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1. INTRODUCTION

The study of nanoobjects has been of constant
interest for many years due to the prospects of using
such materials in ultra�high�density memory devices
and spintronics [1, 2]. Great expectations are associ�
ated with the applications of ferromagnetic nanoparti�
cle suspensions in medicine, including the transport of
pharmaceutical substances, the use of magnetocaloric
effect for local impact on tissues, etc. [3].

Modern technologies can produce nanoparticles of
various, in particular, triangular (see, e.g., [4, 5]) and
square (rectangular) [6, 7] shapes, but the most popu�
lar are circular (elliptical) ones, which is associated
with a vortex structure easily formed in such particles.
In any case, the thickness of these objects is ultimately
small, which allows considering them as two�dimen�
sional (2D) materials and implementing the corre�
sponding formalism for their analytical description.

Despite the prolonged investigation, the under�
standing of the processes occurring in nanodots has
emerged only recently. This can be attributed to both
the development of experimental techniques and an
increase in the computational capabilities available to
researchers. As became recently known, the magneti�
zation reversal of nanodots is very difficult to describe
analytically and numerical simulation is therefore an
important tool in studying nonlinear dynamical pro�
cesses [8–20].

Analytical estimates are based on the solution of
the Landau–Lifshitz–Gilbert equation and its modi�
fication first described by Thiele [21]. The essence of
the approach proposed in that work is as follows. The
equation of motion of the magnetization in the pres�
ence of a magnetization inhomogeneity of the soliton
type can be rewritten in terms of new collective vari�
ables, which are nothing more than the center�of�
mass coordinate X of the considered inhomogeneity.
In this case, the Thiele equation, as applied to the
description of a magnetic vortex in a nanodot, takes
the so�called “non�Newtonian” form [22]

(1)

Here, G is the gyrovector, v is the velocity vector of the
magnetic vortex core, U is the potential energy of the
magnetization (its variation with the displacement of
the vortex core from the center of the dot is associated

with an increase in the magnetostatic energy), and 
is the damping tensor. As is seen from Eq. (1), the vor�
tex core is involved in complex motion with the pres�
ence of a gyroforce [23]. This indicates that its trajec�
tory should be helical. This conclusion was confirmed
many times by numerical simulations and attempts of
the direct observation [6, 24, 25]. It should be noted
that, in non�circular (non�elliptical) nanodots, the
motion of the magnetization can have a more complex
character, and the use of the Thiele equation is com�
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plicated [26]. As follows from Eq. (1), the characteris�
tic frequency of the vortex rotation around the center
of the nanodot neglecting dissipation is Ω0 ≈ κ/G,
where κ is the effective stiffness of the magnetic sub�
system.

Typical rotation frequencies of the vortex core
depend on many factors (saturation magnetization of
the material, its geometrical dimensions, shape, exter�
nal field, etc.) and reach several hundreds of mega�
hertz. Such a motion of the magnetization can be
regarded as the low�frequency one. It is important to
note that, in addition to the low�frequency magnetiza�
tion modes in nanodots, Ivanov et al. [27–29] pre�
dicted the existence of more complicated high�fre�
quency oscillations.

Investigation of the dynamical characteristics of
the magnetization of nanodots is especially important
in view of the implementation of these objects in
ultrafast and power�saving memory devices. The
quasi�static magnetization reversal of nanodots with a
change in either the polarization vector or chirality is
extremely difficult. In the former and latter cases, the
work of the external field is mainly spent to surmount
the exchange and magnetostatic energy, respectively.
The natural solution is bringing the magnetic system
to the resonance state with a subsequent flipping of the
magnetization in the core. The method of such a “res�
onance revolving” of the magnetic vortex is quite suc�
cessfully implemented in experiment and convinc�
ingly grounded in theory. The development of experi�
mental techniques usually goes in two directions: (i)
magnetization reversal by a short (nanosecond) pulse
of the magnetic field [30–33] and (ii) magnetization
reversal triggered by spin�polarized currents [34–37].
In any case, both analytical and numerical calcula�
tions are based on the solution of the Landau–Lif�
shitz–Gilbert or Thiele equations.

However, it should be noted hat this point that
finding the general solution of Eq. (1) most closely
approaching the reality is attended with great compu�
tational difficulties. Thus, researchers often resort to
model representations.

There are tens of recent experimental works on the
observation of the vortex motion. They revealed that
the trajectory of the vortex core is more complicated
than prescribed by Eq. (1). The presence of structural
defects and vortex pinning failed to explain the distor�
tions of the trajectory. In addition, resonance frequen�
cies on the order of several gigahertz associated with
the vortex motion but many times lower than pre�
dicted by Eq. (1) were discovered. Also predicted was
splitting of the low�frequency mode into a doublet
owing to the presence of inertial properties of the mag�
netic vortex.

