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Abstract. The effect of Coulomb interaction between Dirac fermions on the formation of the Kohn-
Luttinger superconducting state in bilayer doped graphene is studied disregarding of the effect of the van
der Waals potential of the substrate and impurities. The phase diagram determining the boundaries of su-
perconductive domains with different types of symmetry of the order parameter is built using the extended
Hubbard model in the Born weak-coupling approximation with allowance for the intratomic, interatomic,
and interlayer Coulomb interactions between electrons. It is shown that the Kohn-Luttinger polarization
contributions up to the second order of perturbation theory in the Coulomb interaction inclusively and an
account for the long-range intraplane Coulomb interactions significantly affect the competition between
the superconducting phases with the f -, p + ip-, and d + id-wave symmetries of the order parameter. It is
demonstrated that the account for the interlayer Coulomb interaction enhances the critical temperature
of the transition to the superconducting phase.

1 Introduction

In recent years, there has been an increased interest in the
possibility of the development of the Cooper instability
in graphene under appropriate experimental conditions.
Although so far this possibility has not been confirmed,
it was experimentally shown [1–6] that graphene becomes
superconducting when it is in contact with ordinary super-
conductors. The fact that short graphene samples placed
between superconducting contacts can be used to con-
struct Josephson junctions indicates that Cooper pairs can
propagate coherently in graphene. This fact stimulated
theoretical studies on possible implementation of the su-
perconducting phase in an idealized monolayer and bilayer
graphene where the authors did not take into account the
effect of nonmagnetic impurities and van der Waals po-
tential of the substrate.

Along with the numerous studies of this problem us-
ing the electron-phonon mechanism [7–11], pairing mech-
anisms caused by electron correlations [12–15], and other
exotic superconductivity mechanisms [16,17], some au-
thors widely discuss the possibility of the development of
Cooper instability in the above-mentioned systems using
the Kohn-Luttinger mechanism [18], which suggests the
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emergence of superconducting pairing in the systems with
the purely repulsive interaction [19–23].

As it was shown in reference [24], the Cooper insta-
bility can occur in an idealized graphene monolayer due
to the strong anisotropy of the Fermi contour for Van
Hove filling nV H , which, in fact, originates from the Kohn-
Luttinger mechanism. According to the results obtained in
reference [24], this Cooper instability in graphene evolves
predominantly in the d-wave channel and can be respon-
sible for the critical superconducting transition tempera-
tures up to Tc ∼ 10 K, depending on the proximity of the
chemical potential level to the Van Hove singularity. The
theoretical analysis of the competition between the fer-
romagnetic and superconducting instabilities showed [25]
that the tendency to superconductivity due to strong mod-
ulation of the effective interaction along the Fermi con-
tour, i.e., due to electron-electron interactions alone, pre-
vails. In this case, the superconducting instability evolves
predominantly in the f -wave channel.

The competition between the Kohn-Luttinger super-
conducting phase and the spin density wave phase at the
Van Hove filling and near it in the graphene monolayer
was analyzed in references [26,27] using the functional
renormalization group method. It was found that super-
conductivity with the d + id-wave symmetry of the order
parameter prevails in a large domain near the Van Hove
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singularity, and a change in the calculated parameters
may lead to a transition to the phase of the spin den-
sity wave. According to [27], far away from the Van Hove
singularity, the long-range Coulomb interactions change
the form of the d + id-wave function of a Cooper pair
and can facilitate superconductivity with the f -wave sym-
metry of the order parameter. The competition between
the superconducting phases with different symmetry types
in the wide electron density range 1 < n ≤ nV H in the
graphene monolayer was studied in references [28,29]. It
was demonstrated that at intermediate electron densities
the long-range Coulomb interactions facilitate implemen-
tation of superconductivity with the f -wave symmetry of
the order parameter, while at approaching the Van Hove
singularity, the superconducting pairing with the d + id-
symmetry type evolves [28,29].

The possibility of the Kohn-Luttinger superconduc-
tivity implementation was analyzed also for bilayer
graphene [30–33]. In accordance with the results obtained
in reference [34], in the case of bilayer graphene, fer-
romagnetic instability in the vicinity of the Van Hove
singularities dominates over the Kohn-Luttinger super-
conductivity. It should be noted, however, that in these
calculations only the Coulomb repulsion of electrons on
one site was taken into account. The Coulomb interaction
screening function in the bilayer was calculated earlier in
reference [35] in the random phase approximation (RPA)
in the doped and undoped regimes. It was established that
the static polarization operator of the doped bilayer con-
tains the Kohn anomaly much larger than in the case of
a monolayer or 2D electron gas. It is well-known that the
singular part of the polarization operator or the Kohn
anomaly [36,37] facilitates effective attraction between two
particles, ensuring a contribution that always exceeds the
repulsive contribution associated with the regular part of
the polarization operator for the orbital angular momenta
l �= 0 of the pair [18]. Thus, we can expect that the super-
conducting transition temperature Tc in the idealized bi-
layer may exceed the corresponding value for the graphene
monolayer.

