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Abstract—The band structure of La2CuO4 in antiferromagnetic and paramagnetic phases is calculated at
finite temperatures by the multielectron LDA+GTB method. The temperature dependence of the band spec-
trum and the spectral weight of Hubbard fermions is caused by a change in the occupation numbers of local
multielectron spin-split terms in the antiferromagnetic phase. A decrease in the magnetization of the sublat-
tice with temperature gives rise to new bands near the bottom of the conduction band and the top of the
valence band. It is shown that the band gap decreases with increasing temperature, but La2CuO4 remains an
insulator in the paramagnetic phase as well. These results are consistent with measurements of the red shift of
the absorption edge in La2CuO4 with increasing temperature.
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1. INTRODUCTION
The complex phase diagram of HTSC cuprates is

still a subject of both theoretical and experimental
studies. In the normal phase, the nature of the
pseudogap state is unclear. The decisive role of the
spin f luctuations of the short-range antiferromagnetic
(AFM) order is suggested by many results [1]. How-
ever, the authors of some recent papers underline the
important role of local dynamical charge f luctuations
and distortions [2–5] and the possible existence of
hidden order parameters [6]. In our opinion, the prob-
lem of normal and superconducting states in HTSC
cuprates has remained open almost for 30 years for the
following reasons. First, all the subsystems of the crys-
tal–electronic, magnetic and crystal lattice–are com-
plex and interrelated. Second, the methods of the
standard quantum theory of solids based on the zero
approximation of noninteracting electrons followed by
subsequent consideration of their interaction using
perturbation theory are invalid due strong electron
correlations (SEC).

The electronic structure of cuprates has been cal-
culated by different methods taking SEC into account
in the simple Hubbard model or the t–J model [7–
10]. The hybrid LDA+GTB method, combining cal-
culations in a multielectron, multiband p–d model in
the generalized tight-binding (GTB) method [11] with
calculation of model parameters in the ab initio LDA
(Local Density Approximation) [12], takes into
account both the band structure of cuprates and SEC
effects. The concentration dependence of the band

structure of La2–xSrxCuO4 was described by the
LDA+GTB method, and it was shown that transition
from a doped Mott–Hubbard insulator at small x to a
Fermi liquid system at large x involves two Lifshitz
quantum transitions with a change in the Fermi sur-
face topology [13]. According to LDA+GTB calcula-
tions [14, 15], the four hole pockets of a doped insula-
tor centered at (π/2, π/2) increase and intersect at the
Brillouin zone boundary at xc1 = 0.15, and for x > xc1,
two surfaces exist around the point (π, π). The smaller
surface collapses at the point xc2 = 0.24, and for x > xc2,
only one large surface exists, which is typical of the
Fermi liquid state. Qualitatively similar Fermi surfaces
were also obtained at different concentrations in [8,
10]; however, the Lifshitz transitions were not dis-
cussed in these papers. Study of electronic properties
near Lifshitz transitions showed that a logarithmic
singularity in the density of states N(εF) at x = xc1
ensures the maximum temperature of the supercon-
ducting transition, while the transition at the point xc2
corresponds at T = 0 K to the transition from the
pseudogap state to the Fermi liquid state [16, 17]. Both
these concentrations correspond to singularities in the
phase diagram: the optimal doping point (0.15) and
the point of intersection of the pseudogap temperature
T*(x) with the axis T = 0 K [18].

The strong concentration dependence of the band
structure taking into account SEC appears due to the
presence of the occupation numbers of local states
with one or two holes in a unit cell in multielectron
approaches. The occupation numbers depend not
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only on the doping level but also on temperature.
Therefore, the electronic structure will also depend on
temperature. Experimentally, this is probably mani-
fested in the dependence of temperature T* on doping.
The temperature dependence of the band structure of
cuprates has been poorly studied theoretically. In this
paper, we consider the temperature dependence of the
band structure of La2CuO4 in antiferromagnetic and
paramagnetic states. The splitting of single-hole S =
1/2 states over the spin projection in the AFM phase is
proportional to the magnetic moment  of the sub-
lattice and decreases with heating. We find the tem-
perature dependence of  from the effective
Heisenberg model. As temperature increases, new
states in the valence and conduction bands acquire the
spectral weight and dispersion. New bands that have
split from the top of the valence band and the bottom
of the conduction band undergo considerable changes
with a further increase in T. Above TN, the dispersion
becomes similar to a paramagnetic spectrum at T =
0 K calculated by the LDA method [19].

