
ISSN 1063�7834, Physics of the Solid State, 2015, Vol. 57, No. 3, pp. 491–498. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © I.N. Safonov, S.V. Misyul’, M.S. Molokeev, M.P. Ivliev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 3, pp. 480–486.

491

1. INTRODUCTION 

Halide compounds of the elpasolite family A2BB'X6

(A = Cs, Rb; B = Na, K, Rb; B' = Ga, Sc, In, Ho, Dy,
Tb, Nd, Pr, Bi; X = F, Cl) belong to a large group of
crystals whose lattice can be represented as a three�
dimensional framework formed by different�size octa�
hedral groups B'X6 and BX6, which alternate in three
directions of the [001] type. The adjacent octahedra
B'X6 and BX6 are joined together through the common
vertex, and the A cations are located in inter�octahe�
dral (cuboctahedral) holes [1, 2]. In the initial high�
temperature phase G0, the crystals have cubic symme�

try (space group –Fm m, Z = 4). As the tempera�
ture decreases, the crystals undergo ferroelastic phase
transitions. The majority of phase transitions in these
compounds are caused by an instability of the frame�
work with respect to atomic displacements, which can
be interpreted as rotations of ϕ� and ψ�type octahedra
[1, 2]. 

The group�theoretical analysis of lattice vibrations
and the analysis of the elpasolite structure [3–5] dem�

Oh
5 3

onstrate that the order parameters corresponding to
librational vibrations of the octahedra transform
according to the irreducible representations 11–

9( ) and 10–3( ) of the center (the Γ point) and
the boundary (the X point) of the Brillouin zone of the

group –Fm m, respectively (designations of the
irreducible representations correspond to [6, 7]). Irre�
ducible and reducible representations that induce
changes of the symmetry are commonly referred to as
critical or primary representations. 

A set of reducible representations, both critical and
noncritical, which appear during phase transitions,
forms a complete condensate of reducible representa�
tions [8]. According to [9], in crystals with the initial

phase –Fm m, critical distortions are accompa�
nied by secondary (noncritical) effects, such as distor�
tions of octahedral groups, displacements of atoms
located in inter�octahedral holes, etc. Numerical val�
ues of critical and noncritical distortions and reducible
representations are determined from experimental
data. 
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Sequences of phase transitions in crystals
Cs2RbDyF6 and Rb2KB 'F6 (B ' = Ho, Dy, Tb) were
investigated in [10–14]. In [10, 11], it was found that,
with a decrease in the temperature, the Cs2RbDyF6

crystal undergoes three phase transitions (Table 1).
According to experimental data [11, 12], there is a
sequence of critical distortions, namely, (000) 
(ϕ00)  (ϕϕ0)  (ϕϕψ), which is accompanied by
changes of the symmetry (see Table 1). In contrast to
the Cs2RbDyF6 crystal, the Rb2KB'F6 (B' = Ho, Dy,
Tb) crystals [13, 14] undergo only one phase transition
in which the symmetry is reduced immediately to the
monoclinic symmetry with multiplication of the crys�
tal cell and the distortions are described by the scheme

(000)  (ϕϕψ) (Table 1). However, the presented
scheme of distortions was obtained from indirect data.
It should be noted that the crystal�chemical character�
istics of the crystals Cs2RbDyF6 and Rb2KB'F6 (B' =
Ho, Dy, Tb) are very close to each other, even though
sets of dissymmetric phases in them differ significantly.
The reason for these differences is not completely
understood. 

The purpose of this work is as follows: (1) to deter�
mine the structures of the cubic and monoclinic
phases of the Rb2KHoF6 crystal; (2) to identify the
critical and noncritical distortions and reducible rep�
resentations in Rb2KHoF6; (3) to elucidate the condi�
tions for the existence of sequences of orderings in
Rb2KB'F6 (B' = Ho, Dy, Tb) and Cs2RbDyF6 in the
framework of the phenomenological theory; and (4) to
analyze factors that determine the formation of partic�
ular sets of phase states. 