The low�frequency regime of the core motion can
be explained within the classical approach to the anal�
ysis of the Lagrangian of the magnetic system, in
which one can separate the terms responsible for the

kinetic energy of both rotational and translational
motion of the core (see, e.g., [28, 29, 38]). Another
direction of the analysis comes from adding phenom�
enological terms proportional to higher time deriva�
tives of the vortex coordinate to Eq. (1): an inertial
term [39] and a highest�order gyroscopic term propor�
tional to the third derivative of the core coordinate
[39–41].

The solution of Eq. (1) with the included inertial
and highest�order gyroscopic terms differs from a
smooth converging helix. In this case, the trajectory is
a superposition of a smooth slow helical trajectory and
high�frequency oscillations, whose shape resembles
cycloids. Such a “fine” fast motion of the core on the
background of a slow trajectory is thought to be
responsible for the presence of high�frequency modes.
To describe this motion, the Thiele equation should be
written in the form

(2)

Here,  is the effective mass tensor of the magnetic
vortex.

The gyromagnetic vector can be written as G = Gz,
where z is the unit vector in the direction perpendicu�
lar to the nanodot plane. In the case of a 2D magnet,
we can write

(3)

(4)

Here, γ is the gyromagnetic ratio, α is the damping
parameter, MS is the saturation magnetization, L is the
thickness of the magnet, which is much smaller than
its radius R. The smallness of L allows assuming that
the magnetization does not change in the transverse
direction.

The authors of the majority of theoretical works
that we are aware of disregard the dissipative term
owing to its smallness. This is indeed the case but the
term responsible for damping can play a significant
role at high velocities of the core motion (in the non�
linear regime) or in the analysis of the above high�fre�
quency modes. In addition, this term affects experi�
mentally studied resonance curves of nanodots and
this fact focuses our interest on calculating the factor
D and especially its dependence on the applied exter�
nal field.

Rigorous calculation of the coefficients G3 and 
also remains a problem. As a rule, analytical calcula�
tions use approximate estimates. These two quantities
depend on the profile of the magnetization distribu�
tion function M(r) in the vortex core, the exact
expression for which cannot be derived.
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In this work, we aim at finding the dependence of
the parameter D on the external field H and on this
basis attempt describing the low�frequency regime of
vortex motion taking into account the inertial factor
and damping parameter, study the shape of the reso�
nance curve of an array of nanodots as a function of the
magnetic field perpendicular to the sample plane.

Below we consider a circular nanodot with the
radius R and thickness L. Various authors use known
model functions approximating the well known solu�
tion of the equation for an equilibrium distribution of
the radial component of the magnetization in cylindri�
cally symmetric magnets [42–49]

(5)

Here, ϑ is the polar angle of the magnetization mea�
sured from the perpendicular to the magnet plane, r =
ρ/δ0 is the dimensionless radial coordinate, h = H/Ha

is the dimensionless magnetic field in units of the easy�

plane anisotropy field, δ0 =  is the corre�
lation length of the magnetization (the radius of the
vortex core). In our previous work [50], we also con�
tributed to the construction of the model solution ϑ(r)
by suggesting a modification of the Yukawa potential
known from nuclear physics as a solution. The sug�
gested profile agrees well with the results of the numer�
ical solution, especially in the case of disks with the
radius R � δ0.

To study the resonance properties of a vortex as
functions of the field it is necessary to have informa�
tion on the field dependence of the profile ϑ(r) or at
least the dependence of δ0 on h. Unfortunately, such
detailed information, up to our knowledge, is available
only in the case of high magnetic fields h ≈ 1 [38, 43,
44]. In low fields, there is no agreement among differ�
ent researchers. We propose the following function as
a solution

(6)

Magnetization distributions proposed by various
authors are compared in Fig. 1. Below we will use dis�
tribution (6) as most accurately coinciding with the
numerical solution in weak fields h.

2. SLOW MOTION 
OF A MAGNETIC VORTEX IN A NANODOT

We consider the solution of the equation

(7)

In the two�dimensional case, this equation forms a
system for the components in the Cartesian reference
frame

(8)

The solution of the this set of equations was sought
in the form of damped trigonometric functions x(t) =
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Fig. 1. Distribution of the transverse magnetization
according to some literature data in comparison with the
numerical solution of Eq. (5) (curve 3). Points show the
distribution according to Eq. (6). Curve 1 is the Gaussian
distribution [45, 51], curve 2 is the magnetization distribu�
tion tan(ϑ/2) = r according to [49]. The plots correspond
to the cases of (a) the external field directed along the mag�
netization in the center of the vortex core (h > 0) and (b)
the external field directed opposite to the magnetization in
the center of the vortex core (h < 0).
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A(t)sin(Ω0t), y(t) = A(t)cos(Ω0t). This yields the equa�
tion for the parameter Ω0

