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We study the dynamical response of two nonlinear microresonators coupled with a photonic crystal waveguide.
We find a domain in the space of frequency and amplitude of the probing light where all stationary solutions
are unstable. In this domain, scattered light carries multiple harmonics with equidistantly spaced frequencies
[frequency comb (FC) effect]. Two identical resonators coupled with the waveguide support the symmetry-
protected bound state in the continuum whose response is singular, as the amplitude of the injected wave tends
to zero. As a result, the FC interval tends to zero when the amplitude of probing light diminishes, which paves the
way for all-optical generation of waves with ultralow frequency. © 2015 Optical Society of America
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1. INTRODUCTION

Recently, bound states in the continuum (BSC) in photonics
have attracted much interest owing to a possibility to localize
light in various photonic crystal (PhC) designs [1–15]. BSC is a
localized solution of the Maxwell equations that corresponds to
a discrete eigenfrequency coexisting with extended modes of
continuous spectrum of the PhC waveguide or radiation con-
tinuum. The orthogonality of the BSC to accessible continuum
channels can be achieved in many ways [8,16], among which
the symmetry protection mechanism is the most obvious
[2,13–15,17,18]. Arguably, the design of 2D PhC shown in
Fig. 1(a), which supports the symmetry-protected BSC, is
the simplest. That design was originally proposed in [4] and
experimentally implemented by Plotnik et al. [5].

Each off-channel defect rod forms an optical microresonator
specified by its eigenmodes [19]. In what follows, we assume
that only the monopole eigenfrequency resides in the propaga-
tion band of the waveguide. Since the system in Fig. 1(a) is
symmetrical relative to the waveguide axis, one can classify the
eigenmodes of two coupled microresonators as even (symmet-
ric) and odd (antisymmetric) modes. If the propagating mode is
symmetrical, the odd eigenmode is decoupled to form a sym-
metry-protected BSC. For light transmission through the wave-
guide, the BSC cannot be excited. However, that only holds
true until we neglect the nonlinearity of the microcavities
due to the Kerr effect. There are a few nonlinear phenomena
affecting the BSC and light transmission. First, in nonlinear
systems, the principle of linear superposition is not valid, which
breaks orthogonality of the BSC to the propagating mode [20].
That results in effective coupling of the odd BSC with the

symmetric propagating mode with the coupling strength depen-
dent on the intensity of light injected into the PhC waveguide.
Then, as soon as the BSC becomes a quasi-bound mode, both
eigenmodes of the optical microresonators are excited but to a
very different extent. Next, in this work, we will show that, for
frequencies of injected light close to the frequency of BSC, the
quasi-bound state is strongly excited, which provokes instability.

The system of two defect rods form a closed nonlinear quan-
tum dimer, which has attracted much interest [21–27]. The
interest is related to the phenomenon of symmetry breaking
(self-trapping) [21,22]. On the other hand, nontrivial time-
dependent solutions were found for the nonlinear dimer
[21–25]. The observation of these remarkable properties of the
closed nonlinear dimer implies application of a probing wave,
which opens the dimer. Respectively, temporal equations de-
scribing the open nonlinear dimer become nonintegrable,
which constitutes the main difference between the closed and
open nonlinear dimers. Dependency on the way of opening the
stationary transmission through a nonlinear dimer was studied
in [26,28–35], where the phenomenon of symmetry breaking
was reported. It is interesting to note there is a domain in the
space of frequency and amplitude of the injected wave where
stable stationary solutions of the temporal equations do not ex-
ist [34,35]. Thus, one can expect that the dynamical response
of the nonlinear dimer will display features that cannot be de-
scribed by the stationary scattering theory. In particular, injec-
tion of a monochromatic symmetric wave into the nonlinear
plaquette gives rise to emission of antisymmetric satellite waves
with frequencies different from the frequency of the incident
wave [35].
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This phenomenon is known as frequency comb (FC) gen-
eration and is widely studied in various linear and nonlinear
systems [36–43]. FC generation has been demonstrated in
continuously pumped optical microresonators, exploiting the
third-order nonlinear susceptibility. In such Kerr combs, the
first couple of side modes are produced through a degenerate
four-wave mixing threshold process. These successive cascaded
processes eventually lead to a uniform broadband FC. In this
paper, we show a similar phenomenon for illumination of the
nonlinear dimer in the domain of instability of the open dimer.
However, the main result is a possibility to enormously dimin-
ish the FC interval Ω due to the symmetry-protected BSC in
the open nonlinear dimer.

