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Abstract: We consider second harmonic generation (SHG) of ultrashort 
pulses in the case of strong phase- and group-velocity mismatch. Spectral 
fringes appear in the second harmonic related to two delayed replicas of the 
fundamental pulse in the time domain. The fringe separation can be used to 
evaluate the group-velocity and refractive index of nonlinear crystals at 
extreme wavelengths. Experimental results with femtosecond pulses in 
SrB4O7 (SBO) are used to refine the Sellmeier equation describing the nc 
refractive index down to 160 nm, essential for the use of this unique 
nonlinear crystal for random quasi-phase-matching in the VUV. 

©2015 Optical Society of America 

OCIS codes: (190.2620) Harmonic generation and mixing; (190.7110) Ultrafast nonlinear 
optics; (190.4400) Nonlinear optics, materials. 

References and links 

1. V. Petrov, F. Noack, D. Shen, F. Pan, G. Shen, X. Wang, R. Komatsu, and V. Alex, “Application of the 
nonlinear crystal SrB4O7 for ultrafast diagnostics converting to wavelengths as short as 125 nm,” Opt. Lett. 
29(4), 373–375 (2004). 

2. Yu. S. Oseledchik, A. L. Prosvirnin, A. I. Pisarevskiy, V. V. Starshenko, V. V. Osadchuk, S. P. Belokrys, N. V. 
Svitanko, A. S. Korol, S. A. Krikunov, and A. F. Selevich, “New nonlinear optical crystals: strontium and lead 
tetraborates,” Opt. Mater. 4(6), 669–674 (1995). 

3. F. Pan, G. Shen, R. Wang, X. Wang, and D. Shen, “Growth, characterization and nonlinear optical properties of 
SrB4O7,” J. Cryst. Growth 241(1-2), 108–114 (2002). 

4. A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, A. V. Zamkov, and V. G. Arkhipkin, “Detection of 
randomized nonlinear photonic crystal structure in a non-ferroelectric crystal,” J. Opt. A, Pure Appl. Opt. 9(9), 
S334–S338 (2007). 

5. A. I. Zaitsev, A. S. Aleksandrovsky, A. D. Vasiliev, and A. V. Zamkov, “Domain structure in strontium 
tetraborate single crystal,” J. Cryst. Growth 310(1), 1–4 (2008). 

6. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching 
in bulk polycrystalline isotropic nonlinear materials,” Nature 432(7015), 374–376 (2004). 

7. P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, and V. Petrov, 
“Generation of fs-pulses down to 121 nm by frequency doubling using random quasi-phase-matching in 
strontium tetraborate,” in Conference Proceedings of Ultrafast Optics IX, Davos, Switzerland, March 4–8, 
Conference Program, paper Fr2.4. 

8. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, Academic press, Elsevier, 2nd edition, 2006. 
9. M. Mlejnek, E. M. Wright, J. V. Moloney, and N. Bloembergen, “Second harmonic generation of femtosecond 

pulses at the boundary of a nonlinear dielectric,” Phys. Rev. Lett. 83(15), 2934–2937 (1999). 
10. J. T. Manassah, “Effects of velocity dispersion on a generated second harmonic signal,” Appl. Opt. 27(21), 

4365–4367 (1988). 
11. K. Kato, “Second-harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 

(1986). 

1. Introduction 

Sellmeier equations describing the dispersion of the principal refractive indices of nonlinear 
optical crystals are normally created from direct measurements of the refractive indices but 
subsequently refined using phase-matched second-order nonlinear processes, most often 

#234922 - $15.00 USD Received 18 Feb 2015; revised 26 Mar 2015; accepted 30 Mar 2015; published 10 Apr 2015 
© 2015 OSA 20 Apr 2015 | Vol. 23, No. 8 | DOI:10.1364/OE.23.010091 | OPTICS EXPRESS 10091 



second-harmonic generation (SHG). The situation is, however, complicated in extreme 
spectral regions and when phase-matching is impossible. Strontium tetraborate, SrB4O7 
(SBO), is such an example. The birefringence of SBO is too low (<0.005) for phase-
matching. Non-phase-matched SHG for temporal diagnostics (autocorrelation measurements) 
was realized in SBO but the efficiency of this process for a single coherence length was 
extremely low [1]. On the other hand, the band-gap wavelength (values from absorption 
measurements differ but indicate in the best case <120 nm [1–3]), the good damage resistivity 
and chemical stability, and the exceptionally high (1.5-3.5 pm/V [1,4]) value of the diagonal 
d33 element (with respect to the band-gap value) are features that make SBO a unique 
nonlinear crystal. 