(9)

Let us perform approximate analysis of this equation.
In the case of the so�called in�plane vortex [52], G = 0
and a translational mode of the vortex motion takes
place. In this case, Eq. (9) takes a trivial form and the
expression for the oscillation frequency becomes

(10)

In the case of the vortex configuration with the mag�
netization going out of the nanodot plane, the follow�
ing conditions hold G2 � D2, κμ. Thus, the solution of
Eq. (10) can be expressed in the approximate form

(11)

The found relations are valid under the assumption
that the potential energy of the magnetic vortex can be
expressed as U(r) ≈ κr2/2, which holds for a small dis�
placement of the vortex core from the equilibrium
position.

It is noteworthy that Eqs. (10) and (11) in the case
of μ = 0 fully coincide with the well known special
cases [21, 29, 53, 54]. In Fig. 2, a typical solution of
Eq. (11) (curve 2) is compared with the solution
neglecting the vortex mass (curve 1). In these cases,
the initial conditions of the problem were set identical
and the characteristic parameters correspond to a
40�nm thick permalloy disk with a diameter of 1.5 μm.
As one would expect, the period of the core rotation
increases with the inclusion of the inertial term. This is
especially noticeable at significant displacements of
the core from the center of the nanodot, i.e., in the
resonance or nearly resonance regime.

Below, we will be interested in the gyrotropic
regime of the vortex core motion. First, we study the
dependence of Eq. (11) on the transverse external
magnetic field. Calculations of G(h) were carried out
quite long ago and are well known (see, e.g., [55]).
Here, we briefly summarize the results. Owing to the
cylindrical symmetry, it is reasonable to rewrite Eq. (3)
in the cylindrical reference frame, where it takes the
simple form

(12)
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Here, we used the relations mx = sin(ϑ)cos(φ), my =
sin(ϑ)sin(φ), mz = cos(ϑ) and φ is the azimuthal angle
of the magnetization. Simple integration yields

(13)

Here, cos(ϑ0) = h is the equilibrium orientation of the
magnetization far from the core. The transverse field
brings the magnetization out of the magnet plane.

Let us perform similar calculations for the parame�
ter D(h) taking into account proposed Eq. (6). In liter�
ature, the dependence of the damping parameter on
the transverse field has not been discussed in detail so
far. Let us express Eq. (4) in terms of the polar and azi�
muthal angles of the magnetization

(14)

After switching to the cylindrical coordinates (Xi =
ρcos(β), Xj = ρsin(β)), we have

(15)

Further calculation should be carried out with the
inclusion of a particular dependence ϑ(ρ). For further
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Fig. 2. Comparison of the numerical solutions of the equa�
tion of motion of a magnetic vortex (1) with the inclusion
and (2) without the inclusion of the coefficient of inertia.
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analysis, we rewrite the integrand in Eq. (15) in terms
of the transverse component mz of the magnetization

(16)

Here, the dimensionless integral f(h) is the function of
the external field

(17)

Next, we should substitute distribution (6) into
Eq. (16). Unfortunately, the analytical integration of
Eq. (16) is difficult and we therefore perform numeri�
cal calculation. Figure 3 shows the result of the calcu�
lation of D(h) with the use of our vortex profile (6) in
comparison with the ab initio numerical simulation
[56]. Figure 3 presents the results for a 30�nm thick
permalloy nanodot with a radius of 300 nm.

It is noteworthy that our calculation according to
Eq. (16) for a magnet with the above dimensions in
zero magnetic field yields D = –2.41 × 10–11 erg s/cm2.
The results of the computer simulation [56] give D =
⎯2.14 × 10–11 erg s/cm2. The analytical calculation
performed in [57] for the magnetization distribution in
the core of the form tan(ϑ/2) = r resulted in D =
⎯απMSL(2 + ln(R/δ0))/γ = –2.30 × 10–11 erg s/cm2.
The agreement is quite satisfactory in general.

Next, we consider the vortex motion taking into
account the inertial coefficient. The components of
the mass tensor can be estimated as the product of the
surface density and the side area of the vortex core [58]
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Having added to the core mass the well known
expression for the effective mass of the periphery of the
magnetic vortex [39]

. (19)

We find the total mass

(20)

The effective stiffness can be expressed as [53, 55]

(21)

Taking into account Eqs. (13), (16), (20) and (21)
we can write core rotation frequency (11) in the form

(22)
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Fig. 3. Damping parameter D (in the units of 10–11 erg s/cm2)
as a function of the magnetic field h according to (1) cal�
culation using formula (16) and (2) simulation [56] based
on the Landau–Lifshitz–Gilbert equation.
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Here, we have introduced the notation l = L/R. The
inclusion of the inertial coefficient introduces a small
correction, which is seen in the field dependence
Ω0(h) (Fig. 4).

