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Abstract: In the framework of the temporal coupled mode theory we
consider bound states embedded in the continuum (BSC) of photonic
crystal waveguide as a capacity for light storage. A symmetry protected
BSC occurs in two off-channel microresonators positioned symmetrically
relative to the waveguide. We demonstrate that the symmetry protected
BSC captures a fraction of a light pulse due to the Kerr effect as the pulse
passes by the microresonators. However the amount of captured light is
found to be strongly sensitive to the parameters of the gaussian light pulse
such as basic frequency, duration and intensity. In contrast to the above case
the BSC resulted from a full destructive interference of two eigenmodes
of a single microresonator accumulates a fixed amount of light dependent
on the material parameters of the microresonator but independent of the
light pulse. The BSCs in the Fabry-Perot resonator show similar effects. We
also show that the accumulated light can be released by a secondary pulse.
These phenomena pave a way for all-optical storage and release of light.

© 2015 Optical Society of America
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1. Introduction

One of the most technologically attractive approaches for light storage is the use of slow wave
designs of optical periodic structures to slow down the light pulse [1–3]. Various methods and
designs such as direct-coupled resonators [2, 4, 5] and photonic crystal (PhC) waveguides [6]
have been proposed to slow down the group velocity of light. Slow light waveguides composed
of left-handed materials have been also proposed [7, 8]. In these waveguides, the time average
power in the left-handed material layer flows in an opposite direction of that in the normal
dielectric layer. For the case when light flows are almost equal, slow light and even trapping
can be achieved [9]. The frequency of the slow light regime varies with the thickness of the
layer resulting in so-called trapped rainbow [10–12].

In this paper we propose to employ bound states in the continuum (BSC) as a novel capac-
ity for light storage. Recently the BSCs have attracted much interest in photonics owing to a
possibility to trap light in various photonic systems [13–30]. The BSC is a localized solution
of the Maxwell equations with a discrete eigenfrequency coexisting with the extended modes
of continuous spectrum of the PhC waveguide or radiation continuum. Our main goal is to
demonstrate that the BSCs are able to capture light due the Kerr effect in the microresonators.
Moreover we demonstrate that the application of a secondary light pulset releases trapped light
making the BSC potentially interesting for all-optical light storage and release.

The physics of the light storage by the BSCs is the following. Assume for a moment that
the amplitude of the injected wave is so small that we can neglect the nonlinearity. Because
the BSC is completely decoupled from the continuum it can not be probed by the incoming
wave. However with the increase of the injected power the Kerr effect of the microresonators
becomes important killing two birds with one stone. First, there is no necessity for tuning
material parameters because the Kerr effect in the microresonators results in occurrence of self-
induced BSCs [31–33]. Second, the nonlinearity couples the BSC with the continuum so that
the injected wave excites the BSC transforming it into a quasi-BSC. Once the pulse has passed
by the microeresonator the quasi-BSC is again decoupled from the waveguide and becomes a
true BSC. As a result some amount of light is trapped in the true BSC opening an opportunity
for light storage. Finally, the application of a secondary pulse again transforms the true BSC
into a quasi-BSC with finite life-time and releases the light with substantial or even 100%
efficiency. Below we inspect these ideas on the basis of three simplest 2D PhC designs which
realize the self-induced BSCs.

2. Symmetry protected BSC

We begin with the most obvious system in which light can be trapped by the symmetry pro-
tected BSC [16, 20, 23, 34]. For clear visualization of such a BSC we present in Fig. 1 2D
photonic crystal (PhC) layout with electric field profile of the antisymmetric mode which is the
BSC [16]. However interested reader can easily design different layouts based for instance on
nano resonators with extremely high Q-factors in air-hole 2D PhC system [35–37]. In order to
present the mechanism of light storage in the BSC in the most comprehensive form we assume
that among all eigenmodes of the microresonator only the lowest monopole TM mode has the
eigenfrequencyω0 embedded into the first TM propagation band of the directional PhC waveg-
uide. Then the eigenmodes of the total system of two resonators can be classified as symmetric
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Fig. 1. (a). The single row of the rods is removed from the PhC to form a directional pho-
tonic waveguide which supports a band of guided even TM mode. Two defect rods shown
in gray with the Kerr effect are inserted symmetrically relative to the waveguide to form
identical off-channel optical microresonators coupled with the waveguide. (b). Equivalent
CMT presentation for PhC layout. (c). Electric field profile in the symmetry protected BSC.

and antisymmetric modes

As,a = (A1±A2)/2, ωs,a = ω0± u, (1)

where variableA j, j = 1,2 presents the amplitude of the monopole mode in the j-th microres-
onator andu is due to overlapping of these modes. For simplicity we disregard the dispersion
properties of the waveguide and consider that light with the amplitudeEin is injected into the
waveguide as shown in equivalent coupled mode theory layout in Fig. 1(b). We assume the
injected light is symmetrical relative to the cental line of the waveguide. Then the temporal
coupled mode theory (CMT) equations have the following form [38,39]