2. COUPLED MODE THEORY EQUATIONS

Taking that the radii of the rods are small enough, we can
present each rod by a single site variable Aj; j � 1; 2 disregard-
ing space inhomogeneity of electromagnetic field in the rods. In
terms of the eigenfunctions of the Maxwell equations for each
microresonator, this means that only the monopole mode with
the eigenfrequency ω0 resides in the PhC waveguide propaga-
tion band and, thereby, is relevant in the scattering. For sim-
plicity, we disregard the dispersion properties of the waveguide
and write for the dimer illuminated by light with the amplitude
E in and frequency ω the following temporal coupled mode
theory (CMT) equations [34,44,45]:

−i _A1 � �ω1 � λjA1j2�A1 � uA2 � iγ1A1

� i
ffiffiffiffiffiffiffiffiffi
γ1γ2

p
A2 − i

ffiffiffiffiffi
γ1

p
E ineiωt ;

−i _A2 � �ω2 � λjA2j2�A2 � uA1 � i
ffiffiffiffiffiffiffiffiffi
γ1γ2

p
A1

� iγ2A2 − i
ffiffiffiffiffi
γ2

p
E ineiωt ; (1)

Here, the terms λjAjj2Aj; j � 1; 2 account for the Kerr effect of
each microresonator; the term ffiffiffiffiγjp is responsible for the cou-
pling of the jth off-channel resonator with the waveguide. The
monopole mode of each resonator is localized within a few
lattice units [19] so that u < ffiffiffiffiγjp . In the design shown in
Fig. 1(a), the defect rods are positioned at a distance of two
lattice units, while the distance between the defect rods equals

four units. Then, overlapping between the monopole modes of
the resonators is negligibly small compared with the overlap-
ping between the monopole mode and the waveguide mode,
i.e., u ≪ ffiffiffiffiγjp . Even for this case, the open nonlinear dimer
remains cardinally different from the case of the closed
dimer because of the interaction between the cavities via the
continuum.

The open dimer governed by the CMT equations [Eq. (1)]
is shown in Fig. 1(b). By substituting Aj�t� � aj�t� exp�iωt�,
the temporal CMT equations [Eq. (1)] become

−i _a1 � �ν1 � λja1j2�a1 � iγ1a1 � i
ffiffiffiffiffiffiffiffiffi
γ1γ2

p
a2 − i

ffiffiffi
γ

p
E in;

−i _a2 � �ν2 � λja2j2�a2 � i
ffiffiffiffiffiffiffiffiffi
γ1γ2

p
a1 � iγ2a2 − i

ffiffiffi
γ

p
E in; (2)

where νj � ωj − ω. The amplitude of the transmitted wave is
given by the following equation [34,45]:

Eout � E in −
ffiffiffiffiffi
γ1

p
a1 −

ffiffiffiffiffi
γ2

p
a2: (3)

3. INSTABILITY OF STATIONARY SOLUTIONS

Numerical analysis of stability of the stationary solutions re-
vealed a domain in the space of parameters ω and E in, where
all stationary solutions are unstable [34]. A similar result was
found in the open plaquette of four nonlinear sites [35]. In this
section, we find the domain of instability of stationary solutions
of temporal equations [Eq. (1)]. To examine the stability of the
solutions in Eq. (2), we apply a standard small perturbation
technique [46]:

aj�t� � aj0 � �xj � iyj�eμt ; j � 1; 2; (4)

where the second term in Eq. (4) is considered to be small. The
domain of instability defined by the condition μ � 0 was
evaluated numerically and is shaded, as shown in Fig. 2, in blue.
One can see a threshold in the amplitude of the injected
wave E in.

