
860

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2015, Vol. 121, No. 5, pp. 860–877. © Pleiades Publishing, Inc., 2015.
Original Russian Text © V.V. Val’kov, M.S. Shustin, 2015, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 148, No. 5, pp. 984–1004.

Quantum Renormalizations in Anisotropic Multisublattice Magnets 
and the Modification of Magnetic Susceptibility under Irradiation

V. V. Val’kova and M. S. Shustina,b

a Kirenskii Institute of Physics, Siberian Branch, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036 Russia
b Siberian Federal University, Krasnoyarsk, 660041 Russia

e-mail: vvv@iph.krasn.ru
Received May 29, 2015

Abstract—The dispersion equation of a strongly anisotropic one-dimensional magnet catena-
[FeII(ClO4)2{FeIII(bpca)2}]ClO4 containing alternating high-spin (HS) (S = 2) and low-spin (LS) (S = 1/2)
iron ions is obtained by the diagram technique for Hubbard operators. The analysis of this equation yields six
branches in the excitation spectrum of this magnet. It is important that the crystal field for ions with spin S =
2 is described by the Hamiltonian of single-ion easy-plane anisotropy, whose orientation is changed by 90°
when passing from one HS iron ion to another. The U(N) transformation technique in the atomic represen-
tation is applied to diagonalize a single-ion Hamiltonian with a large number of levels. It is shown that the
modulation of the orientation of easy magnetization planes leads to a model of a ferrimagnet with easy-axis
anisotropy and to the formation of energy spectrum with a large gap. For HS iron ions, a decrease in the mean
value of the spin projection due to quantum fluctuations is calculated. The analysis of the specific features of
the spectrum of elementary excitations allows one to establish a correspondence to a generalized Ising model
for which the magnetic susceptibility is calculated in a wide range of temperatures by the transfer-matrix
method. The introduction of a statistical ensemble that takes into account the presence of chains of different
lengths and the presence of iron ions with different spins allows one to describe the experimentally observed
modification of the magnetic susceptibility of the magnet under optical irradiation.
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1. INTRODUCTION
The analysis of the specific features of magnetic

ordering and phases in quantum spin chains has been
attracting great interest of researchers in view of signif-
icant manifestation of quantum fluctuations in these
systems [1–4]. Recent progress in the field of synthesis
of organic magnetic compounds [5] has opened a pos-
sibility for a detailed experimental investigation of
low-dimensional magnetic structures, including sin-
gle-chain magnets (SCMs). To date, a few tens of
materials of this class have been synthesized that
demonstrate a large variety of physical properties [6,
7]. The common property of these compounds is the
presence of organic ligands that are responsible for the
screening of magnetic interactions between individual
chains and induce strong single-ion anisotropy. In
most cases, this anisotropy is of easy-axis type. There-
fore, at finite temperatures, single-chain magnets have
no long-range magnetic order, and their ground state
represents a set of ordered domains. Such domains are
characterized by the correlation length ζ, which can
reach values of ζ ~ 102–104 Å in real SCM compounds
at temperatures of T ~ 1 K. Due to the strong anisot-
ropy, these domains are also characterized by a sharp
(on the order of tens of angstrom) domain wall and

have excitation energy close to the exchange integral J
between nearest neighbor ions belonging to the same
chain. In this situation, the magnetic relaxation time
in the system is determined by the characteristic time
of “decay” of a domain through “wandering” of a
domain wall in the chain. As shown in [6], the tem-
perature dependence of this time at low temperatures
exhibits exponential behavior: τ ∝ exp(Δ/T), where Δ
is the characteristic energy of a f lip of a spin. Thus, one
of characteristic features of SCMs is associated with
the fact that, as temperature decreases, the magnetic
relaxation time τ of the system increases exponentially
and may reach values of about an hour at T ~ 1 K [8].
In view of the microscopic scale of magnetic domains
and the slow dynamics of their magnetization, SCMs
are currently not only of interest from the fundamental
point of view [9], but are also considered as promising
materials for the design of hardware components for
memory devices.

Important information on the character of mag-
netic interactions in SCMs is provided by the behavior
of the temperature dependence of the correlation
length ζ(T) and the relaxation time τ(T). In the exper-
imental investigations of SCM compounds, these
characteristics are usually derived from the measure-
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ments of the temperature dependence of the static
χ(T) and dynamic χ(ω, T) magnetic susceptibilities by
the formulas χ(T) ~ ζ/T and χ(ω, T) ~ χ/(1 – iωτ).
Hence, a purposeful study of the magnetic properties
of SCMs can be carried out on the basis of the analysis
of static and dynamic characteristics [6].

To describe the static magnetic properties of
SCMs, most often one applies either generalizations
of the Ising model or the classical Heisenberg model in
which the vector operators of spin moments S are
replaced by classical vectors. When studying the
dynamic behavior of SCMs, one uses the generaliza-
tions of the Glauber model [10]. The latter is a kinetic
version of the Ising model in which a random flip of a
spin is modeled by phenomenological introduction of
interaction between an Ising chain and a thermal res-
ervoir. In these models, the operator nature of spins is
neglected, and the applicability of such an approxima-
tion to the description of the physical properties of
SCMs is argued by the presence of a strong uniaxial
anisotropy in the system, as well as by relatively large
values of spins of magnetically active ions. For a more
accurate representation of real features of SCMs, the
above-mentioned models were analyzed in detail and
extended to the cases of the presence in the systems of
nonmagnetic impurities [11–44], ferrimagnetism
[15], strong magnetic fields [16], mutual noncol-
linearity of anisotropy axes [17, 18], and isotropic
quantum moments [19].