In addition, it was shown in earlier publications [38,39]
that the value of Tc can be increased via the Kohn-
Luttinger mechanism even for low carrier concentrations
if we consider the spin-polarized two-band situation or a
multilayer system. In this case, the role of the pairing spins
“up” is played by electrons of the first band (layer), while
the role of the screening spins “down” is played by elec-
trons of the second band (layer). Coupling between the
electrons of the two bands occurs via the interband (in-
terlayer) Coulomb interaction. As a result, the following
excitonic tight mechanism becomes possible: electrons of
one sort form a Cooper pair by polarizing electrons of an-
other sort [38,39]. This mechanism of the interaction is
also effective in quasi-two-dimensional systems.

In this work, we investigate the Kohn-Luttinger
Cooper instability in an idealized graphene bilayer using
the Born weak-coupling approximation. We calculate the
phase diagram, which reflects the competition between the
superconducting phases with different types of the sym-

Fig. 1. Crystalline structure of the graphene bilayer. Carbon
atoms A1 and B1 in the lower layer are shown by red and
black circles; carbon atoms A2 and B2 in the upper layer are
shown by black and green circles. Intraplane electron hoppings
are marked by t1 and t2; γ1, γ3 and γ4 show the interplanar
hoppings.

metry of the order parameter, taking into account the
second-order contributions in the Coulomb repulsion to
the effective interaction of electrons in the Cooper chan-
nel. We analyze modification of the phase diagram with
allowance for the Coulomb repulsion between electrons of
the same, of the nearest, and of the next-to-nearest carbon
atoms in a single layer, as well as the interlayer Coulomb
interactions. We demonstrate the importance of taking
into account the Coulomb repulsion of electrons on dif-
ferent crystal lattice sites and in different layers of bilayer
graphene. The account of Coulomb repulsion changes the
phase diagram of the superconducting state and, under
certain conditions, increases the critical temperature.

2 Theoretical model

Let us consider an idealized graphene bilayer, assuming
that two single layers are arranged in accordance with the
AB type, i.e., one layer is rotated on 60◦ relative to the
other single layer [40,41]. We choose the arrangement of
the sublattices in the layers in such a way that the sites
from different layers located one above another belong to
the sublattices A1 and A2 respectively, while the remain-
ing sites belong to the sublattices B1 and B2 (Fig. 1).
In the Shubin-Vonsovsky (extended Hubbard) model [42],
the Hamiltonian for the graphene bilayer which takes into
account electron hoppings between the nearest and next-
to-nearest atoms, as well as the Coulomb repulsion be-
tween electrons of the same and of the adjacent atoms
and the interlayer Coulomb interaction of electrons, in the
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Wannier representation has the form:

Ĥ = Ĥ0 + Ĥint, (1)

Ĥ0 = (ε − μ)

(∑
ifσ

n̂A
ifσ +

∑
igσ

n̂B
igσ

)

− t1
∑
fδσ

(
a†
1fσb1,f+δ,σ + a†

2fσb2,f−δ,σ + h.c.
)

− t2
∑
iσ

( ∑
〈〈fm〉〉

a†
ifσaimσ +

∑
〈〈gn〉〉

b†igσbinσ + h.c.

)

− γ1

∑
fσ

(
a†
1fσa2fσ + h.c.

)

− γ3

∑
gδσ

(
b†1gσb2,g+δ,σ + h.c.

)

− γ4

∑
fδσ

(
a†
1fσb2,f−δ,σ + a†

2fσb1,f+δ,σ + h.c.
)

,

(2)

Ĥint = U

(∑
if

n̂A
if↑n̂

A
if↓ +

∑
ig

n̂B
ig↑n̂

B
ig↓

)

+ V1

∑
fδσσ′

(
n̂A

1fσn̂B
1,f+δ,σ′ + n̂A

2fσn̂B
2,f−δ,σ′

)

+
V2

2

∑
iσσ′

( ∑
〈〈fm〉〉

n̂A
ifσn̂A

imσ′ +
∑

〈〈gn〉〉
n̂B

igσn̂B
inσ′

)