For the symmetric nonlinear dimer νj � ν, γj � γ, the
domain of instability can be evaluated analytically. For the

Fig. 1. (a) Two microcavities made from a Kerr media (marked by
filled circles) are inserted into the square lattice photonic crystal of
dielectric rods. The 1D waveguide is formed by extraction of a linear
chain. (b) Two nonlinear sites (marked by filled circles) are positioned
symmetrically relative to the waveguide and form an open nonlinear
dimer.

Fig. 2. Instability domains in space of physical parameters ω and
E in. The nonsymmetric case with ω1 � 1, ω2 � 0.9, γ1 � γ2 � γ
is shown in blue. The symmetric case ω1 � ω2 is shown in red.
The BSC point is shown by an open green circle. Other parameters
are ω0 � 1, γ � 0.04, λ � 0.01, u � 0.
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stationary symmetry preserved stationary solution, we have
from Eq. (2) [34]

a10 � a20 � a0 �
i

ffiffiffi
γ

p
E in

ν� u� λI 0 � 2iγ
; (5)

where, according to Eq. (1),

I 0��ν� u� λI 0�2 � 4γ2� � γE2
in; (6)

and I 0 � ja0j2. Substituting Eq. (4) into Eq. (2), we obtain the
following system of algebraic equations:

−�μ� 2γ � 2λRe�a0�Im�a0���x1 � x2�
� �ν� u� λI 0 � 2λ Im�a0�2�y1 � y2�
× �μ� 2γ − 2λRe�a0�Im�a0���y1 � y2�

� �ν� u� λI 0 � 2λRe�a0�2��x1 � x2�; (7)

and

−�μ� 2λRe�a0�Im�a0���x1 − x2�
� �ν − u� λI 0 � 2λ Im�a0�2��y1 − y2�;
× �μ� 2λRe�a0�Im�a0���y1 − y2�

� �ν − u� λI 0 � 2λRe�a0�2��x1 − x2�: (8)

Using the eigenmode variables (symmetric and antisymmet-
ric),

as;a �
1

2
�a1 � a2�; νs;a � ν� u; (9)

one can see that Eq. (7) describes the symmetric oscillations,
while Eq. (8) does the antisymmetric oscillations around the
symmetric stationary state; more importantly, these oscillations
are separated. For the symmetric oscillations, we have from
Eq. (7) the eigenvalues

μs � −2γ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ν� u� λI 0��ν� 3λI0�:

p
(10)

Equation μs � 0 defines the boundary of instability of
the symmetrical stationary solution relative to the symmetric
perturbation. This instability is typical for the single nonlinear
resonator [19]. Owing to a contribution −2γ in Eq. (10), in-
stability occurs at a finite value of the injected amplitude E in

[34]. Equation (8) for the antisymmetric perturbations has the
following eigenvalues,

μ2a � −�ν − u� λI 0��ν − u� 3λI 0�; (11)

and gives the boundary of stability, ν − u� λI c � 0 and
ν − u� 3λI c � 0. Substituting these values of I c into Eq. (6),
we obtain for the boundaries of the domain where the station-
ary symmetric solution is destabilized by antisymmetric
oscillations:

E2
in � −

4�γ2 � u2��ν − u�
γλ

;

E2
in � −

4�ν − u�
3γλ

��ν� 2u�2∕9� γ2�: (12)

Different from the nonsymmetric dimer, the domain of insta-
bility of the symmetric dimer emerges from the point E in � 0,
ω � ωa � ω0 − u, which is exactly the BSC point. Without
loss of generality, we can take u � 0 with the instability do-
main, as shown in Fig. 2 in red. Since all stationary solutions

are unstable in this domain, one can expect a generation
of harmonics with the frequency interval between them
Ω ∼ E2

in. In what follows, we focus on the case of the symmetric
dimer with u � 0. Rigorously speaking, the true BSC with a
zero resonant width in nonlinear system exists at the point
marked by open green circle in Fig. 2 [20]. Nevertheless, we
can conclude that the BSC excitations play a crucial role in
the stability of the symmetric dimer, at least, for small injected
amplitudes.