In recent years, an important field of research has
been associated with the study of the prospects of
designing SCMs that would demonstrate not only
slow dynamics, but also the presence of spin cross-
overs [8, 21–24], as well as photoinduced states [8,
25–27]. Of special interest are SCMs whose magnetic
properties can be changed under external irradiation
[8, 25]. It is believed that the states of the magnetic
subsystem in these compounds can be changed by a
photoinduced modification of the states of the elec-
tron subsystem. Since the characteristic times of the
dynamics of the magnetic subsystem in these com-
pounds are much greater than the characteristic times
of the dynamics of the electron subsystem, this feature
allows one to consider SCMs not only as promising
components for super high-density magnetic record-
ing but also as components of superfast magnetic
switches [28]. An increase in the number of possible
applications of SCMs is associated, first of all, with
progress in the field of synthesis of these compounds
[7]. It is important that, among synthesized SCMs,
there are compounds in which quantum effects play a
significant role. These compounds also exhibit slow
dynamics of magnetization, which, however, cannot
be described within the Glauber model [7]. The for-
mulation of theoretical models for describing most
such compounds presents a separate problem.

One of the most interesting magnets from the view-
point of the magnetic structure and the diversity of

physical properties is the single-chain magnet catena-
[FeII(ClO4)2{FeIII(bpca)2}]ClO4 (in what follows,
SCM-catena) [6, 7, 27, 29–31] (Fig. 1). Experimental
investigations of SCM-catena show that its magnetic
susceptibility χ(T) exhibits strong variation under
external irradiation [27]. The interpretation of this
phenomenon is based on the assumption of a photoin-
duced change in the magnetic state of the system due
to metal-to-metal charge transfer (MMCT) (Fig. 2)
[27]. It was assumed that each quantum of radiation
absorbed by the system induces an electron transition
from the electron shell of high-spin (HS) state of FeII

(S = 2) ion to the electron shell of FeIII ion, which is in
a low-spin (LS) state S = 1/2. In this case, the first
iron ion finds itself in a state with S = 5/2, and the sec-
ond iron ion, in a state with S = 0 (Fig. 2). The appear-
ance of iron ions in a nonmagnetic state implies the
breaking of exchange bonds and the formation of
finite spin chains of various lengths. The theoretical
description of the system is largely complicated by the
specific features of the magnetic structure of the com-
pound: the magnetic states of HS ions are formed with
the participation of strong single-ion easy-plane
anisotropy, whose orientation is changed when pass-
ing from one HS iron ion to another (Fig. 1). As a
result of such a modulation, the compound displays
properties characteristic of magnets with easy-axis
anisotropy [30]. However, due to the presence of
strong single-ion anisotropy, the compound should
exhibit quantum fluctuations [33–36]. In particular, it
is known that SCM-catena demonstrates slow dynam-
ics of magnetization τ ∝ exp(Δ/T) at low tempera-
tures, which is characteristic of uniaxial one-dimen-
sional magnets; however, the value of Δ significantly
differs from the value predicted by the Glauber model;
the authors of [30] attribute this fact to the presence of
easy-magnetization planes in the compound.

In the present study, we apply the diagram tech-
nique for Hubbard operators [32, 37, 38], which allows
us to rigorously describe anisotropic systems with
arbitrary nonequidistance of single-ion energy levels.
We also calculate the spectrum of magnetic excitations
and the low-temperature thermodynamics of four-
sublattice SCM-catena with regard to the fact that
easy-magnetization planes of two neighboring HS
iron ions have different orientations. We show that the
different orientation of these easy-magnetization
planes leads to the excitation spectrum that almost
coincides with the excitation spectrum of an easy-axis
ferrimagnet whose effective anisotropy parameter is
comparable with the exchange integral. In both cases,
the gap in the excitation spectrum is greater than the
width of the spin-wave band. This means that the Ising
model is implemented in the magnet. It turns out that
spin f luctuations manifest themselves in that, in the
ground state of the system, the mean value of the z-pro-
jection of the spin of an ion in the HS state with S = 2
decreases to a value of 〈Sz〉 ≈ 3/2. These results have
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allowed us to consider the SCM-catena magnet within
a spin-chain model with alternating pseudospin
moments  = 3/2 and σ = 1/2 between which theS�

Ising-type exchange interaction occurs. This analogy
allows one to apply the transfer-matrix method to cal-
culate exact thermodynamic functions. In particular,
taking into account the specific features of the ligand
environment of iron ions in SCM-catena and a change
in their charge distribution due to irradiation allow
one to explain the experimentally observed anoma-
lously strong variation in the magnetic susceptibility of
SCM-catena. The appearance of iron ions in different
charge and spin states, as well as the appearance of
finite spin chains of different lengths, requires the
introduction of a large statistical ensemble. Such an
approach can be successfully applied to describe the
experimentally observed modification of the tempera-
ture dependence of magnetic susceptibility under irra-
diation in other SCMs as well [8, 25, 26].

2. SPIN HAMILTONIAN OF SCM-CATENA

In quasi-one-dimensional magnet catena-
[FeII(ClO4)2{FeIII(bpca)2}]ClO4 [29], magnetically
active iron ions are alternatively in states with different
valences (Fig. 1b). FeII ions are surrounded by oxygen
ions, which form a distorted octahedron. For d elec-
trons in these ions, the case of a weak crystal field is
implemented, and the configuration d6 corresponds to
the HS state with S = 2. According to HF-EPR spec-
troscopy data, the distortion of the ligand environ-

Fig. 1. (a) A fragment of the structure of single-chain magnet SCM-catena and (b) four-sublattice ferrimagnetic order in the
strongly anisotropic one-dimensional magnet SCM-catena at temperatures T < 7 K. The figure illustrates a change in the orien-
tation of easy-magnetization planes for nearest neighbor HS ions of iron. The following sequence of notations is introduced for
sublattices: A–B–C–D [29].
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ment of FeII ions leads to the formation of easy-plane-
type single-ion anisotropy [29].

FeIII ions are surrounded by nitrogen ions, which
have a large charge compared to oxygen ions. As a
result, the d5 electron shell of FeΙΙΙ ions is in a strong
crystal field. The main ion term corresponds to the LS
state with S = 1/2 (Figs. 1, 2).

In what follows, it is important that the easy-mag-
netization planes of two nearest HS ions of iron are
orthogonal with respect to each other (Fig. 1). Below
we will show that such alternation induces an effective
axis of easy magnetization directed along the chain
(the z axis in Fig. 1). The existence of this axis was ver-
ified by experimental measurements of the field
dependence of magnetization. It was established that,
when a field is applied perpendicular to the chains, the
magnetization increases relatively slowly and does not
reach saturation up to magnetic fields of 50 kOe. When
the magnetic field is applied along the chains, the
magnetization reaches saturation even in a field of H =
500 Oe. The authors of [30] attributed such a strong
anisotropy of the magnetic properties of the system to
the above-mentioned effective easy-magnetization
axis.