+ G1

∑
fσσ′

n̂A
1fσn̂A

2fσ′ + G3

∑
gδσσ′

n̂B
1gσn̂B

2,g+δ,σ′

+ G4

∑
fδσσ′

(
n̂A

1fσn̂B
2,f−δ,σ′ + n̂A

2fσn̂B
1,f+δ,σ′

)
. (3)

In equations (1)–(3), the operators a†
1fσ(a1fσ) create (an-

nihilate) an electron with the spin projection σ = ±1/2
at site f of the sublattice A1; n̂A

1fσ = a†
1fσa1fσ denotes

the operators of the numbers of fermions at the f site of
the sublattice A1 (analogous notations are used for the
sublattices A2, B1, and B2). Vector δ(−δ) connects the
nearest atoms of the hexagonal lattice of the lower (up-
per) layer. Index i = 1, 2 in Hamiltonian (1) denotes the
number of layer. We assume that the one-site energies are
identical (εAi = εBi = ε) and the position of the chemi-
cal potential μ and number of carriers n in the graphene
bilayer can be controlled by a gate electric field. In the
Hamiltonian, t1 is the hopping integral between the neigh-
boring atoms (hoppings between different sublattices), t2
is the hopping integral between the next-to-nearest neigh-
boring atoms (hoppings in the same sublattice), U is the
parameter of Coulomb repulsion between electrons of the
same atom with the opposite spin projections (Hubbard
repulsion), and V1 and V2 are the Coulomb interactions
between electrons of the nearest and the next-to-nearest
carbon atoms in a single layer. The symbol 〈〈 〉〉 indicates
that summation is made only over next-to-nearest neigh-
bors; the symbols γ1, γ3, γ4 denote the parameters of the

interlayer electron hoppings (Fig. 1), and G1, G3 and G4

are the interlayer Coulomb interactions between electrons.
Hamiltonian Ĥ0 can be diagonalized using the

Bogolyubov transformation

αikσ = wi1(k)a1kσ + wi2(k)a2kσ

+ wi3(k)b1kσ + wi4(k)b2kσ, i = 1, 2, 3, 4, (4)

and acquires the form

Ĥ0 =
4∑

i=1

∑
kσ

Eikα†
ikσαikσ. (5)

Since the results of ab initio calculations for
graphite [43,44] showed a very small value of the
interlayer hopping parameter γ4, hereinafter we assume
that γ4 = 0. Then, the four-band energy spectrum of the
graphene bilayer is described by the expressions

Eik = ε ±
√

Ak ±
√

Bk − t2fk, (6)

Ak =
1
4

(
2a2 + 4|bk|2 + 2|dk|2

)
,

Bk =
1
4

(
|dk|2

(|dk|2 − 2a2 + 4|bk|2
)

+ a4 + 4a2|bk|2

+ 4ab2
kdk + 4ab∗2k d∗k

)
,

a = γ1, bk = t1uk, dk = γ3uk,

where the following notation has been introduced:

fk = 2 cos(
√

3ky) + 4 cos
(√

3
2

ky

)
cos
(

3
2
kx

)
, (7)

uk =
∑

δ

eikδ = e−ikx + 2e
i
2kx cos

(√
3

2
ky

)
, (8)

|uk| =
√

3 + fk. (9)

In this paper, the conditions for the implementation of the
Kohn-Luttinger superconductivity are analyzed by con-
sidering the situation when upon doping of the graphene
bilayer the chemical potential falls into the two upper en-
ergy bands E1k and E2k (Fig. 2a). Then, if γ1 �= 0 and the
inequality μ > γ1 is valid, the Fermi contour will consist
of two lines (Fig. 2b) in the vicinity of each Dirac point
for the electron densities 1 < n < nV H , where n is the
electron density calculated per atoms of one layer.

The coefficients of the Bogolyubov transformation can
be found from the system of homogeneous equations

⎛
⎜⎜⎜⎜⎝

xi a b∗k 0

a xi 0 bk

bk 0 xi d∗k
0 b∗k dk xi

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

wi1

wi2

wi3

wi4

⎞
⎟⎟⎟⎟⎠ = 0, (10)

where xi = Eik − ε + t2fk.
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Fig. 2. (a) Energy structure of the graphene bilayer near the
Dirac points and (b) formation of the multisheet Fermi contour
at t2 = 0, γ1 = 0.12, γ3 = 0.1, and μ = 0.7 (all the parameters
are given in units of |t1|).