4. NUMERICAL SOLUTIONS OF NONLINEAR
TEMPORAL CMT EQUATIONS

One can see from Eq. (2) for the identical microresonators that
the solutions possess a symmetry with the half-period time shift
corresponding to the permutation of the sites:

a1�t � T∕2� � a2�t�; a2�t � T ∕2� � a1�t�: (13)

Indeed, after time shift t → t � T ∕2 in the first equation in
Eq. (2), we obtain the second equation using Eq. (13) and
the periodicity of the solutions. Thus, the system of Eq. (2)
is reduced to one temporal equation:

−i _aj � �ν� λjaj�t�j2�aj�t� � iγ�aj�t� � aj�t � T ∕2��
− i

ffiffiffi
γ

p
E in: (14)

Nevertheless, the symmetry in Eq. (13) does not allow us to
solve Eq. (14) because of unknown period T , which strongly
depends on the intensity of the injected wave. In Figs. 3 and 4,
we present the results of numerical simulations of Eq. (2) in the
domain of unstable stationary solutions, which demonstrate the
symmetry in Eq. (13). Figure 4 also demonstrates the ratchet
effect due to the absence of the time reversal symmetry in the
open dimer. We chose the parameters listed in the caption of
Figs. 3 and 4 guided by the data on PhC microcavities
from [34].

In order to compare the results with the closed dimer in
[21], we present trajectories projected onto the modulus jajj
and phase difference Δθ between cavities in Fig. 5(a).
Although for a small injected amplitude E in, the trajectories
look similar to those shown in [21], with the growth of E in the
trajectories become asymmetrical relative to Δθ → −Δθ. The
trajectories projected onto the real and imaginary parts of
the amplitudes aj�t� demonstrate the most striking difference
between the closed and open nonlinear dimer, as shown in
Fig. 5(b). While for the closed dimer the trajectories form
circles centered at the origin of the coordinate system [they

Time
0 5000 10,000

R
e(

a j)

0

0.2

0.4

0.6
(a)

Time
0 5000 10,000

Im
(a

j)

-0.4

-0.2

0

0.2

0.4

0.6
(b)

Fig. 3. Time evolution of site amplitudes aj�t�, j � 1, 2, real and
imaginary parts for E in � 0.1, ν � −0.001, γ � 0.04, λ � 0.01.
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are not shown in Fig. 5(b)], the trajectories of the open dimer
are shifted relative to the coordinate origin. Phase transforma-
tion of the injected wave E in → E ineiα rotates the trajectories in
Fig. 5(b) by the same angle α.

It is clear that such a complicated time behavior of the
amplitudes will reflect at the transmitted wave, according to
Eq. (3). Figure 6 shows the Fourier transformation of the trans-
mitted wave:

Eout�t� �
Z

Eout�f � exp�if t�df ; (15)

which demonstrates sharp peaks spaced equidistantly, i.e., the
FC comb effect. In what follows, we define the interval between
the peaks of the Fourier transform F out�f � as the FC interval
Ω. One can see from Fig. 6 that jEout�f �j ≠ jEout�−f �j, which
is a consequence of the ratchet effect, as seen in Fig. 4. In Fig. 6,
we present results for the nonsymmetric dimer (a) and the
symmetric dimer (b), which both demonstrate the FC effect.
However, only for the last case, the FC frequency interval Ω
can be limited to zero due to the BSC participation in the wave
transmission through the symmetric nonlinear dimer.

5. ASYMPTOTIC EVALUATION OF THE FC
INTERVAL

The reason for the cardinal difference between the closed and
open nonlinear dimers is the symmetry of the system. Let us
rewrite Eq. (2) in terms of the eigenmodes of the closed linear
dimer:

−i _as � �ν� λ�jasj2 � 2jaaj2��as � λa2aa	s � 2iγas − i
ffiffiffi
γ

p
E in;

−i _aa � �ν� λ�jaaj2 � 2jasj2��aa � λa2s a	a ; (16)

where the modes as;a with the eigenfrequencies ωs;a � ω0 are
defined in Eq. (9).