−iȦs = (ωs +2iγ)As− i
√γEineiωt ,

−iȦa = ωaAa, (2)

where the term
√γ is responsible for the coupling of the off-channel resonators with the waveg-

uide. Thus, the temporal CMT equations clearly demonstrate that the antisymmetric modeAa

is a symmetry protected BSC.
If the waveguide can support only the symmetrical propagating mode then injected light

can not probe the BSC. However that is true only for the linear case. If the microresonators
are nonlinear owing to the Kerr effect there is a nonlinear shift of the eigenfrequencyω0 →
ω0+λ |A j|2 where|A j|2 is the intensity of light in the j-th microresonator. Substituting Eq. (1)
into the CMT equations (2) we obtained the CMT equations modified with account of the Kerr
effect as follows

−iȦ1 = (ω0+λ |A1|2)A1+ iγ(A1+A2)+ uA2− i
√γEin(t)eiωt ,

−iȦ2 = (ω0+λ |A2|2)A2+ iγ(A1+A2)+ uA1− i
√γEin(t)eiωt , (3)

whereλ is the nonlinear coefficient [35,40]

λ =
ω0n0c2n2

2

8πa2

∫

E4
m(x,y)dxdy, Nm =

∫

ε(x,y)E2
m(x,y)dxdy =

a2

cn2
(4)

with integration over the cross-section of the defect rod.Em(x,y) is the monopole eigen-
mode normalized via the constantNm. The profile of the monopole mode is clearly seen in
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the BSC mode formed by two defect rods shown in Fig. 1. We presentestimations based on
the PhC structure in Fig. 1(a) which consists of GaAs rods withn0 = 4.3,a = 0.5µm, radius
0.18µm. The single row of the rods is removed from the PhC to form a directional photonic
waveguide which supports a band of guided even TM mode spanning from 0.302 to the up-
per band edge 0.444 [41]. Two nonlinear defect rods with the same radius 0.18µm,n0 = 2
and n2 = 2 · 10−12W/cm2 shown in gray are inserted symmetrically relative to the waveg-
uide to form identical off-channel optical microresonators coupled with the waveguide. Esti-
mations give the following values of the relevant parameters for the equivalent CMT layout:
ω0 = 0.352,γ ≈ 0.01,u ≈ 0.001,λ ≈ 10−4.
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Fig. 2. (a). Amplitudes of eigenmodes of resonators under application of a gaussian pulse
in the PhC waveguide shown in Fig. 1(a). Green dash line shows the profile of the injected
pulse with parameters:E0 = 0.575,ν = 10−4,σ = 10000, dash-dot line shows the sym-
metric mode amplitude|as| and red solid line shows the amplitude of the antisymmetric
|aa| BSC mode. The amplitude of trapped light|aa(∞)| in the symmetry protected BSC
vs: (b). AmplitudeE0, (c) The detuning parameterν, and (d) The duration of impulse
σ for E0 = 0.575 of the gaussian pulse Eq. (6). (e). The release of light from BSC af-
ter application of a secondary gaussian pulse withσ = 10797,ν = 0.0001,E0 = 0.7741.
The parameters of the resonators are the following: with the parametersω0 = 0.352,γ =
0.01,u = 0.001,λ = 0.0001.

We rewrite Eq. (3) by use ofAs,a(t) = as,a(t)eiωt as follows

−iȧs = (ν +λ [|as|2+2|aa|2])as +λ a2
aa∗s +2iγas− i

√γEin(t),

−iȧa = (ν +λ [|aa|2+2|as|2])aa +λ a2
s a∗a. (5)

whereν = ω0−ω is the detuning parameter. One can see from the above equations that al-
though the antisymmetric modeaa is decoupled from the injected light it can be excited via the
nonlinear terms.

In order to trap light we apply a gaussian pulse of light

Ein(t) = E0exp(−t2/2σ2). (6)
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Figure 2(a) shows that the injected gaussian pulse excites thesymmetric modeas which follows
the amplitude of the injected light pulse. When the symmetric mode is excited sufficiently it
triggers excitation of the antisymmetric mode through the nonlinear terms in Eq. (5). After the
pulse has passed by the resonator the symmetric mode leaks into the waveguide and the anti-
symmetric mode becomes isolated from the waveguide, i.e., becomes a true BSC with trapped
amplitude|aa(∞)| as shown in Fig. 2(a). Figures 2(b) and 2(c) show that there are windows in
the amplitude and frequency of gaussian pulse in which light storage takes place. The duration
of gaussian pulseσ is to be of order 1/ν or larger to result in high intensity of the captured
light as shown in Fig. 2(d). Therefore the robust symmetric BSC is capable for light trapping,
however the amount of storage energy proportional to|aa(∞)|2 [35] is highly sensitive to the
parameters of the injected gaussian pulse as seen from Figs. 2(b)-2(d). The application of the
secondary pulse again opens the BSC according to Eq. (5) and the symmetry protected BSC
leaks into the waveguide as shown in Fig. 2(e). The parameters of the secondary gaussian pulse
σ = 9885,E0 = 0.7741,ν = 0.0001 give optimal effect of release. One can also see high dy-
namical response of the BSC mode when the secondary pulse is passed by [42].