In the Bogolyubov representation, interaction opera-
tor (3) is defined by the following expression which in-
cludes the operators α1kσ, α2kσ, α3kσ and α4kσ

Ĥint =
1
N

∑
ijlmσ
kpqs

Γ
||
ij;lm(k, p|q, s)α†

ikσα†
jpσαlqσαmsσ

× Δ(k + p − q − s) +
1
N

∑
ijlm
kpqs

Γ⊥
ij;lm(k, p|q, s)

× α†
ik↑α

†
jp↓αlq↓αms↑Δ(k + p − q − s), (11)

where Δ(x) is the delta-function and Γ
||
ij;lm(k, p|q, s) and

Γ⊥
ij;lm(k, p|q, s) are the initial amplitudes. The quantity

Γ
||
ij;lm(k, p|q, s) =

1
2

(
Vij;lm(k, p|q, s) + Vji;ml(p, k|s, q)

+ G
(1)
ij;lm(k, p|q, s) + G

(1)
ji;ml(p, k|s, q)

+ G
(3)
ij;lm(k, p|q, s) + G

(3)
ji;ml(p, k|s, q)

+ G
(4)
ij;lm(k, p|q, s) + G

(4)
ji;ml(p, k|s, q)

)
,

(12)

Vij;lm(k, p|q, s) = V1

(
uq−pwi1(k)wj3(p)w∗

l3(q)w∗
m1(s)

+ u∗
q−pwi2(k)wj4(p)w∗

l4(q)w∗
m2(s)

)

+
V2

2

4∑
r=1

fq−pwir(k)wjr(p)

× w∗
lr(q)w∗

mr(s), (13)

G
(1)
ij;lm(k, p|q, s) = G1wi1(k)wj2(p)w∗

l2(q)w∗
m1(s), (14)

G
(3)
ij;lm(k, p|q, s) = G3uq−pwi3(k)wj4(p)w∗

l4(q)w∗
m3(s),

(15)

G
(4)
ij;lm(k, p|q, s) = G4

(
u∗

q−pwi1(k)wj4(p)w∗
l4(q)w∗

m1(s)

+ uq−pwi2(k)wj3(p)w∗
l3(q)w∗

m2(s)
)

(16)

describes the intensity of the interaction of fermions with
parallel spin projections, while the quantity

Γ⊥
ij;lm(k, p|q, s) = Uij;lm(k, p|q, s)

+ Vij;lm(k, p|q, s) + Vji;ml(p, k|s, q)

+ G
(1)
ij;lm(k, p|q, s) + G

(1)
ji;ml(p, k|s, q)

+ G
(3)
ij;lm(k, p|q, s) + G

(3)
ji;ml(p, k|s, q)

+ G
(4)
ij;lm(k, p|q, s) + G

(4)
ji;ml(p, k|s, q),

(17)

Uij;lm(k, p|q, s) = U
4∑

r=1

wir(k)wjr(p)w∗
lr(q)w∗

mr(s)

(18)

corresponds to the interaction of Fermi quasi-particles
with antiparallel spin projections. Indices i, j, l, m denote
the number of the band and can acquire the values 1, 2,
3, or 4.

3 Effective interaction and equation
for the superconducting order parameter

In this paper, we use the Born weak-coupling approxima-
tion, in which the hierarchy of model parameters has the
form

W > U > V1 > V2 > G1 > G3, G4, (19)

where W is the bandwidth in the graphene bilayer (6). In
the calculation of the scattering amplitude in the Cooper
channel, the condition (19) allows us to limit the consid-
eration to only the second-order diagrams in the effective
interaction of two electrons with opposite values of the
momentum and spin and use the quantity Γ̃ (p, k) for it.
Graphically, this quantity is determined by the sum of the
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Fig. 3. First- and second-order diagrams for the effective in-
teraction of electrons in the graphene bilayer. Solid lines with
light (dark) arrows correspond to Green’s functions for elec-
trons with spin projections + 1

2
(− 1

2
) and energies correspond-

ing to graphene energy bands Ei, Ej , El, and Em. Subscripts
i and j can acquire the values of 1 or 2 and subscripts l and m
can acquire the values of 1, 2, 3, or 4. Momenta q1 and q2 are
defined by (24).

diagrams shown in Figure 3. Solid lines with light (dark)
arrows correspond to Green’s functions for the electrons
with opposite spin projections + 1

2 (− 1
2 ). It is well known

that the possibility of Cooper pairing is determined by
the characteristics of the energy spectrum near the Fermi
level and by the effective interaction of electrons located
near the Fermi surface [45]. Assuming that the chemical
potential in doped bilayer graphene falls into the two up-
per energy bands E1k and E2k (Fig. 2a) and analyzing
the conditions for the occurrence of Kohn-Luttinger su-
perconductivity, we can consider the situation in which
the initial and final momenta of electrons in the Cooper
channel also belong to the two upper bands. Hence, in-
dices i and j in the Kohn-Luttinger diagrams will acquire
the values of 1 or 2 (Fig. 3).