2. EXPERIMENTAL TECHNIQUE 
AND RESULTS 

The structures of the phases of the Rb2KHoF6 crys�
tal were determined from X�ray diffraction experi�
ments for powder samples. The X�ray diffraction pat�
terns of the Rb2KHoF6 compound were measured
using an Anton Paar TTK 450 low�temperature cham�
ber mounted on a Bruker D8�ADVANCE X�ray dif�
fractometer (CuK

α
 radiation, θ–2θ scan mode,

VANTEC linear detector). Liquid nitrogen was used
as a coolant. The scan step in the 2θ range was 0.016°,
and the exposure time per point was 3 s. In the temper�
ature range from 133 to 463 K, 32 X�ray diffraction
patterns were measured in steps of 10 and 20 K in the
monoclinic phase G1 and cubic phase G0, respectively. 

Table 1. Main thermodynamic characteristics of the phase transitions in elpasolite Cs2RbDyF6 and Rb2KB 'F6 (B ' = Ho,
Dy, Tb) [10–14]

Crystal Gi Z System of octahedral 
rotation Ti, K δTi, K ΔS/R

Cs2RbDyF6 –I1 14/m 2 ϕ00 251 0 0.20

–I12/m1 2 ϕϕ0 205 0.10
0.47

–P121/n1 2 ϕϕψ 196 0

Rb2KHoF6 –P121/n1 2 ϕϕψ 400 1.27 0.65

Rb2KDyF6 –P121/n1 2 ϕϕψ 390 0.52

Rb2KTbF6 –P121/n1 2 ϕϕψ 412 0.67

Designations: Gi is the space group of the dissymmetric phase, Z is the number of formula units in the Bravais cell, Ti is the phase transition
temperature, δTi is the hysteresis of the phase transition temperature, ΔS/R is the entropy change due to the phase transition, and R is the gas
constant.
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Fig. 1. Fragments of X�ray diffraction patterns of the
Rb2KHoF6 crystal (arrows indicate superstructure reflec�
tions in the monoclinic phase). The arrow PT shows the
phase transition point. 
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The symmetry and parameters of the Rb2KHoF6

crystal cells in the cubic and monoclinic phases were
determined earlier in [13]. These data were used in our
present study. The superstructure reflections (Fig. 1)
in the X�ray diffraction patterns of the Rb2KHoF6

monoclinic phase confirmed the doubling of the prim�
itive cell volume upon the phase transition (Table 2). 

The profile and structural parameters were refined
with the TOPAS software package [15]. The first stage
of the processing of the experimental data included the
procedure of fitting of the profile and shape of X�ray
diffraction peaks. As a result of this data processing, we
obtained the temperature dependences of the param�
eters of the crystal cell (Fig. 2) and monoclinic angle
(Fig. 3). Table 2 presents the main parameters of the
data collection and refinement of the structure only
for two temperatures, namely, 463 K (cubic phase) and

133 K (monoclinic phase), which are the most distant
from the phase transition point. It is for these temper�
atures that the results of the refinement will be pre�
sented below. 

The second stage of the data processing included
the refinement of the coordinates and thermal param�
eters of atoms in the Rb2KHoF6 crystal. The structure
of the cubic phase was determined taking into account
that all atoms are located in special locations. There�
fore, in the cubic phase of the Rb2KHoF6 crystal, we
refined only five parameters: the coordinate x of the
fluorine atom and isotropic thermal parameters for all
the considered atoms (Table 3). 

For the distorted monoclinic phase, the initial
coordinates of atoms were taken as the coordinates of
these atoms in the cubic phase. After several cycles of

Table 2. Crystallographic data, data collection and refinement parameters of the Rb2KHoF6 structure for two temperatures
of the experiment

Parameter T = 463 K T = 133 K

Space group –Fm m –P121/n1

ai, Å a0, 9.3143(3) 1/2(a0 – b0), 6.4889(4)

bi, Å b0, 9.3143(3) 1/2(a0 + b0), 6.6081(4)

ci, Å c0, 9.3143(3) c0, 9.2271(5)

β, deg 90 90.178(4)

Z 4 2

V, Å3 808.07(1) 395.65(4)

2θ range in the X�ray diffraction pattern, deg 5–110 5–110

Integral Bragg factor RB, % 2.0 0.9

Weighted profile R�factor Rwp, % 7.4 7.4
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Fig. 2. Dependences of the lattice parameters of the
Rb2KHoF6 crystal a0 (cubic phase) and a1, b1, and c1
(monoclinic phase) on the temperature (in the monoclinic
phase, the lattice parameters a1 and b1 are increased by a

factor of ). 2
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Fig. 3. Temperature dependence of the monoclinic cell
angle β in the Rb2KHoF6 crystal. 
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the refinement, the discrepancy factors reached a
minimum (Table 2). 