In Section 2, we describe the features of the
method and present the Hamiltonian of the three-
band p–d model, the Green’s function in general
form, and the equations for its poles. In Section 3, we
show the evolution of the band structure and density
of states with increasing temperature and demonstrate
the temperature dependence of the band gap.
Section 4 presents the temperature dependences of
isoenergetic surfaces obtained for different regions in
the valence and conduction bands.

2. CALCULATION OF THE BAND 
STRUCTURE AT FINITE TEMPERATURES
We consider HTSC cuprates by the example of an

undoped single-layer La2CuO4 compound. The elec-
tronic structure of these compounds near the Fermi
level is formed by the dx orbitals of copper and px,y
orbitals of oxygen in the CuO2 plane. Therefore, we
will describe interactions in this system by using the
three-band Emery model,

 (1)

Here,  and  are the hole annihilation operators
with the spin projection σ at the copper atom f and
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oxygen atom g, εd is the on-site energy for a hole at Cu
and εp – at O; tpd is the hopping integral between dx and
p orbitals in the CuO2 plane, tp is the hopping integral
between planar oxygen orbitals; Ud and Up are Cou-
lomb interactions between two holes at copper and
oxygen atoms, respectively; and Vpd is the intersite
Coulomb interaction. Coefficients Rg and Mg depend
on the overlap sign of wavefunctions on copper and
oxygen atoms. Rg = 0 for atoms g = (gx – ax/2, gy), (gx,
gy – ay/2) and Rg = 1 for g = (gx + ax/2, gy), (gx, gy +
ay/2), where ax and ay are lattice constants. The
parameters of the Hamiltonian were calculated in [20]
by the LDA+GTB method.

The GTB method involves a few stages: the exact
diagonalization of the unit cell, the construction of
quasiparticle excitations between the eigenstates of the
cell characterized by Hubbard operators and the clus-
ter form of perturbation theory. Hamiltonian (1) is
divided into the intracluster part containing all inter-
actions inside the CuO4 cluster and the Hamiltonian
of intercluster interactions. The diagonalization of the
intracluster Hamiltonian in the bases with the num-
bers of holes nh = 0, 1, 2 allows us to obtain exactly the
local many-particle states and their energies. Since for
x = 0 and T = 0, a hole propagates in the CuO2 plane
in the background of the long-range antiferromagnetic
order, the local states , and  of the hole with
the opposite spin projections in a cluster with nh = 1
will be split (Fig. 1). The gap 2ΔAF between these states
is determined by the molecular Weiss field ΔAF =

ZJ  of the antiferromagnetic type, where Z is the
number of nearest neighbors (Z = 4 for a CuO2 layer)
and J is the superexchange interaction strength. The
superexchange interaction appears in the same initial
Hamiltonian of the p–d model in second-order per-
turbation theory in tpd/U [21], as in the Hubbard
model [22]. The influence of temperature on the aver-
age value  of the spin momentum projection on
the z axis can be self-consistently calculated in the
mean-field approximation in the Heisenberg model
from the equation

 (2)

Note that the long-range antiferromagnetic order in
HTSC cuprates is caused by the quasi-two-dimen-
sionality of their magnetic system with the exchange
integral J in the plane and the interplane exchange
integral J⊥ ! J. The introduction of J⊥ in spin-wave
theory makes it possible to obtain the expression TN ~
J/ln(J/J⊥), which tends to zero for J⊥ → 0. Near the
ground state, a two-sublattice magnetic structure
exists. This structure determines the dispersion law of
a hole in undoped cuprates. In this sense, our expres-
sion (2) specifies the method for simulating a two-
sublattice structure. We can add J⊥ to this expression,
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but this will not result in any considerable change in
the theory, and the Neél temperature TN ~ (4J + 2J⊥)
obtained from (2) is incorrect. In this paper, we do not
propose a self-consistent description of the magnetic
order and electronic structure. Instead, we select the
value of J so that the Neél temperature in the mean-
field theory would be consistent with its experimental
value (TN = 325 K for La2CuO4). This approach makes
it possible to qualitatively describe the change in the
electronic structure with changing magnetic order, but
it cannot give the quantitative temperature depen-
dences of the electronic structure parameters.

The occupation of hole states with opposite spin
projections will depend on temperature,

 (3)

where G is the index of a sublattice (A or B) and σ is the
spin projection in the one-hole state.