The second experimental result is the observation
of a short-range magnetic order at temperatures of T <
7 K [30]. The measurements were carried out by the
Mössbauer spectroscopy method. On the basis of the
results of these measurements, as well as of the mea-
surements of the dynamic magnetic susceptibility, the
authors established that the relaxation time of the
magnetic moment increases exponentially as tempera-
ture decreases and, for T = 1 K, reaches a value of
about a minute. From the combination of these facts,
the authors of [30] drew a conclusion that a magnetic
state with dominant Ising-type exchange interaction is
implemented in the system. It turns out that the tem-
perature dependence of the relaxation time cannot be
described within the classical Glauber model. This
points to the fact that quantum fluctuations associated
with the presence of easy-magnetization planes
develop in the system [30, 33]. Therefore, it seems to
be necessary to take into account quantum phenom-
ena in the four-sublattice one-dimensional magnet
catena-[FeII(ClO4)2{FeIII(bpca)2}]ClO4 with alternat-
ing HS and LS iron ions and with easy-plane anisot-
ropy modulated along the direction and analyze the
low-temperature excitation spectrum in order to cor-
rectly pass to an effective Ising-type model and ana-
lyze the thermodynamic properties.

We will carry out the quantum analysis of a system
of aliovalent iron ions in SCM-catena within the
Heisenberg model with regard to an easy-plane-type
single-ion anisotropy operator that is inhomogeneous
with respect to sites [29, 30]:

 (1)

where Sf,A and Sf,C are vector operators of the spin
moments of iron ions in HS states (S = 2) belonging to
a magnetic cell with number f (the cell contains four
magnetic ions) and situated in positions A and C.
These ions are in the crystal field, which is effectively
described by the operator of easy-plane single-ion
anisotropy. The intensity of the anisotropy is deter-
mined by the parameter D. For iron ions in positions
A, the easy-magnetization plane is the plane yz,
whereas, for iron ions in positions C, this is the plane
xz; Sf,B and Sf,D are vector operators of the spin
moments of iron ions in the LS state S = 1/2 situated
in positions B and D; H is the external magnetic field
in energy units; g1 and g2 are the g factors for HS and
LS ions, respectively; and J is the exchange integral
between nearest neighbor ions. The calculations per-
formed in [29, 30] have shown that J = 20 and D = 7 K.

When calculating the low-temperature spectral
properties of SCM-catena, we take into consideration
that, for T < 7 K, the experimentally observed short-
range ferrimagnetic order is implemented in the com-
pound. Assume that the spontaneous magnetization
of all ions is directed along the z axis. Introducing a
self-consistent field (SCF) in a standard way, we
express the Hamiltonian of the system as

 (2)

where single-site operators for the four sublattices are
given by

 (3)

In formulas (3), we introduced the following nota-
tions for the magnetic order shown in Fig. 1: M =
〈Sf,A〉 = 〈Sf,C〉 and σ = –〈Sf,B〉 = –〈Sf,D〉.
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The interaction operator  in (2) describes
intersite correlations induced by the exchange interac-
tion. The introduction of circular spin operators and
the three-component vector u = {Sz; S+; S–} allows us
to express the correlation term in a compact form:

 (4)

where Δu = u – 〈u〉. The angle brackets under the sign
of sum imply that the summation is performed over
the nearest neighbor ions of the sublattices. When
considering isotropic exchange interaction, the matrix

 can be represented as follows:

 (5)

where J(fi, fi +1) is the integral of exchange interaction
between iron ions belonging to sublattices fi and fi +1.

To determine the spectral properties of the system,
we invoke the concept of the atomic representation,
which allows us to correctly consider strong single-ion
anisotropy [32, 33]. The introduction of the atomic
representation suggests the diagonalization of the sin-
gle-site terms of Hamiltonian (1). Due to the presence
of alternating HS and LS states of iron ions, we carry
out the diagonalization of the corresponding terms in
(3) separately.

3. DIAGONALIZATION OF SINGLE-SITE 
TERMS OF THE HAMILTONIAN. 

INTRODUCTION OF THE ATOMIC 
REPRESENTATION

Consider iron ions in HS states that are subjected to
easy-plane-type single-ion anisotropy. Introduce the
Hubbard operators Xpq = |p〉〈q| (p, q = 1, …, 5) [32, 37]
constructed on the complete basis |p〉 of eigenstates of
the operators  and  of iron ions located in posi-
tions A and C, respectively. Then, omitting the indices
of sites in the spin operators for a while, we can repre-
sent the Hamiltonian describing the HS states of iron
ions in the unified form:
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For ϕ = 0, formulas (6)–(8) describe HS ions with
the easy-magnetization plane yz, whereas ϕ = π/2 cor-
responds to HS ions for which the easy-magnetization
plane is xz. It follows from the above formulas that the
operator structure of the single-site Hamiltonian is
decomposed into quasi-two-level, , and quasi-
three-level, , forms. This fact simplifies the diag-
onalization of the Hamiltonian as a whole, because
each such form is independently reduced to the diago-
nal form. Here one should take into account that the
diagonalization should be performed simultaneously
with the self-consistent determination of the effective
field . It is convenient to solve such a problem by the
method of transformations of the group U(N) [35].

Introduce a set of unitary operators

 (9)
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 (13)

where

 (14)
where we assumed that the parameter α of the unitary
transformation is real. The phases ν, δ, and κ of three
other complex parameters β, γ, and Ω appearing in
(13) take different values depending on the type of HS
ions of iron:

 (15)
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tively. The moduli of the transformation parameters α
and β are determined from the relations
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Applying the scheme of diagonalization, we can rep-
resent the spin operators Sz and S+ for HS iron ions as

 (20)

where γ||(α), Γ||(α) and γ⊥(α), Γ⊥(α) are, respectively,
the longitudinal and transverse parameters of repre-
sentation of the operators Sz and S+ in terms of the
Hubbard operators. The relationship between these
operators and the operators α, β, γ, and Ω is demon-
strated in Appendix A. The summation over λ implies
the summation over the root vectors λ = λ(p, q) [32],
which describe transitions from the initial state |ψp〉 to
the final single-ion eigenstate |ψq〉.

