agree

No.5 2015



TRANSMISSION AND REFLECTION SPECTRA

well with exact calculations based on recurrence rela-
tions [19].

To experimentally realize the scheme, cold atoms
can be used. The possibility of using hot atoms
requires additional investigations. Among solid-state
materials, praseodymium-doped Y,SiO; crystals and
NV-centers in diamonds, which have Raman transi-
tions with long-lived coherency, are of interest.
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