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1. INTRODUCTION

The rapid development of experimental methods of
coherent multiple pulse nuclear magnetic resonance
(NMR) spectroscopy of condensed matter at the end
of the XX century resulted in the formation of multi�
ple�quantum (MQ) NMR spectroscopy [1–3]. The
main factors ensuring the remarkable success of this
new field used in numerous applications are methods
that were found in the process of development of mul�
tiple pulse NMR and appeared to be applicable for
almost unlimited transformations of spin Hamilto�
nians (“spin alchemy”).

A significant interest in applications of MQ spec�
troscopy is due, on one hand, to new possibilities of
using these methods to study clusters, local structures,
liquid crystals, etc. [4–6]. On the other hand, methods
for quantum information processing are tested on
nuclear spin systems by the methods based on MQ
NMR and the control of MQ coherences are studied in
order to create a quantum computer and to implement
quantum calculations (see, e.g., [7, 8]). We note that
such theoretical and experimental investigations are
predominantly performed on systems with a compara�
tively small number of spins (tens spins) or on model
systems, when computers provide successful studies of
the multiquantum spectra and dynamics of a spin sys�
tem [6, 9, 10]. At the same time, in recent, most devel�
oped works aimed at studying the behavior of large
quantum registers, spin systems containing about 104

correlated nuclear spins were created [11–14].

It is noteworthy that MQ NMR methods thus
allowed the first experimental observation of an
increase in the number of correlated particles at the
evolution of a multiple particle dynamic system,
which is very important for general physics, e.g., for
the development of the statistical mechanics of irre�
versible processes. The detailed theoretical studies of
this kink began with works [15, 16] by the authors of
Prigogine’s “Brussels school” and, although in a more
pragmatic aspect, with works [17–20] by Bogoliubov
and his disciples in the process of development and
application of two�time Green’s function methods.

All particular implementations of multiquantum
spectroscopy [1–5, 11–14] involve the irradiation of a
spin system by a sequence of radiofrequency pulses,
which transform its spin–spin interaction Hamilto�
nian to a nonsecular (with respect to the equilibrium
magnetization) Hamiltonian transferring the initial
magnetization to various time correlation functions
with a quite complex structure of the product of differ�
ent numbers (K) of spin operators (multispin correla�
tions). In other words, the equilibrium density matrix
ρeq in a strong magnetic field is transformed to a non�
equilibrium density matrix, which is conveniently rep�
resented in the form of the sum of off�diagonal ele�
ments ρn with a certain difference of n magnetic quan�
tum numbers, which are called MQ coherences (n is
the order of coherence):

(1a)ρ t( ) iHt{ }ρeq iHt–{ }expexp ρn
0 t( ).

n

∑= =
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Here,

where |Knp〉 is the basis operator in which K single�
spin operators form products coupling Zeeman states
differing in n. The index p enumerates different basis
states with the same K and n values and N is the total
number of spins in the system. The appearing coher�
ences are marked by the phase shift ϕ proportional to
the time. The appearing phase shift is proportional to
nϕ, where n is an integer. Thus, K�spin correlations are
distinguished in the number of quanta n (n ≤ K) [1–3].
Then, the system is subjected to a new pulse sequence,
which changes the sign of the mentioned nonsecular
Hamiltonian, and, thus, “time reversal” is ensured
[21, 22]; i.e., the system evolves “backward.” The
observation of the dependence on the evolution time
and phase ϕ makes it possible to construct one� or
two�dimensional Fourier spectrum.

In usual MQ experiments, K�spin correlations are
marked by the phase shift about the z axis, i.e., are
sorted in terms of the number of quanta in the basis in
which the z components of spin operators are diagonal
(below, the z basis). However, as was shown in [14],
they can also be marked by the phase shift appearing at
the rotation about other axes, i.e., x. Such experiments
provided additional information in the case of the
nonsecular effective Hamiltonian. It is particularly
important that the measurement of coherences in the
basis different from the convenient z basis makes it
possible to study spin dynamics under the action of the
Hamiltonian conserving the z projection. Thus, mul�
tiple spin dynamics in the process of free induction
decay (FID) in NMR of a solid, which is caused by the
secular part of the dipole–dipole interaction, was
observed in [14] and other works in the x basis. A qual�
itatively similar picture of the time development of
multispin correlations was observed in all bases.