LS iron ions are described by the operators 
and , which are diagonal in the basis of eigen-

states of the operators  and , respectively. From
the viewpoint of a single-ion spectrum, these ions are
equivalent, and the following parameters of represen-
tation are nonzero for each of them:

 (21)
where the states |1〉 and |2〉 correspond to the eigenval-
ues 1/2 and –1/2 of the operator Sz, respectively.

The application of the atomic representation
described allows us express the sum of single-site
terms of Hamiltonian (2) and a correction due to
exchange interaction (4) as

 (22)

where the indices i and f of the kinds of iron ions and
magnetic cells to which these ions belong are recov-
ered. Here

and the matrix  is given by (5).

4. GREEN’S FUNCTIONS. DERIVATION
OF THE DISPERSION EQUATION

To investigate the spectral properties of the magnet
(22), we apply the diagram technique for Hubbard
operators [32, 37, 38]. Let us introduce the Matsubara
Green’s functions
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 (23)

where α and β are root vectors. In the loopless approx-
imation, the Fourier transform Diα; jβ(q, iωn) of func-
tion (23) can be represented as [32]

 (24)

where bjα = Njp – Njq, and Njp are the occupation num-
bers of the eigenstates |ψjp〉 for the ions belonging to the
jth sublattice.

In the graphical form, the system of equations for
the function Diα, jβ(q, iωn) is demonstrated in Fig. 3.

Assigning analytic expressions to graphical ele-
ments, we obtain

 (25)

where Diα(n, m)(iωn) = [iωn + (Ein – Eim)]–1 and
Viα; lγ(q) = (ci(α), (q) ⋅ ciγ(β)). Here (q) is the Fou-
rier transform of the matrix (5) in which the interac-
tion between nearest neighbors was considered. Let us
make use of the split form of the matrix elements Viα;

lγ(q) with respect to the indices of the root vectors [33,
41, 42]. Multiply Eq. (25) by ciα and sum the expres-
sion obtained over the indices i and α. Then, introduc-
ing four types of three-dimensional vectors

 (26)

we can express the sought Greens functions as follows:
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 (27)

Here the components of the vectors Aj, Bj, Cj, and
Dj are determined from the system of 12 equations

 (28)

where the three-dimensional matrices  (j = A, B, C,
D) have the following components:

 (29)

Using the representation parameters calculated in
the previous section, we find that these matrices are
expressed as follows:

 (30)

the matrix  = , and the matrix  can be
obtained from the matrix  by the substitution
w(iωn) → –w(iωn). The functions appearing in these
matrices have the form

 (31)

Next, we use the fact that the representation
parameters of iron ions in each sublattice satisfy the
relation γj||(α)γj⊥(±α) = 0. Therefore, the collective
excitations defined by the transverse and longitudinal
parts of the exchange interaction (transverse and lon-
gitudinal vibrations) do not interact with each other.
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Fig. 3. Graphical representation of the system of equations
for the Green’s functions of a four-sublattice SCM-catena
in the loopless approximation in the (q, ωn)-representa-
tion.
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Taking this fact into consideration, we pass from the
vectors Aj(β, ωn), Bj(β, ωn), Cj(β, ωn), and Dj(β, ωn),
which characterize the longitudinal and transverse
vibrations of individual sublattices A, B, C, and D, to
the variables that describe separately the longitudinal
and transverse vibrations of the collective subsystem.
These variables are given by the four-dimensional vec-
tors

 (32)

The vector Zj(β, iωn) describes only longitudinal
vibrations of SCM-catena. Direct calculations show
that Zj(β, iωn) = 0 for the system considered. This
means that longitudinal magnon excitations do not
contribute to the spectral and thermodynamic proper-
ties of the system and that one should consider only
transverse magnetic excitations described by the vec-

tors (β, iωn). The latter are determined from the fol-
lowing system of equations:

 (33)

where the ith components of the four-dimensional
vectors y⊥j(β, ωn) are given by

while the four-row matrices  and  have the form

 (34)

The solution of Eqs. (33) with the use of (27) and
(32) allows us to calculate the collective Green’s func-
tions (23). In the present paper, we display the calcu-
lated Green’s functions for two of the four sublattices
(the sublattices A and B), one of which describes HS,
and the other, LS ions of iron:
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 (35)

for sublattice A, and

(36)

for sublattice B. We do not present the Green’s func-
tions for sublattices C and D, because, in what follows,
we will calculate single-ion occupation numbers Njp of
the system, the determination of which requires the
Green’s functions Djα; jα that are diagonal with respect
to the indices of root vectors of the sublattices. These
functions satisfy the relations DAα; Aα = DCα;Cα and
DBα;Bα = DDα;Dα.

The functions (q, iωn), (q, iωn), (q, iωn),
and (q, iωn) in (35) and (36) are determined in
terms of the minors Mij(q, iωn), which are obtained by
deleting the ith row and the jth column of the matrix
appearing in the system of equations (33):

 (37)

where Re and Im denote the real and imaginary parts
of appropriate expressions. The explicit form of func-
tions (37) is presented in Appendix B. One can verify
that the Green’s functions thus calculated possess
necessary symmetry properties: Djα; jβ(q, iωn) =

(q, iωn), and Djα; jβ(q, iωn) = Dj(–β); j(–α)(q, –iωn).

The denominator Δ(q, iωn) of Green’s functions (35)
and (36) can be expressed as
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where

 (39)

The equation Δ⊥(q, iωn → ω + δ) = 0 defines the
spectrum of elementary excitations of SCM-catena in
the approximation considered.

5. LOW-TEMPERATURE SPECTRAL 
PROPERTIES. QUANTUM 

RENORMALIZATIONS OF SINGLE-ION 
OCCUPATION NUMBERS

As mentioned, the experimental investigations of
SCM-catena show that, at low temperatures, this
compound exhibits properties characteristic of mag-
nets with easy-axis anisotropy, or even of magnets with
dominant Ising-type exchange. This assertion can be
proved by considering the specific features of the spec-
trum of magnetic excitations.