SBO exhibits orthorhombic mm2 symmetry but is non-ferroelectric which prevents its 
electric field poling for quasi-phase-matching (QPM). It was, however, the first non-
ferroelectric crystal for which spontaneous formation of random domains was encountered in 
the process of Czochralski growth [5]. The domains are in the form of sheets normal to the a-
axis and rather homogeneous in the other two directions. The static polarization is parallel to 
the polar two-fold c-axis and the largest nonzero nonlinear coefficient that can be employed is 
d33. Thus SBO is very attractive for random QPM or RQPM [6] and in a preliminary 
experiment with femtosecond SHG we generated wavelengths down to 121 nm [7]. 

The refractive index of SBO was measured down to 212.9 nm [2]. We develop here a 
method to evaluate the refractive index in the VUV by non-phase-matched SHG with 
femtosecond pulses. It is based on the measurement of fringes in the second harmonic (SH) 
spectrum which occur for ultrashort pulse radiation. The latter ensures in turn sufficient 
efficiency for detection of the SH radiation in the VUV even in the absence of phase-
matching. From such measurements down to 160 nm we refine the Sellmeier equation for the 
nc refractive index (relevant to the ee-e process involving d33) important for RQPM. 

2. Non-phase-matched SHG of ultrashort pulses 

For a plane wave packet with a finite spectral distribution around some central frequency the 
time dependence of the electric field E can be introduced in the usual manner as a product of 

a fast oscillating term and a slowly varying envelope: ( ) ( )(1/ 2) . .ci tE t E t e c cω = + 
 , where 

( ) ( ) ( ) i tE t E t e ϕ=   denotes the complex amplitude, cω  is the carrier frequency and the 

complex conjugate (c. c.) ensures that the field is real. The complex spectral amplitude can be 
obtained as a function of the relative frequency Ω cω ω= − , where ω  denotes the 

instantaneous frequency, by a Fourier transform: 

 ( ) ( ) Ω Ω   i tE E t e dt
∞

−

−∞

=    (1) 

The temporal intensity is ( ) ( ) 2

0 c / 2I t n E t=   and the spectral intensity is given by 

( ) ( ) 2

0Ω c Ω / 4S n E π=  , where 0  is the electric permittivity of vacuum, c denotes the speed of 

light in vacuum and n - the refractive index. Let us consider SHG as a particular case of three-
wave interaction when the input waves at the fundamental have equal polarizations. This 
situation corresponds to type-I interaction in birefringent nonlinear crystals, type-0 interaction 
in QPM or RQPM materials, and can be realized also in the absence of phase-matching if the 
corresponding nonlinear (coupling) coefficient is non-zero. In the case of ultrashort pulses the 
SHG process can be described then by only two equations in the laboratory frame ( , )z t , 

where the polarization index is omitted for simplicity [8]: 
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The fundamental (F) and second-harmonic (SH) pulses travel with the corresponding 
group velocity Fv  or SHv . Higher order dispersion terms (group velocity dispersion, GVD) as 

well as linear losses are neglected, (2)χ  is the effective second order nonlinear susceptibility 

and Δ 2 F SHk k k= −  denotes the phase-mismatch where the wave vectors ( ) / ck n ω ω=  are 

defined at the corresponding carrier frequencies Fω  and 2SH Fω ω= . Since we will consider 

non-phase-matched SHG, the depletion of the fundamental in Eq. (2) can be neglected (fixed-
field approximation) and this equation yields the well-known stationary solution 

( ) ( ), / ( )F F F Ft z t zE E v E η= − =   . The latter permits to integrate Eq. (3) with respect to the 

propagation coordinate z which gives, after transformation to the frequency domain [8,9]: 

 ( ) ( ) ( )
(2) 2

2
Ω,  sin c Ω Δ * (Ω),

24c
SH

SH F F
SH

d dd i M E
k

E Ekχ ω  = − −  
    (4) 

where d is the sample thickness, 1/ 1/SH FM v v= −  is the inverse group-velocity mismatch 

(GVM), and the asterisk denotes convolution. In non-phase-matched SHG, Δ ΩMk M  is 

satisfied where ΩM  denotes some maximum extension of the SH spectral distribution. Under 

this assumption the sinc-function can be substituted by a sine-function leading to: 