The most important characteristics of MQ spec�
troscopy necessary both for applied (e.g., structure)
studies and for the understanding of the physics of
irreversible processes are the time dependences of the
amplitudes of MQ coherences, which determine in
turn the distributions of the intensities of coherences
of various orders in the MQ spectrum. With the use of
the simplest statistical model [2], a Gaussian shape for
the distribution of coherences of various orders is
empirically taken in experiments:

(1)

The variance of the distribution in this model (N(τ)/2)
is determined by the number of spins N(τ) between
which dynamic correlation is established in the prepa�
ration time τ owing to the dipole–dipole interaction.
This number, which is called the number of correlated
spins or the effective size of the cluster, increases with

ρn
0 t( ) gKnp t( ) Knp| 〉,

p

∑
K n=

K N=

∑=

gn τ( ) Tr ρn τ( )ρ n– τ( ){ } n2

N τ( )
����������–⎝ ⎠

⎛ ⎞ .exp∼ ∼

the preparation time τ. However, it is noteworthy that
the experimentally observed dependences are often
not described by Eq. (1) (see, e.g., [23, 24]). At the
same time, the order dependence of the intensities of
MQ coherences is the most important characteristic of
their dynamics. The absence of an adequate theory of
this dynamics and understanding of the main charac�
teristics of such phenomena suppresses the further
development of experimental studies: prior informa�
tion on the indicated dependence would make it pos�
sible, e.g., to study a larger number of correlated spins
(larger quantum registers).

In this work, the corresponding theory describing
the profile of the intensities of MQ coherences as a
function of the order is formulated for crystals with a
quite large number of approximately equivalent neigh�
bors surrounding any spin in the lattice. We note that
most of the usual solids satisfy this condition.

2. HAMILTONIAN AND MAIN EQUATIONS 
FOR CORRELATION FUNCTIONS

The secular part of the nuclear dipole–dipole
interactions in nonmetallic diamagnetic solids, which
is exclusively responsible for the dynamics of the spin
system consisting of light nuclei such as protons or 19F
nuclei, under the NMR conditions has the form [25]

(2)

where

rij is the vector connecting the ith and jth spins, θij is
the angle between the vector rij and a static external
magnetic field, and Sαi is the α component (α = x, y, z)
of the vector spin operator at the ith site. Here and
below, the energy is expressed in frequency units.

In traditional experiments using magnetic reso�
nance, the spin temperature is usually much higher
than the energy of the Zeeman and other interactions
in the spin system. In view of this circumstance, we
study, as usual, the time correlation function in the
high�temperature approximation. The equilibrium
high�temperature density matrix in a strong static
magnetic field H0 is given by the expression [25]

where k is the Boltzmann constant, T is the tempera�
ture, and N is the total number of spins in the sample.

H 3
2
��bijSziSzj

1
2
��bijSiSj–

⎩ ⎭
⎨ ⎬
⎧ ⎫

i j>

∑ Hzz
0 Hex+= =

=  bijSziSzj
1
4
��bij Si

+Sj
– Si

–Sj
++( )–

⎩ ⎭
⎨ ⎬
⎧ ⎫

i j>

∑ Hzz Hff,+=

bij
γ2
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2
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We note that Hamiltonian (2) is the basis for spin
alchemy and is transformed under the action of radiof�
requency pulses to other Hamiltonians, which are of
interest for study. For example, traditional MQ NMR
[1–3] is usually described by the effective Hamiltonian

(3)

However, a number of measurements (see, e.g.,
[14]) of the intensities of coherences of various orders
in the multiquantum spectrum as functions of the time
were performed for samples with the usual dipole–
dipole Hamiltonian given by Eq. (2). It was demon�
strated that the behavior of systems described by
Hamiltonians (2) and (3), as well as by other Hamilto�
nians appearing, e.g., by means of multiple pulse nar�
rowing of the NMR spectrum, is the same [12, 14].
This coincidence is due to the adequacy of the condi�
tions for the applicability of the central limit theorem
of probability theory, at least for clusters containing a
large number of correlated spins K [26]. In view of the
mentioned circumstance, all calculations in this work
are performed with Hamiltonian (2) in order to avoid
too long expressions.