In the low-temperature limit (T ≪ J), there are six
transitions that determine collective branches: two
transitions from each HS iron ions | 〉 ↔ | 〉 and

| 〉 ↔ | 〉, as well as one transition for each LS

ion | 〉 ↔ | 〉. The quasimomentum depen-
dence of these branches is determined within the first
Brillouin zone: –π/4a ≤ q ≤ π/4a, where a ≈ 10 Å. To
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compare this spectrum with the excitation spectrum
obtained in the model of easy-axis magnet with two
sublattices, it is convenient to consider quasiparticle
branches defined in the extended interval of quasimo-
menta –π/2a ≤ q ≤ π/2a. Taking account of the rela-
tion Δ⊥(q, ω) = Δ⊥(q + π/2, ω), which follows from
(38), we rewrite the denominator of the Green’s func-
tion:

 (40)

where –π/4 ≤ q ≤ π/4. We can see that the determina-
tion of six branches of the spectrum of SCM-catena
that are defined within the first Brillouin zone of a
four-sublattice magnet is equivalent to determining
three branches, defined in the first Brillouin zone, for
a two-sublattice magnet: –π/2 < q < π/2.

The dispersion relations of three quasiparticle
branches constructed in the interval 0 ≤ q ≤ π/2 for
T ≪ J and for the experimentally established relation
between the exchange and anisotropy parameters for
the given compound (D/J = 3/8) are demonstrated by
solid lines in Fig. 4. The dotted lines in this figure
illustrate the quasimomentum dependence of the
branches of the spectrum for the effective model of a
two-sublattice ferrimagnetic Heisenberg chain with
easy-axis single-ion anisotropy. It is assumed that
such a model is described by the Hamiltonian

 (41)

where (f2) and  are defined by expressions (3)
and (4), respectively. In this case, one should change
the summation over four sublattices in expression (4)
for  to the summation over two sublattices. The
analytic expressions for the quasimomentum depen-
dence of the branches of the spectrum of such a model
for T ≪ J are given by

 (42)

When constructing the quasimomentum depen-
dence in Fig. 4, we took the following values of the
parameters: SA = 2, SB = 1/2, and Deff = –J/8. The
comparison of the functions presented in Fig. 4 shows
that, at low temperatures, the excitation spectrum of
SCM-catena indeed corresponds to the spectrum of
one-dimensional ferrimagnet with the effective easy-
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Fig. 4. Low-temperature spectrum of elementary exci-
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tation spectrum obtained by formula (42) for a ferrimagnet
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planes is replaced by the effective easy-axis anisotropy with
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magnetization axis directed along the axis of the chain.
Moreover, in both models, the excitation spectrum is
characterized by a gap of Δ ~ J and a small, compared
to Δ, dispersion of the main excitation branches. This
means that the energy spectrum of excitations of the
one-dimensional four-sublattice ferrimagnet SCM-
catena is well reproduced by a single-particle spectrum
of excitations of a ferrimagnetic Ising chain, for which
also Δ ~ J and the dispersion of the branches is missing
completely. This important conclusion allows us to
pass to the study of the thermodynamic properties of
SCM-catena in the entire temperature interval on the
basis of the exact calculation of the statistical sum for
the effective generalized one-dimensional Ising
model.

However, a more correct transition to the effective
model requires that one should take into account
strongly developed spin f luctuations in the system,
which are not described within Ising-type models. In
the original Hamiltonian of SCM-catena (1), the
main contribution to the development of these f luctu-
ations is made by the terms describing the single-ion
anisotropy of the system. It is known that, due to the
presence of this kind of terms in the Hamiltonian of a
spin subsystem, the full description of its magnetic
state requires the introduction of single-site means of
the type 〈  ⋅ 〉 (αi = x, y, z and n ≤ 2S) that cor-
respond to dipole (n = 1), quadrupole (n = 2), etc.
order parameters. The implementation of states with
nonzero means of this type leads to quantum effects
that may significantly tell on the spectral properties
and the phase diagram of the system [3, 35, 39], as well
as on the specific features of its dynamics [40]. Among
such effects, one should distinguish the so-called
quantum reduction of spin. This effect manifests itself
in that the mean value of the projection of the spin
moment to the axis of quantization, 〈Sz〉, turns out to
be less in absolute value than the nominal value of spin
at the site, |〈Sz〉| < S, even at zero temperature [35]. In
the present study, we restrict ourselves to the analysis
of the effect of quantum fluctuations in SCM-catena
on 〈Sz〉.

To take into account the effect of spin f luctuations,
one should go beyond the framework of mean-field
approximation and take into account the contribution
of spin-wave renormalizations to single-ion occupa-
tion numbers of iron ions. To this end, we consider the
definition of the occupation numbers:

 (43)

where δ → 0+, j = A, B, and the root vectors α = αj(r, p)
describe the above-considered transitions between the
magnetic states of iron ions for which the original sum
of occupation numbers is different from zero. Djα; jα are
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the Green’s functions obtained in (35) and (36). It is
important that these functions can be represented as

 (44)

where Fj(α, q, iωn) is a polynomial function of the vari-
able iωn. This allows us to pass from the summation
over Matsubara frequencies in (43), which take values
of ωn = 2πnT (n = 0, ±1, ±2, …), to the integration
along a special contour with respect to the complex
variable ω = ω' + iω'' and to rewrite the expression for
the occupation numbers as

 (45)
where q ∈ [–π/4a, π/4a], ωk(q) is the kth branch of
the excitation spectrum of SCM-catena, and fB(ω/T) =
[exp(ω/T) – 1]–1 is the Bose–Einstein distribution
function. The last term in expression (45) is indepen-
dent of temperature and is responsible for the quan-
tum renormalizations of occupation numbers. The
latter renormalizations also lead to the variation of the
mean value of magnetization in the system. The anal-
ysis has shown that a significant modification of this
parameter is implemented only for iron ions in HS
states; therefore, below we will consider precisely
these iron ions. If we take into account that, at zero
temperature, only the second and fourth of the eigen-
states (13) of HS ions of iron experience quantum
renormalizations, then the expression for the mean
value of the spin magnetic moment of these ions in the
spin-wave approximation has the form

 (46)

Note that if the calculations of the quantum reduc-
tion of spin were performed in the mean-field approx-
imation, then the expression for 〈 〉 would have the
form

 (47)

The dependence of 〈 〉 for HS ions of iron on
the value of anisotropy calculated on the basis of for-
mulas (46) and (47) is illustrated in Fig. 5 by solid and
dotted curves, respectively. The solid vertical lines
indicate the experimental values of anisotropy for
SCM-catena. One can see that, for D/J = 3/8, the
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mean projection of the spin moment onto the axis of
quantization takes a value of 〈 〉 ≈ 1.63, more than
2/3 of the contribution to the relative variation of the
magnetization of HS ions being due to spin-wave f luc-
tuations.