The first diagram in Figure 3 corresponds to the ini-
tial interaction of two electrons in the Cooper channel.
The next (Kohn-Luttinger) diagrams in Figure 3 describe
second-order scattering processes δΓ̃ (p, k) and take into
account the polarization effects of the filled Fermi sphere.
Two solid lines without arrows in these diagrams indicate
the summation over both spin projections. Wavy lines cor-
respond to the initial interaction. Scattering of electrons
with identical spin projections corresponds only to the in-
tersite contribution. If the electrons with different spin
projections interact, then the scattering amplitude is de-
termined by the sum of the Hubbard and intersite repul-
sions. Thus, in the presence of the short-range Coulomb
interaction alone, the correction δΓ̃ (p, k) to the effective
interaction is determined by the last diagram only. If the
Coulomb interaction of electrons at neighboring lattice
sites of graphene is taken into account, all the diagrams
in Figure 3 contribute to the renormalized amplitude.

After the introduction of the analytical expressions for
the diagrams, the effective interaction acquires the form

Γ̃ (p, k) = Γ̃0(p, k) + δΓ̃ (p, k), (20)

Γ̃0(p, k) = Γ⊥
ii;jj(p,−p| − k, k), (21)

δΓ̃ (p, k) =
1
N

∑
l,m,p1

Γ⊥
il;jm(p, q2| − k, p1)

× Γ⊥
mi;lj(p1,−p|q2, k)χl,m(q2, p1)

+
2
N

∑
l,m,p1

{
Γ⊥

im;lj(p, p1|q1, k)

×
[
Γ

||
li;mj(q1,−p|p1,−k)

−Γ
||
li;jm(q1,−p| − k, p1)

]
+ Γ⊥

li;jm(q1,−p| − k, p1)

×
[
Γ

||
im;jl(p, p1|k, q1) − Γ

||
im;lj(p, p1|q1, k)

]}
× χl,m(q1, p1). (22)

Here, we introduced the following notations for the gen-
eralized susceptibilities:

χl,m(k, p) =
f(Elk) − f(Emp)

Emp − Elk
, (23)

where f(x) = (exp(x−μ
T ) + 1)−1 is the Fermi-Dirac distri-

bution function and the energies Eik are defined by the ex-
pressions (6). For the sake of compactness, we have intro-
duced the notations for the combinations of the momenta:

q1 = p1 + p − k, q2 = p1 − p − k. (24)

Knowing the renormalized expression for the effective in-
teraction, we can pass to the analysis of the conditions for
the emergence of superconductivity in the system under
investigation. It is well-known [45] that the emergence of
the Cooper instability can be established from the analysis
of the homogeneous part of the Bethe-Salpeter equation.
In this case, the dependence of the scattering amplitude
Γ (p, k) on momentum k can be factorized, which yields
the integral Gor’kov equation for the superconducting or-
der parameter Δ(p). After the integration over the isoen-
ergetic contours, we can reduce the problem of the Cooper
instability to the eigenvalue problem [22,46–49]

3
√

3
8π2

∮
εq=μ

dq̂

vF (q̂)
Γ̃ (p̂, q̂)Δ(q̂) = λΔ(p̂), (25)

where the superconducting order parameter Δ(q̂) plays
the role of the eigenvector and the eigenvalues λ satisfy
the relation λ−1 � ln(Tc/W ). In this case, the momenta p̂
and q̂ lie on the Fermi surface and vF (q̂) is the Fermi
velocity. Equation (25) is solved in accordance with the
common scheme described in references [23,28]. The inte-
gration is fulfilled with the allowance for the fact that the
Fermi contour near each Dirac point consists of two lines
(Fig. 2b).
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4 Results and discussion

Let us consider the phase diagram of the superconduct-
ing state of the graphene bilayer and the modifications of
this diagram in the different regimes obtained by solving
equation (25). When building the phase diagram, we di-
vided the multisheet Fermi contour into 180 intervals and
the Brillouin zone of the graphene bilayer, into 5 × 104

cells. It was established that the chosen method of di-
vision is sufficient for the correct description of the de-
pendence of the effective coupling constant λ on the elec-
tron density n [28]. Based on the obtained dependences
λ(n) for different values of the intersite V1 and inter-
plane G1, G3 and G4 Coulomb interactions, we built the
phase diagrams of the Shubin-Vonsovsky model for bilayer
graphene, which reflect the competition between the su-
perconducting phases with different types of the symmetry
of the order parameter.