As is known [25], FID appearing after the applica�
tion of a π/2 pulse to the equilibrium nuclear spin sys�
tem is proportional to the time correlation function
defined in the reference frame rotating with the Lar�
mor frequency by the expression

(4)

Here, {Mn} are the moments, i.e., the coefficients in
the expansion in the time power series of the FID;
since the temperature is very high as compared to the
nuclear dipole–dipole interaction, only even�order

moments are nonzero; and Sx =  is the total

x component of the spin of the system. The depen�
dence Sx(t) is determined by the Heisenberg equation

where L is the Liouville operator and N is the total
number of nuclear spins in the sample. As was shown
in [27], the problem of calculating FID (3) is com�
pletely equivalent to the solution of almost infinite
(dimension on the order of 1023) system of differential
equations:

Heff 1/4–( ) bij S+iS+ j S–iS– j+( ).
i j≠

∑=

A0 t( )
Tr Sx t( )Sx{ }

Tr Sx
2{ }

������������������������� Tr S+ t( )S–{ }

Tr S+S–{ }
��������������������������,= =

A0 t( ) i2nM2n

2n!
�������t2n

.

n 0=

∞

∑=

Sxii 1=
N∑

dSx/dt i H Sx,[ ] iLSx,= =

(5)

with the initial conditions A0(0) = 1, An(0) = 0, n ≥ 1.
The functions {Aj(t)} are “multicommutator” (multi�
ple particle) time correlation functions [27]:

(5a)

Here, the jth power of the Liouville operator tradition�
ally means the calculation of j commutators:

In the above expressions, the angular brackets mean
the statistical average, which in the accepted high�
temperature approximation means the calculation of

trace [25, 27]. The parameters { }, which determine
the solution of the system, are unambiguously related

to the moments of the absorption line [27]:  =

Dn ⎯ 1Dn + 1/  and {Dn} are the determinants having
the form

For convenience, we present the expressions for sev�
eral first coefficients:

Here and below, we set the nuclear spin S = 1/2 with�
out restriction of generality [28].

A· 0 t( ) ν0
2A1 t( ),=

A· 1 t( ) A0 t( ) ν1
2A2 t( ),–=

…

A· n t( ) An 1– t( ) νn
2An 1+ t( ),–=

…

Aj t( )
j Sx t( )〈 〉

j j〈 〉
�����������������,=

j| 〉 i( )jLj 0| 〉 i( )j k Lj 0〈 〉
k k〈 〉

���������������� k| 〉,
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j 1–
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The experimentally observed intensity of MQ
coherences is determined by the time correlation
function:

(6)

Here, U(t) is the operator of evolution with the Hamil�
tonian of the internal interaction H from Eq. (2) (or
this interaction transformed by radiofrequency pulses
to a certain new nonsecular effective Hamiltonian,
e.g., Heff from Eq. (3)) and Uϕ = exp(iϕSx) is the oper�
ator of rotation by the angle τ about the x axis. For gen�
erality, we introduce the notation τ for evolution in
“reverse time.” Below, we set t = τ and Γφ(t) ≡ Γφ(t, t)
according to the experimental conditions.

The direct calculation of four�spin time correlation
functions in Eq. (6) is a very difficult and cumbersome
problem, which is also significantly complicated by
the necessity of an additional Fourier transform for the
determination of desired amplitudes:

In view of the mentioned circumstances, the indicated
problem was solved only for certain specific models [6,
9, 10, 29], which have exact solutions. Even in these
situations, numerical calculations were often neces�
sary for obtaining the final result.