Let us assume temporarily the dimer is linear. The design of
the open dimer (Fig. 1) implies that the injected wave can
probe only the symmetric mode with a Breit–Wigner response
as � i

ffiffiffi
γ

p
E in∕�ν� 2iγ�, while the antisymmetric mode re-

mains hidden, as seen from the CMT equations [Eq. (16)].
It oscillates with the frequency ν but with the uncertain
amplitude a, which defines the antisymmetric mode as a sym-
metry-protected BSC [4,5,8]. Returning to the site amplitudes,
we have

aj �
i

ffiffiffi
γ

p
E in

ν� 2iγ
� aeiνt ; j � 1; 2; (17)

which makes the time behavior of the site amplitudes of the
linear dimer nonstationary. This equation constitutes the time-
dependent contribution of the bound state in the continuum
established for the stationary case in quantum mechanical [47]
and PhC systems [4].

The nonlinearity results in two effects. The first obvious
result is that the resonance eigenfrequency ν� λI0 of the sym-
metric mode is shifted proportional to E2

in, which agrees with
the instability domain at small E in, as derived in Section 3 and
shown in Fig. 2. The second effect is more sophisticated.
For small E in, the symmetric mode as is almost constant
while oscillations of the antisymmetric mode aa are dominant,
as shown in Fig. 7. That result is an obvious effect of the
symmetry-protected BSC whose response tends to be infinite
when E in → 0 because of zero resonant width at E in � 0. As
seen from the first equation in Eq. (16), the antisymmetric
mode plays the role of a driving force for the mode as via
the nonlinear term λa2aa	s . If the frequency of the mode aa
isΩ, then the symmetric mode oscillates with double frequency
2Ω, as is seen in the numerical solution in Fig. 7. Respectively,
the transmitted wave carries the harmonics with the same
frequency 2Ω in accordance with Eq. (3).

In order to consider these nonlinear effects quantitatively,
we use the asymptotic methods by Bogoliubov and
Mitropolsky [48]. Equation (16) can be rewritten as follows:

Time
0 200 400 600 800

R
e(

a j)

0

0.5

1

1.5

2

2.5 (a)

Time
0 200 400 600 800

Im
(a

j)

-1

0

1

2 (b)

Fig. 4. Same as in Fig. 3 but for the parameters E in � 0.4,
ν � −0.02, γ � 0.04, λ � 0.01.

Fig. 5. (a) Trajectories projected onto jajj and phase difference
Δθ � θ1 − θ2 and (b) real and imaginary parts of amplitudes aj�t�,
j � 1, 2 for different points in the domain of instability: E in � 0.1,
ν � −0.001 (blue dashed line) and E in � 0.4, ν � −0.02 (red solid
line). Other parameters are ω0 � 1, γ � 0.04, λ � 0.01.

Fig. 6. Fourier transform Eout�f � of the transmitted wave in
log scale. (a) Nonsymmetric dimer with ω1 � 1, ω2 � 0.9.
(b) Symmetric dimer with ω1 � ω2 � ω0 � 1. Other parameters
are listed in Fig. 4.
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i _as � �ν� 2iγ�as − i
ffiffiffi
γ

p
E in � εF s�as; aa�;

i _aa � νaa � εFa�as; aa�; (18)

where λ is considered a small parameter ε and functions F s;a are
polynomial functions of as;a determined by Eq. (16). Then, the
solution up to the first order in ε can be sought in the form

as � s0�a;ϕ� � εs1�a;ϕ�; aa � a0�a;ϕ� � εa1�a;ϕ�; (19)

as functions of the amplitude a and phase ϕ. They are given by
the following equations:

_a � εD1�a�; _ϕ � ν� εΩ1�a�; (20)

where ν is the frequency of oscillations at ε � 0. Substitution
of Eqs. (19) and (20) and the relation