Table 4 presents the selected bond lengths and
angles of the octahedral groups HoF6. The projections
of the structures of the cubic and monoclinic phases of
the Rb2KHoF6 crystal are shown in Figs. 4 and 5,
respectively. For convenience of the comparison, the
structures of the monoclinic phase are projected along
the coordinate axes of the initial cubic phase G0. From
Tables 3, 4 and Figs. 4, 5, it can be seen that, upon the
phase transition, the main changes occur with the
coordinates of the fluorine atoms. In general, these
displacements can be represented in the form of rota�

tions of rigid octahedra, for example, the HoF6 octa�
hedra. Therefore, according to Figs. 4 and 5, the dis�
tortion of the Rb2KHoF6 crystal can be described by
the symbol (ϕϕψ). 

A further analysis of the experimental data will be
performed based on the group�theoretical analysis of
the structural phase transitions in crystals with the

space group Fm m [9] and with the use of the
ISODISPLACE software [16]. This made it possible
to expand the displacements of atoms in the distorted
phase in terms of the irreducible representations of the

group of the initial phase Fm m and to visualize the
obtained result. 

So, the displacements of all atoms of the
Rb2KHoF6 structure in the monoclinic phase are
divided according to the following irreducible repre�

sentations: , , , , , , and . The
critical displacements are the ϕ rotations of the octa�

hedra (representation ) and the ψ rotations (repre�

sentation ). After the phase transition, these dis�
placements take the maximum values. All the other
displacements, which are transformed according to

the irreducible representations , , , , and

, do not determine the symmetry of the distorted
phase and are noncritical. 

The distortion of the HoF6 octahedra involves dis�
placements of fluorine atoms that transform according

to the irreducible representations , , , and

, which have no significant effect on the shape of
the octahedra (Tables 3, 4). The totally symmetric dis�

placement  causes only a homogeneous deforma�
tion of the octahedra. Among all the noncritical dis�
placements, we note displacements of the Rb atom
along the face diagonal of the unit cell in the initial

phase (irreducible representation ). In the mono�
clinic phase at 133 K, these displacements are equal to
0.3 Å and comparable with the critical displacements
of the fluorine atoms. Thus, although the displace�
ments of Rb atoms are noncritical at temperatures far
from the phase transition temperatures, they become
significant. 

Let us compare the displacements of atoms in the
lowest�symmetry monoclinic phase of the Cs2RbDyF6

crystal [12] with the corresponding displacements in
the Rb2KHoF6 monoclinic phase. The complete con�
densates of reducible representations for two crystals
in the corresponding monoclinic phases coincide with
each other. Unlike the displacements of rubidium
atoms in Rb2KHoF6, the displacements of Cs atoms in
Cs2RbDyF6 are very small even in the lowest�symme�
try phase (0.05 Å against 0.3 Å) and occur in planes
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Table 3. Coordinates and isotropic thermal parameters of
atoms Biso Rb2KHoF6 structure at temperatures of 463 and
133 K

Atom x y z Biso, Å2

T = 463 K

Rb 0.25 0.25 0.25 6.0(1)

K 0 0 0.5 2.5(2)

Ho 0 0 0 3.1(1)

F 0.2344(5) 0 0 2.2(2)

T = 133 K

Rb 0 0.5259(2) 0.2535(6) 2.8(1)

K 0 0 0.5 1.2(2)

Ho 0.5 0.5 0.5 1.8(1)

F1 0.821(3) 0.264(3) 0.043(3) 1.8(2)

F2 0.219(4) 0.674(3) 0.532(3) 1.9(2)

F3 0.886(3) 0.016(3) 0.763(2) 1.2(1)

Table 4. Selected bond lengths and angles in the HoF6 octa�
hedron

T = 463 K T = 133 K

Bond length, Å

Ho–F1 2.182(5) 2.13(2)

Ho–F2 2.17(2)

Ho–F3 2.30(2)

K–F1 2.474(5) 2.63(2)

K–F2 2.60(2)

K–F3 2.55(2)

Rb–F1 3.223(3) 2.80(2)

Rb–F2 2.82(2)

Rb–F3 2.82(2)

Angle, deg

F1–Ho–F2 90 87.3(8)