3. EXPANSION OF TIME CORRELATION 
FUNCTIONS IN THE COMPLETE SET 

OF ORTHOGONAL OPERATORS 
AND INTENSITIES OF MULTIPLE�QUANTUM 

COHERENCES

In [29], we solved the problem under discussion for
the exactly solvable model with an infinite radius of
interaction (bij = b = const for all i and j values in
Hamiltonian (2)). In [30], we calculated only the sec�
ond derivative with respect to ϕ at ϕ = 0 in Eq. (6), i.e.,
the second moment of time correlation function (6),
which presents the total rate of an increase in the num�
ber of correlated spins in a MQ experiment as a func�
tion of the time. To solve this very difficult and cum�
bersome problem, the leading sequences of contribu�
tions (diagrams) were separated in the expansion of
the four�spin correlation function in the power series
of time and were summed in the approximation of lat�
tices of a large spatial dimension (the dimension of
space is d  ∞). To solve the problem formulated in
the Introduction, we use the analysis of the amplitudes
of the expansion of Sx(t) in the complete set of
orthonormalized operators (5a) [27]:

(7)

Γϕ t τ,( )
Tr U+ τ( )UϕU t( )SxU+ t( )Uϕ

+U τ( )Sx{ }

Tr Sx
2{ }

��������������������������������������������������������������������������.=

gn t( ) 1
2π
����� dφ inφ( )Γφ t( ).exp

π–

π

∫=

Sx t( ) Aj t( ) j| 〉.
j 0=

∞

∑=

Such expansions were often used in nonequilibrium
statistical mechanics and previously (see, e.g., [30–
35]) to describe various time correlation functions. It
is easy to see that Eq. (7) can be represented in the
form of the sum of operators such that each term of
this sum refers to a cluster with K spins (cf. Eq. (1a)):

(8)

We note that contributions to the orthogonal operator
with the number j in Eq. (7) can obviously contain
maximum j + 1 spin operators and, correspondingly,
j + 1 summation indices over the lattice [30]. Indeed,
the transition from the operator |j – 1〉 to the operator
|j〉 by commutation with Hamiltonian (2), which
results in the addition of no more than one spin oper�
ator (lattice index) in each step. The operator |j〉 obvi�
ously contains contributions with a smaller number of
spins (lattice indices). Therefore, if j ≥ K, this vector
can also make contributions to the K�spin cluster.
However, these contributions can be neglected
because they are small. Indeed, they increase at small

times as tj. At large times (t > T2 = 1/  ∝ 1/Z1/2,
where Z is the number of approximately equivalent
nearest neighbors), the functions Aj(t) decrease rap�
idly. Consequently, their amplitude decreases as Aj(t) ~
Z–j/2 with an increase in the number. Thus, compari�
son of Eqs. (7) and (8) indicates that, at least for sys�
tems where the number of neighbors is large,

(9)

The substitution of Eq. (8) into time correlation
function (6) gives

(10)

Since Eq. (9) is valid for a large number of equivalent
nearest neighbors (see [30]), only terms with K = j
retain in Eq. (10), because the rotation operator Uϕ

does not change the number of spin operators in the
vector. As a result,

(11a)

where

(11)

At ϕ = 0, we obtain

(12)

and the condition

Sx t( ) ρK t( ).
K 1=

∞

∑=

M2
1/2

ρK t( ) AK 1– t( ) K 1–| 〉.≈

Γϕ t( )

Tr Uϕ ρK t( )Uϕ

+ ρj t( )
j

∑
K

∑
⎩ ⎭
⎨ ⎬
⎧ ⎫

Tr Sx
2{ }

������������������������������������������������������� .=

Γϕ t( ) Γϕ K, t( ),
K

∑=

Γϕ K, t( )
Tr UϕρK t( )Uϕ

+ρK t( ){ }

Tr Sx
2( )

������������������������������������������� .=

P K t,( ) Γ0 K, t( )
AK 1–

2 t( ) K 1–〈 | K 1–| 〉

Tr Sx
2( )

������������������������������������������,= =
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is satisfied. A new notation was introduced in Eq. (12)
in order to emphasize that P(K, t) is in essence a distri�
bution in the number of clusters with K spins. The sub�
stitution of ρK(t) (9) in the form of the sum with certain
orders of coherence,

where

into Eq. (11) yields

(13)

where

(14)

It is taken into account in Eq. (13) that the contribu�
tion to the trace from the terms where the coherence
of the second operator differs from –n is zero. Thus,
Eq. (13) specifies the required Fourier series where the
coefficients are the desired intensities of the multi�
quantum coherences.