 ( ) ( ) ( )
(2) 2

2
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k k
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For the spectral intensity one obtains from Eq. (5): 
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Equation (6) indicates that the SH spectrum is completely modulated exhibiting 
characteristic fringes. The GVM can be derived from the fringe separation for a known 
sample thickness d. Let us Fourier transform Eq. (5) back to the time domain: 
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Finally, for the SH intensity one arrives at: 

 ( ) 2 2 Δ 2 *2, . .
2 2 2 2

i kd
SH F F F F

Md Md Md MdI Et d I t I t e t E t c c        ∝ + + − − − + +                
   (8) 

or in the frame moving with the fundamental input pulse: 

 ( ) ( ) ( ) ( ) ( )2 2 Δ 2 *2, . .i kd
SH F F F FI E Ed I I Md e Md c cη η η η η ∝ + − − − + 

   (9) 

#234922 - $15.00 USD Received 18 Feb 2015; revised 26 Mar 2015; accepted 30 Mar 2015; published 10 Apr 2015 
© 2015 OSA 20 Apr 2015 | Vol. 23, No. 8 | DOI:10.1364/OE.23.010091 | OPTICS EXPRESS 10093 



If we assume that the fundamental pulse is unchirped, then Eq. (9) leads to: 

 ( ) ( ) ( ) ( ) ( ) ( )2 2, 2cos ΔSH F F F FI d I I Md kd I Md Iη η η η η∝ + − − −  (10) 

According to Eq. (10) the SH temporal profile consists of two delayed pulses with 
intensity proportional to the square of the fundamental pulse intensity and an interference 
term which produces Maker-Terhune type oscillations at short propagation distances when 
the two pulses overlap in time [9]. The spectral fringes are due to the existence of the two 
pulses in the time domain [9,10]. Their occurrence can be explained by the fact that in the 
absence of both phase- and group-velocity matching back-conversion to the fundamental is 
hindered in the initial and final part of the nonlinear crystal where the SH escapes. The 
spectral fringes are a consequence of the ultrashort pulse durations considered and originate 
from the group velocity terms included in Eqs. (2)-(3). For quasi continuous-wave radiation 
one can assume vanishing M parameter in Eqs. (5)-(6). Spectral fringes can be still observed 
by tuning the carrier frequency of the fundamental. This changes the coherence length and by 
expanding the phase-mismatch Δk up to 1st order terms in Ω  it is easy to see that the fringe 
spacing will be the same as in the case of ultrashort pulses. In this case, one obtains from Eq. 
(10): 

 ( ) ( )2 2, sin ( )
2SH F

c

dI d I
L

πη η∝  (11) 

which describes the well-known fluctuation of the SH power with the coherence length 
/cL kπ= Δ  for quasi continuous-wave radiation. However, this effect and the Maker-

Terhune type oscillations with the associated spectral fringes are useless for evaluation of the 
refractive index in extreme wavelength ranges such as the VUV where both availability of 
tunable fundamental source and detection of the SH are problematic. 

3. Numerical simulation of non-phase-matched SHG in BBO 

We choose as an example the numerical simulation of the non-phase-matched SHG for a 
specific interaction in β-BaB2O4 (BBO) which we also realized experimentally. 

 

Fig. 1. Non-phase-matched SHG in BBO. Left: Intensity of the fundamental wave and the SH. 
Right: SH spectrum with fringes, and fundamental and SH pulses at the exit of the crystal. 

Pulses of 40 fs duration (FWHM intensity, Gaussian pulse shape assumption) at 404 nm 
are frequency doubled to 202 nm in a 130 µm thick BBO crystal cut at θ = 29° for type-I (oo-
e) interaction. The polarization of the input fundamental is, however, chosen to be in the 
critical plane to avoid phase-matching. Due to the fixed azimuthal angle φ, only type-0 (ee-e) 
interaction exhibits non-zero effective nonlinearity in this case. Equations (2) and (3) are 
numerically solved by a split-step method where dispersion is taken into account to all orders 
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in the frequency domain. The Sellmeier equations used for BBO are well established and 
valid for both wavelengths [11]. Figure 1 illustrates the occurrence of two SH pulses in the 
time domain in accordance with Eq. (10) as well as the modulation of the SH spectrum. The 
different intensity/duration of the two pulses (for equal energy) seen is due to the next order 
(GVD) term not taken into account in the analytical treatment. 

 

Fig. 2. Same as Fig. 1 but for the initial 25 µm propagation in the BBO crystal. 

Figure 2 illustrates the interference pattern in the initial part of the crystal when the two 
SH pulses overlap in time. While using thin samples relaxes the requirements to the spectral 
resolution for reliable measurement of the fringes, it can be seen from the figure that the 
existence of only few fringes will deteriorate the accuracy. 