6. EFFECTIVE MODEL. PHOTOINDUCED 
CHANGE OF ONE-DIMENSIONAL MAGNET 
AND A STATISTICAL ENSEMBLE OF ISING 

CHAINS

The specific features of the spectrum of magnetic
excitations and magnetization curves considered
above allow one to suggest that, at temperatures T ~ J,
the magnetic properties of the compound can be
described within the model of a spin chain with alter-
nating pseudospin moments  = 3/2 and σ = 1/2
between which an Ising-type exchange interaction is
implemented. This fact can be confirmed by the
results of exact calculation for a finite number of sites,
which are represented in Fig. 6. The solid curves rep-
resent the temperature dependence of the induced
magnetic moment on the magnetic field (for two ori-
entations of this field) for an anisotropic Heisenberg
chain of six sites described by Hamiltonian (1) for
SCM-catena. The dotted curves demonstrate the
same dependence calculated on the basis of a general-
ized Ising model described by the Hamiltonian

 (48)

,
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The comparison of the curves shows that, in the
range of parameters of interest, the application of the
Ising model allows one to well reproduce the proper-
ties of SCM-catena both for a magnetic field applied
along the chain and for a field applied perpendicular to
the chain.

To analyze the effect of optical irradiation on the
magnetic properties of SCM-catena, we take into
account that, in MMCT processes (Fig. 2), HS iron
ions go over to the state FeIII (S = 5/2), and LS ions,
to the state FeII (S = 0). We will model the emergence
of such iron ions by introducing magnetic impurities
into the chain, whose concentration depends on the
radiation intensity. In addition, we will take into
account the presence of impurities and defects of nat-
ural origin. Here, it is important that the description of
the magnetic properties of the compound will take
into account the characteristic times of the dynamics
of the impurities, both photoinduced ones and impu-
rities that arise at technological level.

It is customary to assume that the characteristic
times of the dynamics of impurities and defects of nat-
ural origin are much greater than the characteristic
times of the dynamics of the magnetic subsystem. This
means that such defects implement a “quenched” type
of disorder [6]. Moreover, in most single-chain mag-
nets, such inclusions have a relatively low concentra-
tion (c ~ 10–3–10–2 per unit length of the chain);
therefore, these inclusions are distributed uniformly
over the chain and are not correlated. According to the
aforesaid, we can assume that the detection probabil-
ity PN of a chain with the number of sites N in a sample

obeys the Poisson statistics: PN = /N!. Here 
defines the average number of particles in a segment of
the chain bounded by nonmagnetic impurities.

N NN e− N

Fig. 5. Mean value of the magnetic moment of HS ions as
a function of anisotropy in the low-temperature limit T ≪
J. The dotted curves illustrate the dependence of 〈 〉 on
D calculated in the mean-field approximation. The solid
curves represent the dependence obtained when spin-wave
renormalizations of single-ion occupation numbers are
taken into consideration. The vertical line points to the
value of the anisotropy-to-exchange ratio D/J = 3/8 in
SCM-catena borrowed from experimental data.
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Further, it is essential that, during experimental
investigations of the effect of light on single-chain
magnets, the irradiation lasted for several hours [8, 25,
26]. During this period, photoinduced HS FeIII and
LS FeII states of iron ions arise and recombine repeat-
edly. Therefore, on average, each iron ion takes part in
MMCT processes and, while remaining in its place,
changes its state due to the arrival and departure of
electrons. This feature can be reproduced by introduc-
ing a special statistical ensemble whose representatives
are spin chains. The sites of the chain can be occupied
by iron ions in any of the four spin states introduced
above. This approach allows one to take into account
the appearance of photoinduced impurities in the
chains and corresponds to the description of magnets
with “annealed” type of disorder [49]. The introduc-
tion of a statistical ensemble implies establishing a
material contact with a thermostat that admits
exchange of iron ions and thereby simulates a variation
in the relative concentration of ion pairs in different
spin states. Finally, we take into account that, due to
the quantum fluctuations, the projection of the spin
moment Sz of iron ions in the HS FeIII state with total
spin of S = 5/2 also decreases to the effective value

≈ 2.
Taking into account the aforesaid, we obtain a

model that is given by a Hamiltonian of the form

 (49)

in the atomic representation, where two-site operators
represent a sum of two terms,

 (50)

The operators (f, f + 1) describe an Ising-type
exchange interaction between nearest neighbor mag-
netically active iron ions:

 (51)

Here the operators ( ) are Hubbard oper-
ators [37] of projection onto the vectors of a Hilbert
space that correspond to the states of iron ions with
spin (pseudospin) S = 1/2 (  = 3/2) and the projec-
tion m(M) of spin (pseudospin) onto the axis of quan-
tization. The projection operator  corresponds to
the state of an iron ion at site f with  = 2 and the pro-
jection L of pseudospin onto the axis of quantization.
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The operator hf is a Hubbard operator of projection
onto the vector |f, 0〉 of a Hilbert space, that corre-
sponds to the position of the iron ion at site f in the
state with spin S = 0. As pointed out above, the states
described by the operators  and hf arise as a result
of optical irradiation. Here, it is assumed that M =
0.5{3; 1; –1; –3} and L = {2; 1; 0; –1; –2} for HS ions
of iron.