Transitions between the eigenstates  and  of a
CuO4 cluster with Δnh = 1 are quasiparticle Fermi-

type excitations described by Hubbard operators .
Quasiparticle transitions between the nh = 0 and nh = 1
states form upper Hubbard band (UHB) of the elec-
trons, which is the conduction band, while lower
Hubbard band (LHB) of the electrons, which is the
valence band, is formed by transitions between the
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nh = 1 and nh = 2 states. The local quasiparticle exci-
tations are used below as unperturbed states in con-
structing the cluster form of perturbation theory rep-
resenting the intercluster Hamiltonian in terms of
Hubbard operators. The total Hamiltonian in the rep-
resentation of Hubbard operators has the form

 (4)

where ε1qσ is the energy of the one-hole  state with the
spin projection σ and ε2p is the energy of the two-hole

 state, γλ(pq) = , λ denotes either the copper dx
orbital or the molecular oxygen b1g orbital. The values of
structural factors μfg and νfg are given in [11].

We obtain the dispersion of quasiparticle exci-
tations by using the equation of motion method for the
Green’s function ,
where f and g are the cells of magnetic sublattices G
and G'. The total Green’s function in matrix form is

 (5)

The decoupling of the equation of motion for Green’s
function (5) is performed in the Hubbard I approxi-
mation. As a result, we obtain the Dyson equation

 (6)

where  is the local Green’s
function of the CuO4 cluster with quasiparticle exci-
tation energy Ω(pq) and diagonal elements Ff(pq) =

 of the occupation factor matrix (or end

factors in the diagrammatic technique [7]) and  is
the hopping integral matrix tpq, mn(k) =

 determined by the sum of
matrix elements of p–d and p–p hoppings. The poles
of Green’s functions (6) are determined from the
equation

 (7)

3. BAND STRUCTURE OF La2CuO4 
AT FINITE TEMPERATURES

The band structure at T = 0 K is shown in Fig. 2a.
Each of the Hubbard bands is formed by the dispersion
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Fig. 1. Eigenstates of a CuO4 cluster for nh = 0, 1, 2 (hori-
zontal straight lines) of sublattice A in the low-energy
region. The ground states of the Hilbert space sector with
nh = 1 in two magnetic sublattices A and B have opposite
spin momentum projections. The solid straight lines drawn
between eigenstates show quasiparticle excitations with the
nonzero spectral weight. The dashed straight lines show
quasiparticle excitations with the zero spectral weight at
T = 0.
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Fig. 2. Band structure and electron density of states at temperatures T = 0 K (a), 150 K (b), 250 K (c), 300 K (d), and 325 K (e).
The spectral weight of states with different k is proportional to the line intensity.
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of one quasiparticle excitation shown by solid curves in
Fig. 1. The valence electron band (the hole conduction
band) at T = 0 K has a maximum (minimum) at the
point k = (π/2, π/2), which is consistent with the results
of earlier theoretical studies of the electronic structure
of cuprates [23–26]. Because the occupation of excited
one-particle states, in particular, the nearest state with
the opposite spin projection, is close to zero, the quasi-
particle excitations involving these states are dispersion-
less and their spectral intensity is zero. The spectral
intensity of one-electron excitations is determined by
the spectral functions of quasiparticles
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Each of the spectral functions Aσ gives the intensity for
particles with a certain spin. The dispersion of parti-
cles with opposite spin projections are identical, but
they have considerably different spectral weight distri-
butions in the Brillouin zone. At T = 0 K, A↑(k, E) and
A↓(k, E) are antisymmetric with respect to the bound-
ary of the antiferromagnetic Brillouin zone. Note that,
unlike standard perturbation theory, the spectral
weight of Hubbard fermions (quasiparticles) depends
on the wave vector and temperature and can take frac-
tional values.

The increase in temperature leads to two effects.
First, a decrease is observed in the magnetization of
sublattices and the splittings of states with opposite
spin projections in each of the sublattices. Second, as
temperature increases, the occupation of excited states
occurs, the first excited state in the one-hole spectrum



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 121  No. 3  2015

TEMPERATURE DEPENDENCE OF THE ELECTRONIC STRUCTURE 461

being the state with the spin projection opposite to its
direction in the ground state. Quasiparticle transitions
involving the occupied states acquire nonzero inten-
sity and dispersion, and the interband interaction
becomes possible.

These effects lead to considerable reconstruction of
the band structure with increasing T. The dispersion-
less levels with the zero spectral weight at T = 0 K
located within the LHB and UHB acquire the spectral
weight and a weak dependence on k. The interband
interactions produce splittings in the initial LHB and
UHB (Fig. 2b), separating the top of the valence band
and the bottom of the conduction band from broad
Hubbard bands. The splitting is manifested in the den-
sity of states in the form of additional peaks. Note that
at any temperature up to the magnetic phase transi-
tion, there exist two points at the boundary of the anti-
ferromagnetic Brillouin zone at which the dispersion
surfaces of the split bands are touching.