_as;a � _a
∂as;a
∂a

� _ϕ
∂as;a
∂ϕ

(21)

into Eq. (16) gives the following equation at the zeroth order in
parameter ε:

s0�a;ϕ� �
i

ffiffiffi
γ

p
E in

ν� 2iγ
; a0�a;ϕ� � a exp�iϕ�; (22)

where the amplitude a is undefined.
In the first order in ε, we obtain the following equations:

−iν
∂s1
∂ϕ

� �ν� 2iγ�s1� a20s
	
0 ��js0j2� 2a2�s0;

−iν
∂a1
∂ϕ

� νa1� s20a
	
0 ��a2� 2js0j2�a0��iD1 − aΩ1�exp�iϕ�:

(23)

One can expand

s1�a;ϕ� �
X
n

F s;n�a� exp�inϕ�;

a1�a;ϕ� �
X
n

Fa;n�a� exp�inϕ�: (24)

According to [48], there is uncertainty in the choice of func-
tions s1 and a1, which allows us to exclude, for example, the
first harmonic contributions F s;1, Fa;1, which give the following
equations:

D1�a� � 0; Ω1�a� � a2 � 2js0j2: (25)

Then, solutions of Eq. (23) are as follows:

s1�a;ϕ� � −
js0j2 � 2a2

ν� 2iγ
s0 �

a2

ν − 2iγ
s	0 exp�2iϕ�;

a1�a;ϕ� � −
a
2ν

s20 exp�−iϕ�: (26)

This equations show that the symmetric solution consists of
even terms n � 0;�2;… in Eq. (24), while the antisymmetric
solution consists of the odd terms n � �1;�3;…. The higher
orders in the small parameter preserve the same features. From
Eq. (20), we have

ϕ � �ν� λ�a2 � 2js0j2��t � Ωat; (27)

which yields the FC interval ΩFC � 2Ωa in the first order in λ
with the amplitude a remaining undefined. This amplitude
can be determined by the equation _a � 0 in Eq. (20) if the
injected amplitude E in is taken as a small parameter ε in the
perturbation approach. However, that approach is successful
only in the fourth order in ε, resulting in cumbersome
equations. Therefore, we estimate the amplitude a averaging
the numerical solution over time: a � haa�t�i. The numerical
result shown in Fig. 8(a) is close to the analytical result
[Eq. (27)] in Fig. 8(b) when the injected amplitude is small.
Thus, the FC interval between harmonics generated by the
open nonlinear dimer can be effectively controlled by the in-
jected amplitude.

It is surprising that the FC effect with the FC interval Ω
emerging from the BSC point, as shown in Fig. 8, is preserved
even for different couplings γj ; j � 1; 2 but for ω1 � ω2. By
linear transformation,

as �
ffiffiffiffiffi
γ1

p
a1 �

ffiffiffiffiffi
γ2

p
a2; aa �

a1ffiffiffiffiffi
γ1

p −
a2ffiffiffiffiffi
γ2

p ; (28)

with

a1 �
ffiffiffiffiffi
γ1

p
γ1 � γ2

�as � γ2aa�; a2 �
ffiffiffiffiffi
γ2

p
γ1 � γ2

�as − γ1aa�:

(29)

Equation (2) takes the following form:

Fig. 7. Time evolution of real parts (a) and imaginary parts (b) of
symmetric (blue dashed lines) and antisymmetric mode (red solid
lines) for E in � 0.1, ν � −0.001 (thin lines) and E in � 0.2, ν �
−0.02 (thick lines). Other parameters are ω0 � 1, γ � 0.04,
λ � 0.01.