The bivalent operators  are introduced to take
into account the correlation in the arrangement of iron
ions of different types (see Figs. 1 and 2) and allow one
to reproduce a necessary sequence of spin states of
iron ions that corresponds to the magnetic structure of
SCM-catena. These operators describe a repulsive
interaction within pairs of HS (LS) iron ions located at
the nearest neighbor sites of the chain. In the atomic
representation, the expression for  is given by

 (52)

where the operators

are projection operators onto subspaces with fixed val-
ues of spin or pseudospin without indicating its pro-
jection. The parameter V characterizes the amplitude
of the repulsive interaction and is assumed to be
infinitely large in final calculations.

The first term among single-site operators in (49)
represents the Zeeman contribution and, in the nota-
tion adopted,

 (53)

where g1, g2, and g3 are the g factors for each of the
three magnetic states of iron ions.

The appearance of the last two single-site operators
in (49) is associated with the fact that irradiation is
accompanied by a simultaneous transition of a pair of
iron ions to new states. Mathematically, this fact is
reflected by the equations

 (54)

To take into account these conditions, we intro-
duce two undetermined Lagrange multipliers λ1 and λ2
that allow us to control the average number of iron
ions in different spin states. These multipliers are usu-
ally determined at the final state of calculations from
the requirement that relations (54) should be satisfied.

The statistical sum for the ensemble of chains
introduced is calculated by the transfer-matrix
method [19, 43–47]. Compared with other methods
[48, 49] for solving the problem of the effect of
annealed disorder on the magnetic properties of the
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Ising model, the approach based on the transfer-
matrix technique allows one to carry out straightfor-
ward calculations of both the means

 (55)

and the correlation functions

 (56)

constructed on the operators  that are diagonal in
the space of single-site states of the chain. The index ν
numbers the type of the single-site operator . In
this paper, we take linear combinations of the opera-
tors , , , and hf as . The quantities |uα〉

and λα are the eigenvectors and eigenvalues of the

transfer matrix, respectively. Here  is the matrix of
the operator A(ν) in the chosen basis of eigenvectors:

 = 〈uα|A(ν)|uβ〉.
When analyzing the effect of radiation on the mag-

netic properties of SCM-catena, the concentration nhν
of photons that induce MMCT processes is identified
with the means: nhν = 〈hf〉 = 〈Zf〉. The variation in the
radiation intensity is modeled by the variation of nhν; it
is assumed that nhν = 0 in the absence of radiation.
Accordingly, for every fixed value of radiation inten-
sity, the averages are calculated by (55) and (56)
simultaneously with the solution of system (54).
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7. RESULTS OF NUMERICAL 
CALCULATIONS. MODIFICATION

OF MAGNETIC PROPERTIES UNDER 
IRRADIATION

The expressions for the thermodynamic means
(55) obtained by the transfer-matrix method allow one
to describe the experimentally observed modification
of the temperature dependence of the magnetic sus-
ceptibility of SCM-catena under optical irradiation
within the effective model. Moreover, the expressions
for the correlation functions (56) allow one to analyze
the variations in the magnetic structure of the com-
pound subjected to irradiation. The modification of
the molar susceptibility χm(T) under irradiation of
SCM-catena is demonstrated in Fig. 7. The tempera-
ture dependence of χm(T) for a given concentration nhν
is calculated by the formula

 (57)

It turns out that the following set of parameters of
the effective model are the best from the viewpoint of
agreement between the theoretical results on the mod-
ification of χm(T) and experimental data:

 (58)

These results well correlate with known experi-
mental data on the system [27, 31]:

 (59)

Let us dwell on the cause of the above modification
of the function χm(T)T under irradiation. In the
absence of radiation, the function χm(T)T, shown by
the solid curve in Fig. 7, is typical of an Ising-type
ensemble of chains [43], and the appearance of a peak
at T ~ J points to the destruction (appearance) of
short-range magnetic order in the system. As the radi-
ation intensity increases, the amplitude of the peak
decreases, which is associated with the appearance of
iron ions in the zero-spin state. The induction of such
ions is accompanied by breaking the exchange bonds
in the chain and gives rise to paramagnetic centers in
the chain. The latter centers are formed when two
nearest neighbor LS iron ions occur in a nonmagnetic
state, while the HS iron ion in between them is iso-
lated from the magnetic viewpoint. As is known, the
temperature dependence of the susceptibility of the
ensemble of such paramagnetic centers obeys the
Curie–Weiss law, for which the product χm(T)T is
constant (TN = 0). Under sufficiently strong irradia-
tion, the contribution of this set of isolated HS iron
ions to the magnetic susceptibility becomes dominant,
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Fig. 7. Modification of the temperature dependence of the
magnetic susceptibility of SCM-catena in the absence of
radiation (theory (solid curve 1) and experiment (circles))
and under irradiation (theory (dotted curve 2) and experi-
ment (circles)). The experimental data are borrowed from
[27], and the calculation parameters of the model are
defined by relations (58).
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and the product χm(T)T remains the same for any tem-
perature; this is illustrated by the dotted line in Fig. 7.

This interpretation is confirmed, in particular, by
the results of calculation of the correlation functions

 (60)

for various values of nhν. The operators appearing in
these functions have the following structure:
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Figure 8 demonstrates K1(d) and K2(d) as a func-
tion of the distance d between the sites of the chain in
the absence of radiation, when nhν = 0. The function
K1(d) describes magnetic correlations between two HS
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limit: (a) magnetic correlations are calculated for a pair of HS iron ions, K1(d) = 〈 (f) (f + d)〉 and (b) magnetic correla-

tions are calculated for a pair of LS iron ions, K2(d) = 〈 (f) (f + d)〉. These functions are characteristic of a completely
ordered ferrimagnetic Ising chain with alternating moments  = 3/2 and σ = 1/2.
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ions of iron located at sites with indices f and f + d.
Similarly, the function K2(d) describes spatial mag-
netic correlations of LS ions of iron, One can see that

K1(d) (K2(d)) takes values equal to 0.5σ2 (0.5 ) for
even d and zero for odd d. The factor 1/2 in the expres-
sions for even d is attributed to the presence of two
kinds of iron ions: HS and LS ions. This spatial depen-
dence of spin correlators is characteristic of an ordered
ferrimagnetic chain with pseudospin moments of σ =
1/2 and  = 3/2.