Following the traditional phenomenological model
[1, 2], we take Gaussian shape (1) for the distribution
of coherences of various orders of the cluster with K
spin in the form

(15)

Thus, taking into account Eqs. (11a) and (13), we
obtain

(16)

The substitution of Eqs. (12) and (15) into Eq. (16)
gives the final expression

(17)

4. ORDER DEPENDENCE OF THE INTENSITY 
OF MULTIPLE�QUANTUM COHERENCES

According to Eq. (17), to calculate the profile of
coherences as functions of the order, it is necessary to
determine the distribution function in the number of
clusters with K spins, P(K, t), or, according to Eq. (12),

the amplitudes Aj(t) and parameters { }. The exact
calculation of these parameters is very difficult and was
performed only for several simple model systems. For

Γϕ 0= t( ) Γϕ 0 K,= t( )
K 1=

∞

∑ P K t,( )
K 1=

∞

∑ 1= = =

ρK t( ) ΣnρKn t( ),=

ρKn t( ) AK 1– t( ) K 1–| 〉n,=

Γϕ K, t( )
Tr iϕn( )ρKn t( )ρK n–( ) t( )exp{ }

Tr Sx
2( )

�����������������������������������������������������������
n

∑=

=  Γ0 K, t( ) iϕn( )gKn,exp
n

∑

gKn

K 1 K– 1–〈 〉n

K 1 K– 1–〈 〉
�����������������������������.=

gKn
1

πK
��������� n2

K
����–⎝ ⎠

⎛ ⎞ .exp=

g n t,( ) Γ0 K, t( )gKn.

K

∑=

g n t,( ) 1

πK
��������� n2

K
����–⎝ ⎠

⎛ ⎞P K t,( ).exp

K 1=

∞

∑=

νj
2

the general case, the authors of [33, 36] presented only
the relation between the shape of the wing of the Fou�
rier spectrum of the time correlation function A0(t),

(18)

and the dependence of the parameters { } on their
number j,

(19)

Here, the growth rate λ [33, 36] characterizes the aver�

age asymptotic growth of the sequence { } and ω0 is
the frequency unit in the model under consideration
[33, 36]. The corrections to Eq. (19) with smaller
exponents are responsible for the form of the pre�
exponential factor in Eq. (18).

The experimental measurements showed that the
wings of the NMR spectra and the spectra of other
correlation functions in crystals [37–41] are well
described by a simple exponential corresponding to
λ = 2 in Eq. (18). At the same time, a quadratic depen�
dence of parameters (19) was obtained from the first
eight known moments in [36, 42]. Finally, for the case
λ = 2, the theory developed in [30] predicts the expo�
nential growth of the average size of the cluster of
correlated spins with the time, which is in good
agreement with the results of the MQ experiments
[11–14, 24].

The theoretical correlation functions with the sim�
ple exponential wings of the spectrum were obtained
in the self�consistent fluctuating field approximation,
which is a development of Anderson’s statistical the�
ory [25]. Anderson demonstrated that the fluctuating
resonance frequency of the spin at a large number of
neighbors can be described by a Gaussian random pro�
cess. On the basis of this property, Blume and Hubburd
[43] proposed the following equation for a paramag�
netic spin system with the isotropic Heisenberg inter�
action:

(20)

where

(21)

are the autocorrelation functions of different projec�
tions of one of the spins, which coincide with each
other because the Hamiltonian is isotropic. The time
in Eq. (20) and formulas below in this section is mea�
sured in units of the inverse square root of the second
moment of the function A0(t). Equation (20) physi�
cally means that the spin rotates in a time�dependent
local field produced by surrounding spins; the correla�
tion function of this spin is expressed in terms of the

Φ ω( ) ω/ω0
2/λ–{ }exp∝

νj
2

νj
2 ω0

2jλ.∝

νj
2

Γ1 t( ) t τ–( )Γ1 τ( ) τd

0

t

∫–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp=

Γ1 t( ) Γx t( ) Γy t( ) Γz t( ),= = =

Γα t( )
Tr Sαi t( )Sαi{ }

Tr Sαi
2{ }

����������������������������, α x y z,, ,= =
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autocorrelation functions of individual spins. Equa�
tion (20) has the simple solution

(22)

whose Fourier transform has the form

(23)