F1–Ho–F3 88.0(8)

F2–Ho–F3 83.6(8)
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with the [001] indices almost along the face diagonal

of the cubic unit cell (irreducible representation ).
It should be noted that the distortions of the HoF6

octahedral group in Rb2KHoF6 are not so large as
those of the DyF6 groups in Cs2RbDyF6. At a temper�
ature of 130 K, the angles of rotation of the DyF6 octa�

X5
+

hedra in Cs2RbDyF6 take the following values: ϕ ≈ 8°
and ψ ≈ 5°. In Rb2KHoF6 at 133 K, the angles of rota�
tion are ϕ ≈ 12° and ψ ≈ 10°. 

Thus, the phase transition in the Rb2KHoF6 crystal
is a displacement�type transition, and the change of
the symmetry in the distorted phase can be described
by rotations of the HoF6 octahedra. 

3. FORMATION OF PHASE STATES 
(PHENOMENOLOGICAL THEORY) 

The formation of the phase states (000) 
(ϕ00)  (ϕϕ0)  (ϕϕψ) (sequence 1) for
Cs2RbDyF6 and (000)  (ϕϕψ) (sequence 2) for
Rb2KB'F6 (B' = Ho, Dy, Tb), where, as noted above,

ϕ ∈  and ψ ∈  are the critical reducible repre�
sentations, is analyzed based on the phenomenologi�
cal theory [17]. A similar analysis was performed for
rotational phase transitions in perovskites [18, 19] and
for some phase transitions in elpasolites [4]. 

A simple thermodynamic potential describing the
above sequences has the form 

where 

Γ4
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Φ ψ ϕ,( ) ΦX ΦΓ ΦΓX,+ +=

ΦΓ α1ΓG1Γ α2ΓG1Γ
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Fig. 4. Projection of the Rb2KHoF6 cubic cell along the
fourfold axis at 463 K. Only the HoF6 octahedra are
shown. The octahedra are formed by six fluorine atoms
located at the vertices. The Ho atoms are located at the
center of the octahedra. Black and gray circles are potas�
sium and rubidium atoms, respectively. 
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Fig. 5. Projections of the initial phase of the Rb2KHoF6 monoclinic cell along the fourfold axes at 133 K: (a, b) ϕ rotation and
(c) ψ rotation. The notation is the same as in Fig. 4. 
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Both the aforementioned reducible representations
are critical; i.e., according to these representations,
the system becomes unstable, and, hence, α1Γ  0
and α1X  0. In sequence 1, with a decrease in the
temperature, first, the reducible representation ϕ and,
then, the reducible representation ψ appear; there�
fore, we have α1Γ < α1X. In sequence 2, both the reduc�
ible representations appear simultaneously; therefore,
we can set that α1Γ ~ α1X. The coefficients μi (i = 1, 2)
characterize the interaction of the reducible represen�
tations ϕ and ψ. Upon the phase transition, the com�
ponents of the new reducible representations are
always orthogonal to each other; hence, we have μ2 <
μ1. For definiteness, we assume that μ2 < 0 and μ1 > 0.
Moreover, taking into account that the orderings are
characterized by no more than one component of the
reducible representation ψ, we can set that β1X > 0. 

Sequence 1 is formed as follows. Since α1Γ < α1X,
under the conditions α1Γ < 0 and α1X > 0 there appears

G3Γ ϕ1
2
ϕ2

2
ϕ3

2
, G1X ψi

2
,

i 1=

3

∑= =

G2X ψi
2
ψj

2
,

j 2 i j<( )=

3

∑
i 1=

2

∑=

ΦΓX μ1 ϕi
2
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2

i 1=

3

∑=
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2

ϕ2
2+( )ψ3

2
ϕ2

2
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2+( )ψ1
2

ϕ1
2

ϕ3
2+( )ψ2

2+ +[ ].

the reducible representation ϕ (ψ = 0). The diagrams
of phase states described by the thermodynamic
potential ΦΓ are well known [20]. In the case where
α2Γ > 0, ωΓ > 0, and σΓ < 0, the diagram of phase states

has the form shown in Fig. 6 in the region  < α1Γ ≤
0. The phase (ϕ00) appears when α1Γ < 0 and β1Γ > 0.
As the temperature decreases, in the line β1Γ =
⎯σΓ(⎯α1Γ/2α2Γ) there occurs a first�order phase tran�
sition into the phase (ϕϕ0). With a further decrease in
the temperature, the coefficient α1X decreases. At the
coefficient α1X = –2μ2(–α1Γ/2α2Γ), the phase (ϕϕ0)
loses the stability with respect to the reducible repre�
sentation ψ, and the phase (ϕϕψ) is formed. The
parameter determining the type of the phase transition
into this phase can be written in the form W = 4α2Γα2X –