A variation in the correlation functions under irra-
diation, when nhν ≠ 0, is demonstrated in Fig. 9. This
figure presents the correlators K1(d) and 〈hfhf + d〉 for
high intensity of irradiation (nhν = 0.5). One can see
that, in this limit, the functions K1(d) and 〈hfhf + d〉 take

nonzero values only for odd d; these values are 0.5
and 1/2, respectively, where  = 2 is the pseudospin
moment of HS iron ions after irradiation. This behav-
ior of correlators corresponds to an ordered set of iso-
lated HS ions of iron in photoinduced spin states.

Figure 10 demonstrates the temperature depen-
dence of the magnetic susceptibility of SCM-catena
for three values of intensity of optical radiation: in the
absence of radiation (nhν = 0), under radiation of mod-
erate intensity (nhν = 0.1), and under superstrong radi-
ation (nhν = 0.5). One can see that, within the model
formulated, the variation of the concentration of iron
ions taking part in MMCT processes within a rather
narrow range of 0 < nhν < 10% may lead to a significant
modification of the temperature dependence of the
magnetic susceptibility of the compound, changing
the characteristic peak of this function by a factor of
from 2 to 3.
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8. CONCLUSIONS
By an example of an organic four-sublattice

one-dimensional magnet catena-
[FeII(ClO4)2{FeIII(bpca)2}]ClO4 (SCM-catena) with
alternating HS and LS iron ions and with a mutually
orthogonal orientation of easy-magnetization planes
of nearest neighbor HS ions of iron, we have devel-
oped a quantum theory of anisotropic multisublattice
magnets. The importance of the investigation of the
spectral properties of this one-dimensional magnet
among a large variety of single-chain magnets [6, 7] is
associated with the necessity to establish an Ising-type
character of the spectrum of elementary excitations
and to determine whether the thermodynamic proper-
ties of SCM-catena can be described on the basis of
the effective Ising model [30]. In this case, on the basis
of the known redistribution of valence states of iron
ions under irradiation, we had to quantitatively
describe the experimentally observed variation in the
magnetic susceptibility of SCM-catena.

The theoretical analysis of the quantum properties
of multisublattice anisotropic magnets has been car-
ried out by the diagram technique for Hubbard opera-
tors [32], which allows one to correctly describe sys-
tems with arbitrary nonequidistance of the energy
spectrum of single-ion states. The latter fact is of spe-
cial importance, because the characteristic energy of
single-ion anisotropy in the materials analyzed is
comparable with the energy of exchange interaction.
As is known, quantum fluctuations play a significant
role under these conditions, and the effects of single-
ion anisotropy cannot be described on the phenome-
nological level.

The method developed has allowed us to investi-
gate low-temperature properties of SCM-catena in the
spin-wave approximation. Quantum fluctuations have
been calculated with regard to renormalizations of the
occupation numbers of HS states of iron ions. We have
shown that, for these states, quantum fluctuations
rather strongly renormalize the mean value of the
modulus of the projection of the spin moment, |〈Sz〉|,
reducing it from the nominal value S = 2 to a value of
S ≈ 3/2 (the effect of quantum reduction of spin).

The spectral characteristics of SCM-catena
obtained within the theory developed have allowed us
to validate the experimentally observed analogy
between low-temperature magnetic properties of this
compound and similar properties of easy-axis, or even
an Ising, magnet [30]. The calculation of the low-tem-
perature spectral properties of the compound has
shown that the excitation spectrum of SCM-catena is
close to the excitation spectrum of the effective model
of easy-axis magnet in which the parameter of easy-
axis single-ion anisotropy is comparable with the
exchange interaction constant. Moreover, it turns out
that the excitation spectrum of both models is charac-
terized by the presence of a gap of width much greater
than the width of the spin-wave band. These facts

Fig. 10. Temperature dependence of the magnetic suscep-
tibility of the system for various intensities of optical radi-
ation. The parameters of the model are given in (58).
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imply that the thermodynamic properties of the com-
pound can be described in a wide temperature interval
on the basis of the effective Ising model with pseudo-
spin moments of  = 3/2 and σ = 1/2.

The possibility of transition to the Ising-type
model has been demonstrated by comparing exact
numerical calculations of the temperature dependence
of the magnetization of chains of finite length for the
original Heisenberg model and for the effective Ising
model. Further analysis of the magnetic properties of
the effective Ising model has been carried out with the
use of the transfer-matrix technique. This has allowed
us to carry out accurate calculations of both the ther-
modynamic means and the correlation functions of
the system. The defects that arise at technological level
and efficiently break the chain have been taken into
account by introducing an ensemble of chains of finite
length the average number of magnetic centers in
which obeys the Poisson statistics.

The generalization of such an approach to the case
when magnetic processes associated with photoin-
duced processes of electron transfer from one magnet-
ically active ion to another arise in the system has
allowed us to describe the magnetic properties of the
compound in the presence of external optical irradia-
tion. In particular, we have reproduced the experi-
mentally observed modification of the temperature
dependence of the magnetic susceptibility of SCM-
catena under irradiation [27]. A key point in this
description is the introduction of an additional, spe-
cial statistical ensemble of Ising chains each site of
which can be occupied by iron ions in both original
and photoinduced spin states. To obtain a correct
alternation of iron ions in different spin states, we have
introduced effective Coulomb-repulsion-type non-
magnetic interactions. The application of the transfer-
matrix method to such a statistical ensemble has
allowed us to calculate various correlation functions of
the system and trace the modification of the magnetic
structure of the compound under irradiation.

Note also that the method developed in this work is
not restricted to the compound considered; it can be
applied to the description of experimentally observed
modification of the temperature dependence of mag-
netic susceptibility under irradiation in other single-
chain magnets as well [8, 25, 26].

APPENDIX A

The nonzero transverse and longitudinal parame-

ters of representation, γ||(p, q) = (q, p) = 〈ψp|Sz|ψq〉,
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〈ψp|S+|ψp〉, for iron ions in HS states are expressed as
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