It is easy to see that the continuation of A0(t) = Γ1(t)
(5) in the complex plane of the variable t has second�
order poles at the points of the imaginary axis satisfy�
ing the condition

. (24)

The Hamiltonian of the secular part of the dipole–
dipole interaction given by Eq. (2) is anisotropic with
respect to the spin components parallel and perpen�
dicular to the direction of the external magnetic field.
In the self�consistent fluctuating field approximation,
the autocorrelation functions Γα(t) of these spin com�
ponents are described by equations of different forms.
The first variant of such equations was derived in [44].
In [45], it was shown that the self�consistent fluctuat�
ing field approximation is exact in the limit of infinite�
dimensional lattices, d  ∞, and self�consistent
equations were refined. It was established that the
nearest singular points of their solutions are second�
order poles and their coordinates in the imaginary�
time axis were found [37, 45]. At the transition from
infinite�dimensional lattices to three�dimensional lat�
tices, the coordinates of singular points increase owing
primarily to strong correlation in the motions of
neighboring spins; as a result, multiple interactions of
neighboring spins and loops of couplings should be
taken into account in lattice sums for moments. The
found singular points determine the exponential wings
of correlation functions. The results of calculation of
the corresponding corrections to the coordinate of a
singular point [46] demonstrated good agreement with
the experimental wing of the NMR spectrum [40].

Since the dipole–dipole interaction is a long�range
interaction, we developed a physically more transpar�
ent method to take into account strong correlations in
the motion of nearby spins [47–50]. The region
around any spin is separated into two regions: nearby
and remote spins. The nearby spins form the so�called
“cell,” where the number of spins depends on the ori�
entation of the crystal in the magnetic field [47, 48].
The function A0(int)(t), which well describes the oscil�
lations of FID [51] responsible for the central part of
the NMR spectrum, was found with allowance for the
correlated motion of the spins of the cell. Motions of
remote spins are assumed independent of the spins of
the cell; as a result, the total free precession relaxation
can be written as the product of contributions from
two regions [47]:

(25)

A0 t( ) 1

t/ 2( )cosh
2

�������������������������,=

Φ ω( ) 1

πω/ 2( )sinh
����������������������������.=

tk
iπ 2k 1+( )

2
���������������������, k 0 1± 2± …, , ,= =

A0 t( ) A0 int( ) t( )A0 ext( ) t( ),=

where

(26)

is the FID component that is caused by the spins of
remote environment and is described within Ander�
son’s statistical theory [25]. The motion of each spin
of the remote environment is in turn determined pre�
dominantly by the interaction of the spin with the
spins in the same cell, and the correlation function of
the field from remote spins k(t) can be self�consis�
tently expressed in terms of the autocorrelation func�
tions of spins. Consequently, function (26) ensures the
correct wings of the NMR spectrum and an unlimited
increase in parameters (19) with λ = 2, whereas the
oscillating function A0(int)(t) determined by the spins of
the cell has a finite spectrum and the corresponding
parameters νj cease to increase (are frozen) beginning
with a certain number [35, 49, 50].

A linear increase in parameters (19) with λ = 1,

(27)

corresponds to Gaussian frequency dependence (18).
Such a situation occurs in an exactly solvable model
with a fixed dipole–dipole coupling constant inde�
pendent of the angles and distances (van der Waals
model) for which it was found [29]:

(28)

Furthermore, a Gaussian dependence was found for
the autocorrelation function of the transverse spin
components in an xx chain of spins [52]. In this case,
the autocorrelation functions of the z component in
the chain are described by the Bessel functions and
have a limited spectrum and “frozen” parameters νj.

We now analyze the profiles of MQ spectra corre�
sponding to different cases of an increase in parame�
ters (19). As was shown above, a quadratic increase is
characteristic of real systems. Unfortunately, analyti�
cal solutions are unknown for equations for autocorre�
lation functions in the case of the anisotropic dipole–
dipole interaction; for this reason, for analysis, we take
function (22) with the known amplitudes [34]

(29)

and parameters

(30)

Taking into account normalization (see Eq. (12)), we
find

(31)

To derive Eq. (31), we used the general relation [27]