In addition to the frequency itself, we were inter�
ested in the width of the resonance curve in various
external magnetic fields

(23)

Remarkably, the right�hand side of Eq. (23) is a
monotonically increasing function, which qualita�
tively agrees with the results of computer simulation of
an isolated nanodot [56] based on the solution of the
Landau–Lifshitz–Gilbert equation.

3. EXPERIMENT

Pigeau et al. [1] using low�damping NiMnSb nan�
odots and a unique magnetic�resonance force micro�
scope discovered two separate regions of resonance
frequencies determined by the core polarity. In this
work, we studied experimentally the resonance prop�
erties of nanodots made of the classical permalloy
Ni80Fe20. The array of disks with the diameter 2R =
1.5 μm was manufactured by photolithography from a
solid polycrystalline film with the thickness of about
L = 35 nm (Fig. 5). Investigation was carried out with
the use of a coplanar waveguide with a 100�μm central
strip loaded by a 50�Ω wave impedance. The RF field
with an amplitude of 1.8 Oe lied in the film plane per�
pendicular to the central strip. The coplanar
waveguide and sample were located in the static mag�
netic field H of up to 12 kOe perpendicular to the sam�
ple plane. We detected differential absorption curves
(with the use of the modulating field with the ampli�
tude Hm = 60 Oe directed along the field H). The signal
at the modulation frequency from the coplanar
waveguide was amplified by a selective amplifier and

Γ κD
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9
�������MSlγα 1 h2–( )f h( )–= =

× 4π2
1 h–( )2 α2f 2 h( )+[ ]
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.

fed to the input of a lock�in detector. Figure 4 shows
the dependence of the resonance frequency on the
field H (3). The resonance frequency increases or
decreases with an increase in the field H if the direc�
tions of the core and field are parallel (p = +1) or anti�
parallel (p = –1), respectively. The experimental
results agree well with the theoretical calculations.

The inclusion of the mass also results in a correc�
tion to the dependence of the frequency Ω0 on the
parameter l. The dependences Ω0(l) are shown in
Fig. 6. It should be noted that these results with the
inclusion of the mass agree well with the numerical
simulation presented in [29, 53].

The experimental investigation of the resonance
properties of square dots was performed on an array
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Fig. 5. Shape and magnetization structure of circular nan�
odots.
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Fig. 6. Dependence Ω0(l) for our permalloy samples at
h = 0 and R = 750 nm according to the calculations using
formula (22) (1) with the inclusion and (2) without the
inclusion of the core mass.
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Fig. 7. Shape and magnetization structure of square nan�
odots.
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consisting of the objects with a length of 3 μm and a
thickness of about 65 nm (Fig. 7).

As is well known, the character of motion of a mag�
netic vortex in rectangular (square) nanodots is funda�
mentally the same as the gyrotropic motion in circular
objects. It is reasonable to assume that expression (22)
will hold in this case. We think that there is no need of
making any corrections to the inertial term associated
with the presence of Néel walls owing to the smallness
of a nanodot.

Like in the case of circular objects, we first found
the dependence of the gyrotropic resonance frequency
on the applied transverse magnetic field. The results
are compared with the theoretic calculations in Fig. 8.
The theory and experiment agree fairly well.

4. CONCLUSIONS

In conclusion, it should be noted that the inclusion
of the inertial term in the solution of the equation of
motion of a magnetic vortex almost does not change
the frequency of the gyrotropic motion of the vortex
core. Noticeable corrections take place in relatively
high external magnetic fields close to the fields of vor�
tex polarity switching. Calculations with the inclusion
of the effective mass and the above�estimated damping
parameter have shown that an increase in the gyrotro�
pic frequency with increasing nanodot thickness
should be slower than that without inclusion of these
factors.

In this work, a more accurate magnetization distri�
bution in the magnetic vortex has been proposed. On
this basis, the following experimental and theoretical
results have been obtained.

(1) The analytical expression for the frequency of
the gyrotropic motion of the vortex core has been
derived taking into account the effective mass and the
damping parameter that depends on the external mag�
netic field. The experiment has been performed and
compared with the theoretical result.

(2) The estimating expression for the dependence
of the core oscillation frequency on the aspect ratio of
the dot has been derived taking into account the iner�
tial term and damping parameter.

(3) The analytical expression for the magnetic�field
dependence of the damping parameter has been
derived.
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