So far, there has been no agreement regarding the val-
ues of parameters of the intra- and interplanar Coulomb
interactions in the graphene bilayer. The ab initio calcu-
lations for graphite [50] showed that the value of Hubbard
repulsion is U = 8.0 eV, which is consistent with the es-
timation made in reference [51] and contradicts the intu-
itively expected small value of U and weak-coupling limit
U < W (it is known [52] that t1 ≈ 2.8 eV). The authors
of [50] calculated the parameters of Coulomb repulsion be-
tween electrons of the nearest and the next-to-nearest car-
bon atoms: V1 = 3.9 eV and V2 = 2.4 eV, respectively. At
the same time, the other authors (see, for example, [53])
consider these parameters to be much smaller. The au-
thors of [15] mentioned that the estimation of the param-
eters of Coulomb interaction, including the Hubbard re-
pulsion, in the graphene bilayer strongly depends on the
calculation scheme which is used. In our calculation, we
apply the parameter hierarchy (19), which allows us to
use the Born weak-coupling approximation. For interlayer
hopping parameters γ1 and γ3, we use the values similar
to those determined in references [43,44] for graphite.

First, let us consider the limiting case when the bilayer
energy spectrum is described by the only one hopping pa-
rameter (t1 �= 0, t2 = γ1 = γ3 = 0). The Hubbard re-
pulsion is also taken into account U = 2 (hereinafter, all
the parameters are given in units of |t1|). The Coulomb
repulsion between electrons (V1 �= 0) of the neighboring
carbon atoms in the same layer is taken into account as
well. At the same time, the interlayer Coulomb interac-
tions are not taken into account (G1 = G3 = G4 = 0).
Thus, in the chosen regime, the graphene bilayer consists
of two isolated monolayers. The phase diagram of the su-
perconducting state shown as a function of the variables
“n − V1” for this case is presented in Figure 4a. It can
be seen that the phase diagram comprises three regions.
At low electron densities n, the ground state of the system
corresponds to the superconductivity with the d+ id-wave
symmetry of the order parameter, which is described by
the 2D representation E2, the contribution to which is
determined by the harmonics

g(d+id)
m (φ) =

1√
π

(A sin (2m + 2)φ + B cos (2m + 2)φ),

Fig. 4. Phase diagram of the superconducting state of the
graphene bilayer shown as a function of the variables “n−V1”
at t2 = 0, γ1 = γ3 = 0, U = 2, G1 = G3 = G4 = 0 for (a)
V2 = 0 and (b) V2 = 0.6V1 (all the parameters are in units of
|t1|). For all the points on the same thin blue line, the value of
|λ| is constant and marked with the corresponding number.

where subscripts m run over the values for which the co-
efficients (2m + 2) are not multiples of 3. At the inter-
mediate electron densities, the superconducting f -wave
pairing is implemented, the contribution to which is de-

termined by the harmonics g
(f1)
m (φ) =

1√
π

sin (6m + 3)φ

(here m ∈ [ 0,∞)), while the contribution of the harmon-

ics g
(f2)
m (φ) =

1√
π

cos (6m + 3)φ is absent. At the large

values of n, the domain of the superconducting d+id-wave
pairing occurs [26]. With the increase of the parameter V1

of the intersite Coulomb interaction, in the region of small
values of n, the d + id-wave pairing is suppressed and the
pairing with the f -wave symmetry of the order parameter
is implemented. Thin blue lines in Figure 4 are the lines
of the equal values of the effective coupling constant |λ|.
It can be seen that in this case in the proximity of the
Van Hove filling nV H (solid curve in Fig. 5) the effective
coupling constant attains the values |λ| = 0.1.

It should be noted that to avoid the summation of
the parquet diagrams [54–56], we do not analyze here
the electron density regions that are very close to the
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Fig. 5. Modification of the dependence of the density of elec-
tron states of the graphene bilayer from electron density cal-
culated for atoms in the same layer with respect to electron
hoppings to the next-to-nearest neighboring atoms.

Van Hove singularity in the density of electron states of
bilayer graphene (Fig. 5). For this reason, the bound-
aries between different domains of the implementation of
the Kohn-Luttinger superconducting pairing, as well as
the lines of the equal value of |λ| that are very close to the
Van Hove singularity are indicated in the phase diagram
by the dashed lines.

Thus, in the numerical calculation for the graphene
bilayer for the chosen parameters, we made the limiting
transition to the results obtained by us previously for the
graphene monolayer [23,28].