A0 ext( ) t( ) a2 t τ–( )k τ( ) τd

0

t

∫–
⎩ ⎭
⎨ ⎬
⎧ ⎫

exp=

νj
2 j 1+( )ν0

2
,=

A0 t( ) t2
/2–( ).exp=

Aj t( ) 1

t/ 2( )cosh
2

������������������������� t/ 2( )tanh
j

j!
������������������������=

νj
2 j 1+( ) j 2+( )ν0

2
.=

P K t,( ) t/ 2( )tanh
2( )

K 1–
K

t/ 2( )cosh
4

��������������������������������������� .=
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(32)

The substitution of Eq. (31) into Eq. (17) gives

(33)

We note that, since summation in Eq. (33) begins with
zero rather than with unity, the number K is replaced
by j + 1. The beginning of summation with zero allows
the transition to the “traditional” form of integral in
Eq. (33).

Although sums in Eqs. (33) can be quite simply cal�
culated numerically (the results will be presented
below), the approximate replacement of the sum by an
integral, which is valid at least for large K values, was
performed to obtain an analytical estimate of Eq. (33).
This estimate can be obtained by the saddle�point
method [53]. Thus, for the case under consideration,
we find the exponential shape of the wings of the MQ
spectrum as a function of the order of coherence:

(34)

Here,  = sinh2(t/ ) is the average size of a cluster
of correlated spins.

As the second example with a quadratic increase in
parameters (19), we take the function

(35)

for which

(36)

The substitution of Eq. (36) into Eq. (17) yields

(37)

The saddle�point method gives the following esti�
mate for Eq. (37):

(38)

i.e., the dependence on n is exponential, as in the pre�

ceding case. Here,  = sinh2(t).

K 1–〈 | K 1–| 〉

Tr Sx
2( )

�������������������������� νj
2
.

j

K 2–

∏=

g n t,( ) P j 1+ t,( ) n2
/ j 1+( )–{ }exp

2π j 1+( )
�����������������������������������

j 0=

∞

∑=

≈ djP j 1+ t,( ) n2
/ j 1+( )–{ }exp

2π j 1+( )
����������������������������������� .

0

∞

∫

g n t,( ) K n2
/2( )

1/2

t/ 2( )cosh
4

������������������������� 2 n / K–( ).exp∝

K 2

A0 t( ) 1

t( )cosh
���������������,=

P 1( ) K t,( ) t( )tanh
2( )

K 1–

t( )cosh
2

���������������������������.=

g 1( ) n t,( ) P 1( ) j 1+( ) n2
/ j 1+( )–{ }exp

2π j 1+( )
�����������������������������������

j 0=

∞

∑≈

≈ djP 1( )

0

∞

∫ j 1+( ) n2
/ j 1+( )–{ }exp

2π j 1+( )
����������������������������������� .

g 1( ) n t,( ) K/2( )
1/2

tcosh
2

���������������� 2 n

K
�������–⎝ ⎠

⎛ ⎞ ,exp∝

K

Finally, we obtain the corresponding estimate for
the Gaussian case given by Eqs. (27) and (28) for
which

(39)

(40)

The MQ spectrum g(2)(n, t) is given by Eq. (37) with
the corresponding replacement of P(1) by P(2). Then,
the saddle�point method for large K values gives

(41)

where the dependence exp(–0.5|n|ln|n|) is not expo�

nential, but is very close to exponential. Here,  = t2.
The numerical calculations allowed the determina�

tion both of the error at the replacement of summation
in Eqs. (33) and (37) by integration and of n values at
which a transition to an exponential asymptotic
behavior occurs. For each of three above functions

(1/cosh2(t/ ), 1/cosht, and exp(–t2/2)), the calcu�
lations were performed for three times, 0.2, 1, and 3,
in units of the inverse square of the second moment.
Some of the results of the calculations are shown in
Figs. 1–3. We note that sums are adequately approxi�
mated by integrals in all cases, but it is noteworthy that
the best agreement was reached at large values of the
time parameter. This also refers to the transition of the
spectrum to the asymptotic exponential regime.

5. DISCUSSION OF THE RESULTS

According to the analytical and numerical calcula�
tions, the order dependence of the profile of the inten�
sities of MQ coherences has a Gaussian central part
and quite rapidly approaches exponential wings (see
Fig. 2). A similar dependence was predicted for some
model systems, e.g., nanopores [6, 10] and for the
exactly solvable model with an infinite radius of inter�
action [29, 54]. The exponential wings of the MQ
spectrum as a function of the order were apparently
observed in experimental works [23, 24].