As temperature further increases, splittings
increase and the width of the subbands of the top of
the valence band and the bottom of the conduction
band decreases. For the top of the valence band, the
largest spectral weight corresponds to the states of the
flat band in the region (π/2, π/2) – (π, π), while for
the conduction band, in the regions (0, 0) – (π/2, π/2)
and (π, 0) – (0, 0). Near T = 238 K, the narrow band
“reverses” (Fig. 2c) so that the local maximum of the
valence band at k = (π/2, π/2) transforms to the local
minimum, while in the conduction band, on the con-
trary, the minimum at k = (π, 0) transforms to the
maximum (Fig. 2d). Such changes occur due to the
tendency to dispersion degeneracy at the points of the
k space on the antiferromagnetic Brillouin zone
boundary, at the point of transition to the paramag-
netic phase. For T = TN, the one-hole states with both
spin projections become equally probable and the
band structure takes the form typical for the paramag-
netic phase with maxima in the vicinity of k = (π, π)
(Fig. 2e). Figures 2a–2e well demonstrate the redistri-

bution of the spectral weight with temperature from
the initial antiferromagnetic band to the paramagnetic
band with the formation of a weak shadow band.

The transformation of the top of the valence band
and the bottom of the conduction band with increas-
ing temperature is naturally accompanied by a change
in the density of states. Above 90 K, new peaks appear
in the valence and conduction bands (Fig. 3a). The
intensity of these peaks increases with temperature. In
addition, the width of both bands and the width of the
band gap Eg change. In the interval from zero to 170 K,
the gap width slightly increases due to the approach of
one-hole levels with different spins. At T > 170 K, the
energy of quasiparticles in the conduction band with
wave vectors close to k = (0, 0) decreases and the spec-
tral weight transfers to them. In contrast, the energy of
the top of the valence band increases. All this leads to
a decrease in the band gap width (Figs. 3a, 3b). The
minimum value of Eg is achieved in the paramagnetic
phase. Nevertheless, the band gap remains open in the
entire temperature interval from 0 to TN and far above,
because its width is determined by the charge-transfer
energy Δ = εp – εd and the interatomic Coulomb inter-
action Vpd. Thus, the state of charge-transfer insulator
is preserved in the AFM and PM phases, unlike band
approaches with the formation of a gap due to the
appearance of a spin-density wave (SDW) or LDA+U,
where the band gap is also formed due to spin splitting.
In the SDW and LDA+U scenarios, a metal state
should be observed at higher temperatures, which
contradicts experiments with La2CuO4.

The earlier measurements of the reflectivity and ε2
spectra in an undoped La2CuO4 compound revealed a
red shift of the peak corresponding to the charge trans-
fer between the Zhang–Rice singlet and UHB with
increasing temperature [27–29]. As temperature
increased from 122 K to 447 K, the peak of ε2 shifted
to lower energies by 0.22 eV [27]. Our calculations pre-
dicted a 0.47 eV decrease in the band gap width ΔE in
this temperature range. This small discrepancy can be

Fig. 3. Temperature dependences of the density of states (a) and the band gap Eg (b).
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explained by the influence of temperature on the elec-
tronic structure via other mechanisms. Such mecha-
nisms include the dependence of the interaction
parameters in the system on the temperature expan-
sion of the crystal lattice [29], the temperature depen-
dence of the electron–phonon interaction, and polar-
ization effects. However, without question, the recon-
struction of the electronic structure caused by the
decrease in the magnetization of sublattices with
increasing temperature leads, to a great extent, to a
decrease in the interband excitation energy.