. If W > 0, this transition is a second�order phase
transition. If W < 0, this transition is a first�order
phase transition. In the considered case, we have
W > 0. The diagram of phase states described by the
thermodynamic potential Φ(ψ, ϕ) is shown in Fig. 6. 

For the formation of sequence 2, it is necessary
that, first, the phase transition into the phase (ϕϕψ)
would become a first�order transition, and, second,
the phase (ϕϕψ) would have a common boundary with
the symmetric cubic phase. The first of these require�
ments can be satisfied by making the parameter W
negative. In this case, the lines of the second�order
phase transition between the phases (ϕϕ0) and (ϕϕψ)
and also between the phases (ϕ00) and (ϕ0ψ) will turn
into the lines of the first�order phase transition and
become closer to the boundaries of the appearance of
the reducible representation ϕ. Then, by decreasing
the coefficient α1X and making it closer to the coeffi�
cient α1Γ, we can obtain the phase (ϕϕψ) at the bound�
ary with the symmetric phase. 

The parameter α1X can be represented in the form
α1X = h + mα1Γ (m ~ 1), where h is the value of α1X

when α1Γ = 0 (h > 0). The convergence of the coeffi�
cients α1X and α1Γ is due to the decrease in the value of
h. A common boundary between the phase (ϕϕψ) and
the symmetric phase (000) arises under the conditions
h < (W + α2Xβ1Γ)2/[–μ28α2X(2α3Γ + δΓ)] and W � 0.
In this case, the diagram of phase states will have the
form shown in Fig. 7. The phase (ϕϕψ) arises at the
boundary with the symmetric phase, because the
appearance of the reducible representation ϕ leads to
a loss of the stability of the system with respect to the
reducible representation ψ. As a result, there is a co�
condensation of both the considered reducible repre�
sentations, which leads to a trigger phase transition. 

Thus, the diagram of phase states shown in Fig. 6
can be transformed into the diagram shown in Fig. 7
by changing the sign of the parameter W from negative
to positive and making the coefficients α1X and α1Γ

closer to each other. 
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Fig. 6. Diagram of phase states described by the thermody�
namic potential Φ(ψ, ϕ) for the parameters α1Γ < α1X,

α2Γ > 0, ωΓ > 0, β1X > 0, and W > 0, where  =

α1Xα2Γ/μ2. The solid and dashed lines indicate the first�
order and second�order phase transitions, respectively;
and the thin solid line shows the thermodynamic path for
sequence 1. 
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4. DISCUSSION OF THE RESULTS 

As was already noted, although the crystal�chemi�
cal parameters of the compounds under consideration
are close to each other, the sets of their dissymmetric
phases differ significantly. Since the subsystems of B'F6

octahedra in these compounds are identical, it can be
assumed that the aforementioned differences are asso�
ciated in many aspects with the differences in the sub�
systems of alkali cations. 

Among the factors, which play an important role in
the formation of rotational instabilities, is the degree
of correspondence between the sizes of particles in the
crystal and the structure of the compound [1, 2]. In the
simplest case, such degree of correspondence in elpa�
solite�type crystals is characterized by the packing
coefficient t [1, 2] (an analog of the tolerance factor),

which has the form t = (rA + rX) /(rB + rB' + 2rX),
where rA, rB, rB', and rX are the radii of A, B, B', and
X ions, respectively. 