The above consideration indicates that spins of the
remote environment of any individual spin are funda�
mentally responsible for the formation of the wings of
the spectrum of interest. The main processes are cer�
tainly developed because of complex perturbations in
the cell of each spin; the consequence of these pertur�
bations is the appearance of rapidly grown phase
(apparently) correlations involving large spatial
regions of the crystal, which in turn ensures, in partic�

Aj t( ) tj

j!
�� t2

2
��–⎝ ⎠

⎛ ⎞ ,exp=

P 2( ) K t,( ) t2 K 1–( )

K 1–( )!
���������������� t2–( ).exp=

g 2( ) n t,( ) 1

t2( )exp
�������������� 2 n

1 1/ n /K( )ln+
�������������������������������–

⎩
⎨
⎧

exp∝

– 0.5 n 1 1

n /K( )ln
�������������������+ n

2eK
��������ln

⎭
⎬
⎫

K

2
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ular, the process of exponential growth of clusters of
correlated spins with the time [11–14, 30].

As was indicated in [50], the closeness of the expo�
nential relaxation constant of the FID component
cause by the spins of the remote environment to the
exponential growth constant of the number of corre�
lated spins, as well as the loss of the dependence of the
shape of the time correlation functions on the initial
conditions observed in experiments [55] at least for the
lowest�order time correlation function, is not acci�
dental and follows from the exponential randomiza�
tion of the dynamic system because of its instability
[16]. As was often emphasized in the literature (see,
e.g., [16] and references therein), the connection
between statistical mechanics and physics of chaotic
systems is one of the most fundamental, but contra�
dictory current problems of theoretical physics. Statis�
tical mechanics is based on probabilistic (statistical)
laws characteristic of the microscopic scale of a multi�
particle system. At the same time, the relation of these
laws to the actual (in the mathematical meaning) the�
ory of chaos, which is well justified and tested for sys�
tems with a small number of degrees of freedom and is
based on Lyapunov’s theory of stability, is still unclear:

in systems with a macroscopic number of degrees of
freedom, it is very difficult to separate the effects of
“true” chaos from the effects of randomization
because of the multiparticle character of the system.
One of the most characteristic manifestations of this
regime is the mutual correspondence between the
exponential damping component of FID and the
exponential increase in the number of correlated spins
at the development of MQ multiple spin coherences
under the conditions of MQ NMR, which is a mani�
festation of the dynamic instability in such systems.

The growth (damping) constant is a Lyapunov
exponent, which corresponds to the known fact: these
constants for a dynamic system always exist pairwise
(–λi, λi) [16]. In the problem considered in this work,
the same constant and the same time correlation func�
tion given by Eq. (21) are of primary importance in the
study of basic dynamic processes that should be
described for the investigation of interest and should
be taken into account for the adequate description of
the spectrum under study. Thus, the universal (irre�
spective of the crystal structure [6, 10–12, 24, 54] of
the object under investigation) character of the order
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Fig. 1. Numerical results obtained with integration and
summation in Eqs. (33) and (37). The solid line and dia�
monds are obtained with summation and integration in
Eq. (33), respectively, for a time of 0.2 in units of the square
root of the second moment. The dotted line and circles are
obtained with summation and integration in Eq. (37),
respectively, for a time of 1. The dashed line and crosses are
obtained with summation and integration in Eq. (37),
respectively, for a time of 3.
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Fig. 2. Spectra obtained by the saddle�point method and
by complete summation. The solid line and diamonds are
obtained by summation according to exact formula (33)
and by the saddle�point method (34), respectively, for a
time of 0.2. The dotted line and circles are obtained by
summation according to exact formula (33) and by the
saddle�point method (34), respectively, for a time of 1. The
dashed line and crosses are obtained by summation
according to exact formula (33) and by the saddle�point
method (34), respectively, for a time of 3.
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dependence of the profile of intensities of MQ coher�
ences is possibly due to the development of dynamic
chaos in the paramagnetic spin system.
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