Let us consider the modification of the phase diagram
for the isolated graphene single layers with regard to the
long-range intraplane Coulomb interactions between elec-
trons V2. It can be seen in Figure 4b for the fixed ratio
between the parameters of the long-range Coulomb inter-
actions V2 = 0.6V1 that when V2 is taken into account, the
phase diagram changes qualitatively. This change involves
the suppression of a large domain of the superconduct-
ing state with the f -wave symmetry at the intermediate
electron densities and the implementation of the supercon-
ducting pairing with the p+ip-wave symmetry of the order
parameter. In addition, when V2 is taken into account, the
effective coupling constant increases to the value |λ| = 0.3.

Now, let us consider the modification of the phase di-
agram of the superconducting state with respect to the
interplanar interactions. When the interlayer electron hop-
pings γ1 = 0.12 and γ3 = 0.1 are taken into account
while the other parameters being the same as in Figure 4,
the phase diagram of the graphene bilayer remains nearly
unchanged.

Inclusion of the Coulomb interaction G1 in the consid-
eration slightly shifts the boundaries of the f1-wave and
d + id-wave pairing in the phase diagram in Figure 4 and
does not affect the absolute values of λ. Figure 6 shows the
effect of taking into account the interlayer Coulomb inter-
actions G3 and G4. Figure 6a shows the phase diagram of
the Shubin-Vonsovsky model for the graphene bilayer for
the set of parameters t2 = 0, γ1 = 0.12, γ3 = 0.1, U = 2

Fig. 6. Phase diagram of the superconducting state of the
graphene bilayer shown as a function of the variables “n−V1”
for t2 = 0, γ1 = 0.12, γ3 = 0.1, U = 2, G1 = 0.5V1, G3 = G4 =
0.4V1, at (a) V2 = 0 and (b) V2 = 0.6V1 (all the parameters
are given in units of |t1|). Thin blue curves are the lines of the
constant values of |λ|.

and V2 = 0 for the chosen ratios between the interlayer and
intersite Coulomb interactions G1 = 0.5V1, G3 = G4 =
0.4V1, according to the hierarchy of the parameters (19).
The calculation shows that the separate increase of the
parameters G3 and G4 suppresses the d + id-wave pair-
ing and, at the same time, broadens the f -wave pairing
region at small electron densities. The superconducting
d+ id-phase is suppressed the most effectively by enhanc-
ing the parameter G4 of the interlayer Coulomb interac-
tion. When the interactions G3 and G4 are simultaneously
taken into account (Fig. 6a), then along with the intensive
suppression of the superconducting d+ id-wave pairing at
small electron densities and the implementation of the su-
perconductivity with the f -wave symmetry of the order
parameter, the growth of the absolute values of effective
coupling constant λ is also observed.

Figure 6b depicts the phase diagram of the graphene
bilayer calculated for the same parameters as in Figure 6a
but with respect to the long-range intraplane Coulomb
repulsion between electrons V2. Comparison of Figures 6b
and 4b shows that the account for G3 �= 0 and G4 �= 0
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Fig. 7. Phase diagram of the superconducting state of the
graphene bilayer shown as a function of the variables “n−V1”
at t2 = 0.1, γ1 = 0.12, γ3 = 0.1, U = 2, G1 = 0.5V1, G3 =
G4 = 0.4V1 (all the parameters are in units of |t1|). Thin blue
curves are the lines of the constant values of |λ|.

leads to the strong competition between the d + id-wave
and p + ip-wave pairings with the significant suppression
of the p+ip-wave pairing in the region of the intermediate
electron densities. In this case, in the remaining region of
the p + ip-wave pairing, |λp+ip| slightly exceeds |λf |.

The account for electron hoppings to the next-to-
nearest carbon atoms t2 does not qualitatively affect the
competition between the superconducting phases (Fig. 6).
Figure 7 depicts the phase diagram of the graphene bilayer
obtained for the parameters t2 = 0.1, γ1 = 0.12, γ3 =
0.1, U = 2, G1 = 0.5V1 and G3 = G4 = 0.4V1. Such a
behavior of the system is explained by the fact that the
switching on of the hoppings t2 > 0 or t2 < 0 for the
graphene bilayer, similarly to the case of the monolayer
investigated by us in references [23,28], does not signifi-
cantly modify the density of electron states in the carrier
concentration regions between the Dirac point and both
points nV H (Fig. 5). However, it can be seen in Figure 7
that the account for the hoppings t2 leads to an increase
of the effective interaction in the absolute values and, con-
sequently, to the higher superconducting transition tem-
peratures in an idealized graphene bilayer.