For crystals Rb2KB 'F6 (B ' = Ho, Dy, Tb) and
Cs2RbDyF6, the packing coefficients are t ≈ 0.87 and
≈0.89, respectively. For packing coefficients t < 1, the
A–X bonds are stretched, while the B–X and B '–X
bonds are compressed (see structural characteristics
for Cs2RbDyF6 in [12] and for Rb2KHoF6 in Table 4).
The subsystem of BX6 and B'X6 octahedra is subjected
to compressive stresses, which contribute to the bend�
ing of the B–X–B ' bonds and favor the appearance of
rotational distortions. Moreover, for t < 1, the sizes of
the inter�octahedral (cuboctahedral) hole exceed the
sizes of the A cation. This creates favorable conditions
both for octahedral rotations and for an increase in the
root�mean�square deviations of the A cations from the
center of the hole, i.e., for an increase in the degree of
its delocalization. The rotations corresponding to the

2

 mode induce a local field with the symmetry of the
quadrupole moment in the inter�octahedral hole. The
local field interacts with the A cations, which have a
“free space” in the hole. This decreases the energy of
this mode and, hence, encourages its condensation.

The interaction of the  mode with the delocalized A
cations is substantially weaker, because, in the center
of the hole, this mode induces a field with the symme�
try of the third�order multipole moment. Conse�
quently, with a further decrease in the packing coeffi�
cient t, an increase in the delocalization stimulates the

“softness” of the system with respect to the  mode

to a greater extent than with respect to the  mode. 

5. CONCLUSIONS 

The refined structures of the monoclinic phases of
crystals Rb2KHoF6 (this work) and Cs2RbDyF6 [12]
convincingly prove that critical distortions of the ini�
tial cubic elpasolite structure in these crystals are rota�
tions of octahedral groups. However, in order to
explain the available set of experimental data, it is nec�
essary to take into account the noncritical displace�
ments of atoms, which are reduced to octahedral dis�
tortions and displacements of Rb and Cs atoms
located between the octahedra. 

According to the structural data and phenomeno�
logical description, the evolution of phase states upon
changing over from Cs2RbDyF6 to Rb2KB 'F6 (B ' =
Ho, Dy, Tb) can be represented as follows. For the
packing coefficient t ≈ 0.89 (Cs2RbDyF6), the sizes of
the inter�octahedral hole significantly exceed the sizes
of the A cation. As a result, the crystal becomes unsta�
ble with respect to rotational distortions. This means
that α1Γ  0 and α1X  0, but, since the reducible
representation ϕ appears at 251 K and the reducible
representation ψ appears at 196 K, we have α1Γ < α1X.
With a further decrease in the packing coefficient t (t ≈
0.87 for Rb2KHoF6), the parameters α1Γ and α1X

decrease. This fact is confirmed by high values of iso�
tropic thermal parameters Biso of Rb atoms in the cubic
phase of the Rb2KHoF6 structure (Table 3) and those
of Cs atoms in the cubic phase of the Cs2RbDyF6

structure [12]. However, the coefficient α1X decreases
more rapidly than the coefficient α1Γ. Consequently,
the value of α1X approaches the value of α1Γ. Simulta�
neously, since the indirect interaction of the reducible
representations ϕ and ψ is enhanced through the dis�
placements of the A cations, which makes a negative
contribution to μ2, this coefficient decreases (i.e., |μ2|
increases), and the parameter W decreases and
becomes negative. The enhancement of the indirect
interaction in the phase (ϕϕψ) is confirmed by the fact
that, according to the obtained data, the displacement
of Rb atoms from the center of the cuboctahedral hole

X3
+

Γ4
+

X3
+

Γ4
+

(000)

(ϕϕϕ)

α1Γ

β1Γ

(ϕϕψ)
(ϕ0ψ)

Fig. 7. Diagram of phase states described by the thermody�
namic potential Φ(ψ, ϕ) for the parameters α1Γ ~ α1X,
α2Γ > 0, ωΓ > 0, β1X > 0, and W < 0. The solid line indicates
the first�order phase transition, and the thin solid line
shows the thermodynamic path for sequence 2. 
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(~0.30 Å) in Rb2KHoF6 significantly exceeds the dis�
placement of Cs atoms (~0.05 Å) in Cs2RbDyF6.
Taken together, these changes lead to the fact that, in
Rb2KB'F6 (B' = Ho, Dy, Tb), the phase transition tem�
perature increases and the phase (ϕϕψ) arises at the
boundary with the symmetric phase. 

Thus, the main factor determining the formation of
phase states in these and related crystals is the mis�
match in the crystal�chemical parameters of the com�
ponents of the compounds and the elpasolite struc�
ture. As a result, the crystals are potentially unstable
with respect to rotational distortion of two types. An
important role in the formation of any rotational–dis�
torted phase state is played by displacements of cations
located in cuboctahedral holes. 
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