−0.15 −0.1 −0.05 0 0

1
0.02

0.04

0.06

0.08

E
inν

Ω

(a)

−0.01 −0.005 00
0.1

0.2

−0.05

0

0.05

0.1

0.15

ν
E

in

(Ω
−

Ω
a)/

Ω

(b)

Fig. 8. (a) FC interval between harmonics Ω versus amplitude E in

and frequency ν of injected monochromatic wave calculated numeri-
cally. (b) Difference between numerical data and analytical results
given by Eq. (27). Parameters of the dimer are ω0 � 1, γ � 0.01,
λ � 0.01. Below the domain of instability defined by Eq. (12) is
shown by red lines.
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−i _as� νas�λ

�
γ21

�γ1�γ2�3
jas�γ2aaj2�as�γ2aa�

� γ22
�γ1�γ2�3

jas −γ1aaj2�as −γ1aa�
�
� i�γ1�γ2��as −E in�;

−i _aa� νaa�λ

�
γ1

�γ1�γ2�3
jas�γ2aaj2�as�γ2aa�

−
γ2

�γ1�γ2�3
jas −γ1aaj2�as −γ1aa�

�
: (30)

One can see that, similar to the former symmetric case γ1 � γ2,
the mode aa is coupled with the injected wave only through the
nonlinear terms.

6. SUMMARY AND DISCUSSION

In this paper, we considered one of the simplest nonlinear open
systems: the nonlinear dimer whose closed counterpart is an
integrable system [21]. The term “open” means that a linear
waveguide is attached to the dimer to allow probing its dynami-
cal properties. Even in the case of decoupled nonlinear sites,
they interact with each other through the continuum of the
waveguide. In the framework of CMT, we examined the sta-
bility of stationary solutions of Eq. (1) in the parametric space
of frequency and amplitude of the probing wave. We found a
domain where all stable stationary solutions do not exist. First,
such domains were found in open nonlinear plaquette [35]
together with the associated effect of FC generation. In the
present paper, we showed a similar FC effect for the scattering
of a monochromatic wave by a nonlinear dimer. The nature of
the FC is the side harmonics produced through a degenerate
four-wave-mixing threshold process, which has been well stud-
ied, theoretically and experimentally [38–42]. For the different
microresonators, numerics show a similar threshold relative to
the amplitude of the injected monochromatic wave, as shown
in Fig. 2 in blue.

The identical microresonators with the Kerr effect symmet-
rically coupled with a waveguide represent a unique case when
this threshold tends zero if the frequency of the injected wave
approaches the eigenfrequency of the microresonators. This
phenomenon is related to a symmetry-protected BSC. When
the dimer is linear, there are two eigenmodes: symmetric and
antisymmetric. The symmetrical design of opening of the
dimer (see Fig. 1) implies that the injected wave couples only
with the symmetric mode, while there is no direct coupling of
the injected wave with the antisymmetric mode transforming it
into the symmetry-protected BSC [4,5]. However, owing to
nonlinear terms in Eq. (16), the antisymmetric mode aa is
coupled with an injected wave through the symmetric mode
as. Therefore, the BSC emerges in the response in the vicinity
of the resonance ω � ω0. This effects gives rise to the FC
generation of side harmonics with the frequency interval
Ω ∼ E2

in, as Fig. 8 shows, provided that the frequency and am-
plitude fall within the instability domain, shown in Fig. 2 in
red. Therefore, participation of the symmetry-protected BSC in
the nonstationary transmission of monochromatic light by two
symmetric off-channel microresonators leads to generation of
extremely low-frequency harmonics effectively manipulated

by the injected light amplitude. That result promises important
applications of the effect of BSC in photonic systems.

The numerical solution of the temporal CMT equations
[Eq. (16)] demonstrates highly nonlinear behavior of the site
amplitudes, which are cardinally different from the dynamical
behavior of the closed dimer in the instability domain. Time
dependence of these amplitudes holds many harmonics whose
frequencies are equidistantly spaced with the interval Ω. This
interval, which defines the FC interval, was computed numeri-
cally and evaluated by the use of asymptotic methods [48] to
demonstrate an agreement, as shown in Fig. 8. Respectively,
the injected wave after scattering by the nonlinear dimer ac-
quires side harmonics. Owing to symmetry-protected BSC,
the FC interval Ω can become extremely small for approach-
ing the BSC point. Thus, the system of two microresonators
with the Kerr effect positioned beside the PhC waveguide
opens the way of conversion of input optical signals into
terahertz outputs.
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