It should be noted that the Kohn-Luttinger supercon-
ductivity in the graphene monolayer and bilayer never de-
velops near the Dirac points. The calculations show that
in the vicinity of these points, where the linear approxima-
tion for the energy spectrum of the graphene monolayer
and the parabolic approximation for the spectrum of the
graphene bilayer work pretty well, the density of states is
very low and the effective coupling constant |λ| < 10−2.
The higher values of |λ|, which are indicative of the de-
velopment of the Cooper instability, arise at the electron
densities n > 1.15. However, at such densities, the energy
spectrum of the bilayer along the direction KM of the
Brillouin zone (Fig. 2b) already significantly differs from
the Dirac approximation.

5 Conclusions

We have analyzed the conditions for the emergence of the
superconducting Kohn-Luttinger pairing in a semimetal
with the Dirac spectrum using as an example an ideal-
ized graphene bilayer, disregarding the van der Waals po-
tential of the substrate and both magnetic and nonmag-
netic impurities. The electronic structure of the graphene
bilayer is described using the tight binding method in
the Shubin-Vonsovsky model taking into account not only
the Coulomb repulsion of electrons of the same carbon
atom, but also the intersite and interlayer Coulomb inter-
actions. It was shown also that in such a system, the Kohn-
Luttinger polarization contributions lead to the effective
attraction between electrons in the Cooper channel. The
constructed superconducting phase diagram of the system
determines the Cooper pairing domains with the different
types of the symmetry of the order parameter, depend-
ing on the intersite Coulomb interactions and the electron
densities. The analysis of the phase diagram showed that
the inclusion of the Kohn-Luttinger renormalizations up
to the second order of perturbation theory inclusively and
the allowance for the long-range Coulomb interactions V1

and V2 determine, to a considerable extent, the competi-
tion between the superconducting phases with the f -wave,
p+ ip-wave, and d+ id-wave types of the symmetry of the
order parameter. They also lead to a significant increase
in the absolute values of the effective interaction. It was
shown also that the allowance for the interlayer Coulomb
interactions G3 and G4, as well as for the distant elec-
tron hoppings t2, leads to an additional increase in the
effective interaction and, hence, to the higher supercon-
ducting transition temperatures in an idealized graphene
bilayer.

Our calculation showed that the Kohn-Luttinger
mechanism can lead to the superconducting transition
temperatures Tc ∼ 20 ÷ 40 K in an idealized graphene
bilayer. Contrary to these rather optimistic estimations,
in real graphene, as it was mentioned in introduction, su-
perconductivity has not been found yet. This material is
only close to superconductivity.

For a few reasons, the results of the theoretical calcu-
lations reported here can differ from the experimental sit-
uation. First, we did not take into account the effect of the
van der Waals potential of the substrate [57–59]. It seems
that this effect should be weakened with the increase of
number of layers. However, even in the multilayer systems
the van der Waals forces can degrade the conditions for
the development of the Cooper instability.

Second, as we mentioned in Section 4, there has been
no agreement regarding the values of the parameters of
the intraplane and interplanar Coulomb interactions in
the graphene bilayer in the literature. In this work, we
used the values of the intraplane Coulomb interactions
that are close to those obtained from the ab initio cal-
culation in reference [50] for graphite. The values of the
interplanar Coulomb interactions were chosen to satisfy
the hierarchy of the parameters of the Born weak-coupling
approximation.
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Third, in our calculations, we considered a pure
graphene bilayer with the ideal structure, whereas the
real material contains numerous impurities and structural
defects. It is well known that, in contrast to the tradi-
tional s-wave pairing, for the anomalous pairing with the
f -wave, p + ip-wave, and d + id-wave symmetries of the
order parameter, nonmagnetic impurities and structural
defects can destroy the superconducting order [60].

In addition, we should mention one more possi-
ble reason for the discrepancy between the theoretical
calculations on superconductivity in graphene and the
experimentally observed situation. In a recent paper [61],
the effect of quantum fluctuations (T = 0) on the graphene
layers was investigated. It was shown that these fluctua-
tions initiate the logarithmic corrections to the moduli of
elasticity and bending of the layers. In other words, ac-
cording to [61], the quantum fluctuations connected with
the bending vibrations of the graphene layers can lead to
the situation when the electrons do not move along the
atomically smooth layers but along the strongly curved
string-like trajectories, as in quantum chromodynamics.
This situation requires further investigations, although in
this case the superconductivity is not at all excluded and
even can be enhanced by the exchange of bending vibra-
tion quanta between the pairing electrons.
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