4. EVOLUTION OF ISOENERGETIC 
CONTOURS WITH INCREASING 

TEMPERATURE
Calculation of the temperature dependence of the

Fermi surface in a doped cuprate is a separate problem
that is not considered here. Nevertheless, this evolution
can be estimated qualitatively in the rigid model approx-
imation, as was done at T = 0 K in [30]. Figure 4a shows
the cross sections of the dispersion surface at an energy
of E = –0.8 eV. One can see that at temperatures up to
260 K, these cross sections have the form of hole
pockets centered at k = (π/2, π/2). Fermi surfaces in
the form of hole pockets are inherent in weakly doped
p-type compounds, which is confirmed by ARPES
experiments [31] and experiments with quantum
oscillations [32–34]. The size of pockets decreases
with increasing temperature. At T > 260 K, low-inten-
sity electron pockets appear around points k = (π, 0)
and k = (0, π). Simultaneously, the hole pockets cease
to decrease in size and begin to extend to electron
pockets. The spectral weight of hole and electron
pockets transfers from one side to another so that
when hole and electron pockets join at the magnetic
phase transition point T = TN, a large hole contour
remains around k = (π, π). In addition, a shadow hole
contour centered at point k = (0, 0) is also present; its
intensity, however, is very weak. The Fermi surface
upon electron doping is determined by the isoener-
getic contours obtained by the cross section of the dis-
persion surface in the conduction band. In the case of
E = 1.6 eV, the isoenergetic contour at T = 0 has the
form of two electronic pockets around k = (π, 0) and
k = (0, π), which is consistent with the Fermi surface
in ARPES for a weakly doped n-type Nd2–xCexCuO4
compound [35]. As temperature increases, these
pockets extend to the point k = (π/2, π/2). In the
vicinity of TN, a hole pocket appears centered at k =
(π/2, π/2). The obtained section qualitatively repli-
cates the Fermi surface of optimally doped cuprates in
ARPES experiments with Nd2–xCexCuO4 [35] and
Sm2–xCexCuO4 [36] and in calculations of ARPES
spectra [37]. At the phase transition point, two elec-
tronic pockets and one hole pocket are transformed
into one large electronic contour around k = (π, π).
Similar evolutions of the Fermi surface with doping
and temperature are explained by the fact that both

Fig. 4. Transformation of the isoenergetic contour with
temperature changing from 10 to 325 K for the valence
band (a, b: top view) and the conduction band (c, d: top
view).
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these factors change the spin gap width and the popu-
lation of the ground and excited states. In the case of
doping, additional carriers destroy spin correlations
and produce a redistribution of the spectral weight
among the bands formed by excited states.

The evolution of the isoenergetic contour will be
different for different regions of the dispersion surface.
Figures 5a and 5b show the change in the isoenergetic
contour near the top of the valence band. The contour
of the dispersion surface cross section at an energy of
E = ‒0.56 eV is formed by the separated narrow sub-
band with dispersion different from that of the main
band. At T < 230 K, there exists a small hole pocket
around k = (π/2, π/2) (Figs. 5a, 5b). The pocket closes
at T = 230 K, and then until T = 240 K, the cross sec-
tion is in the band gap. In the interval 240 K < T <
250 K, two hole pockets with different intensities and
centers located between points k = (0, 0), (π/2, π/2), and
(π, π) transform to large hole pockets and two small
electronic pockets around k = (0, 0) and k = (π, π).

The cross section of the dispersion surface in the
bottom of the conduction band at the energy E =
1.44 eV also demonstrates a completely different tem-
perature dependence (Figs. 5c, 5d). At T < 190 K, iso-
energetic contours represent electronic pockets
around antinodal points k = (π, 0) and k = (0, π).
Above 190 K, electronic pockets around k = (0, 0)
and k = (π, π) are added to them, which first simply
increase in size and then at T = 230 K change their
shape and curvature. At T = 250 K, the electronic
pockets merge, thereby forming a hole pocket around
k = (π/2, π/2). The hole pocket grows and transforms
after T = 280 K to two electronic contours around k =
(0, 0) and k = (π, π).

5. CONCLUSIONS

We have described the temperature dependence of
the undoped single-layer La2CuO4 cuprate by the
LDA+GTB method. As temperature increases, the
average spin momentum of the unit cell and the spin
gap between local one-particle states with opposite
spin projections decrease, while the population of
excited states increases. As a result, both the spin
ordering and band structure change with increasing
temperature. The reconstruction of the electronic
structure involves the formation of new bands at the
top of the valence band and bottom of the conduction
band, the redistribution of the spectral weight, and a
change in the band and band gap widths. The mag-
netic phase transition from the antiferromagnetic state
to the paramagnetic state is accompanied by transfor-
mation of the LHB and UHB with maxima at point
k = (π/2, π/2) to pairs in high-intensity and shadow
bands with maxima in the vicinity of point k = (π, π)
and k = (0, 0). Despite the decrease in the band gap
width, it remains open in the entire temperature range
from zero to TN and above. Thus, the La2CuO4 com-

Fig. 5. Transformation of the isoenergetic contour with
temperature for energy near the top of the valence band (a,
b: top view) and the bottom of the conduction band (c, d:
top view).
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pound remains a insulator with a change in its mag-
netic state.
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