4. Experimental SHG results with SBO and refinement of the Sellmeier equation 

Non-phase-matched SHG experiments were performed at fundamental wavelengths of 404 
nm (SBO and BBO), 354 nm and 320 nm (SBO only). For input pulse duration of 70 fs, 
setting ΩM to one FWHM of the SH spectral amplitude distribution, one arrives at 
Δ / | Ω |~ 26Mk M  for BBO which justifies the derivation of Eq. (5). Estimations for SHG at 

160 nm in SBO, though based on extrapolations for SHv , yield an even higher ratio of ~33. 

 

Fig. 3. Measured spectral fringes for non-phase-matched SHG in BBO and SBO. 

A 0.423-mm-thick, a-cut SBO crystal was used in this experiment. Note that under the 
c a b< <  convention for the lattice constants [2] the correspondence with the dielectric frame 
is  ( )x y zabc yxz n n n≡ < < . The SH generated in the ee-e (≡cc-c) polarization configuration was 

measured with a McPherson 0.2 m monochromator Model 234/302 (1200 g/mm grating used 
in 2nd and 3rd order for better resolution) in combination with a VUV-optimized CCD 
Camera Andor D0420-BN-995. The slight wedge (1.8 mrad) of the sample made it necessary 
to reduce the beam diameter to <2 mm for proper resolution of the fringes. For SHG of 202 
nm we employed the frequency doubled output of a femtosecond Ti:sapphire amplifier; for 
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SHG of 177 and 160 nm the visible output of an optical parametric amplifier (internal SHG of 
signal) was used after additional external frequency doubling. We tried also to frequency 
double the 3rd harmonic of the femtosecond Ti:sapphire amplifier at 266 nm but the spectral 
resolution was insufficient to resolve SH fringes at the 6th harmonic at ~133 nm. The 
experimental accuracy was evaluated by resolving the SH spectra at 202 nm obtained with 
three different (cut angle and thickness) type-I BBO crystals used in non-phase-matched oo-e 
and ee-e processes: the experimental fringe separation using the 2nd grating order did not 
deviate by more than 5% from the calculated value. 

Figure 3 shows typical results at 202 nm where a comparison with BBO is possible and at 
160 nm. The spectra at 202 nm were recorded in the 2nd grating order. The modulation on the 
short-wave side in this case is an artifact due to imperfect suppression of the fundamental. 
The SH spectrum at 160 nm was recorded in the 3rd grating order. The irregular fringe 
spacing in Fig. 3(c) indicates insufficient sampling of the fringes. Nevertheless the small 
spacings correspond to 55.7 pm. The SH group velocity in SBO was calculated from the 
fringe separation ΔΩ and the period of the sin2-function in Eq. (6): 

 ( ΔΩ ) / (2 ΔΩ)SH F Fv d v v dπ= +  (12) 

The group velocity at the fundamental was derived from the valid Sellmeier equation [2]. The 

SHv  values at 202, 177, and 160 nm were used as experimental values. They were added to 

the 9 experimental values available in the literature at longer wavelengths [2]. 

 

Fig. 4. Experimental data and calculated c / zv  and nz curves with the refined Sellmeier 

equation for 
c zn n≡  of SBO. 

An iterative procedure was employed to fit both c / ( / )z z zv n nλ λ= − ∂ ∂  and zn , which 

were analytically expressed from the Sellmeier equation 2 2 2/ ( )zn A B C Dλ λ= + − −  [2]. The 

initial values used for the parameters A, B, C, and D were those from [2]. The obtained new 
values for these parameters are: A = 2.9966, B = 0.01271 µm2, C = 0.01203 µm2 and D = 
0.03647 µm−2. Figure 4 shows the experimental data and calculation curves with almost 
excellent fit. The calculated refractive index at 160 nm is nz≈1.983. 

5. Conclusion 

In the regime of strong phase- and group-velocity mismatch the short pulse SH spectrum is 
modulated and two SH pulses are formed in the time domain with separation equal to the 
group delay between the SH and the fundamental. The spectral fringes can be used to estimate 
the group velocity and fit the refractive index in spectral ranges where direct measurement is 
difficult, phase-matching is impossible and continuous-wave laser sources are simply not 
available or will produce too low efficiency to detect the SH. Through such an experiment we 
refined the Sellmeier equation for the nc refractive index of SBO, important for RQPM in this 
material which is transparent in the VUV. The new fit is valid down to 160 nm. 
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