3. Single microcavity

Miniaturization of photonic elements and efficient transport of light are two paramount issues
required for the design of integrated photonic circuits. To address the above issues instead of
two microresonators we use a single microresonator with two eigenmodes embedded into the
propagation band of the waveguide. Then the localization occurs due to a full destructive in-
terference of corresponding resonant modes [43]. Specifically, we exploit the design shown in
Fig. 3(a) [25]. Four linear defect rods of the same radius but with dielectric constantε different
from the dielectric constant of host rods shown by green open circles are placed at the vertexes
of a square. On the both sides of the resonator four additional rods are inserted in the waveguide
in order to suppress the coupling of the resonator with the waveguide. Totally, these nine defect
rods form a microresonator embedded into the PhC waveguide whose eigenfrequencies versus
the dielectric constantε are plotted in Fig. 3(b) together with the eigenmodes [41]. Note, both
eigenmodes are symmetric relative to inversion of the y-axis shown in Fig. 3(a), and therefore
are coupled with the symmetrical propagating mode in the waveguide channel. The eigenfre-
quencies of the monopole and quadrupole-diag modes cross while effect of other eigenmodes,
two dipole and quadrupole-xy modes are not important [25] and are not shown in Fig. 3(b).

Assume, we can vary the dielectric constantε of the defect rods. Then as shown in Fig. 3(b)
the eigenfrequencies are crossing. It is important to note that both eigenmodes have the same
parity as the parity of electromagnetic mode propagating over the waveguide. Therefore each
mode would decay into the waveguide becoming a resonant mode with a finite resonant width.
The reader can find specific values of the resonant widths in Ref. [25]. When the eigenfre-
quencies cross the resonances undergo avoiding crossing resulting in that one of the resonant
widths turns to zero forming a BSC [25,43]. Experimentally this scenario for BSC occurrence
meets with difficulties of tuning the dielectric constant of defect rods that makes the BSC non
robust [23, 25]. It is remarkable that the Kerr effect in the microresonator removes this diffi-
culty. The robust BSC appears in a self-adaptive way due to the nonlinear shift of the dielectric
constant [25,31–33]. Therefore the design in Fig. 3 offers a capacity for light storage.

The temporary CMT equations for the relevant modes of the resonator take the following
form with account of instantaneous Kerr effect

−iȦ1 = (ω1+λ11|A1|2+ iγ1)A1+(u+λ12(A1A∗
2+A∗

1A2)+ i
√γ1γ2)A2− i

√γ1Ein(t),

−iȦ2 = (ω2+λ22|A1|2+ iγ2)A2+(u+λ12(A1A∗
2+A∗

1A2)+ i
√γ1γ2)A1− i

√γ2Ein(t), (7)

where the subscripts 1, 2 refer to the amplitudes of monopole and quadrupole-diag eigenmodes,
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Fig. 3. (a). The same PhC structure as shown in Fig 1(a) however with single in-channel mi-
croresonator. Four linear defect rods of the same radius with dielectric constantε are shown
by green circles. (b). The eigenfrequencies of two eigenmodes (monopole and quadrupole-
diag) shown as dependent on the dielectric constant of the central defect rod. (c). Light
trapping by the BSC for the first pulse with amplitudeE0 = 0.2 and duration 2×104. The
release of light by the secondary pulse with amplitudeE0 = 0.006 and duration 2×104.
Inset shows details of excitation dynamics of eigenmode amplitudes after application of the
first pulse. The parameters substituted into the CMT equations (9) are taken from Ref. [25]:
ω1 = 0.36,ω2 = 0.365,γ1 = 3·10−5,γ2 = 1.3·10−4,u = 1.77·10−4,λ11 = 10−4.
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and nonlinear coefficients equal [35,40]

λmn =
ω0n0c2n2

2

8πa2

∫

E2
m(x,y)E

2
n (x,y)dxdy (8)

with normalization constants given by Eq. (4). The eigenmodesEm(x,y) are shown in Fig. 3(b).
Integration includes host rods within a region of localization of the eigenmodesEm(x,y).

For the stationary processEin(t) = E0eiωt ,A j(t) = A jeiωt the CMT equations (7) takes the
following form
(

ω1+λ11|A1|2−ω + iγ1 u+λ12(A1A∗
2+A∗

1A2)+ i
√γ1γ2

u+λ12(A1A∗
2+A∗

1A2)+ i
√γ1γ2 ω2+λ22|A2|2−ω − iγ2

)(

A1

A2

)

=−i

( √γ1√γ2

)

E0.

(9)
The BSC occurs when the inverse of the matrix in Eq. (9) does not exist, i.e., when, the de-
terminant of the matrix and respectively, one of the complex eigenvalues turns to zero. For the
linear case formation of the BSC requires tuning of material parameters and occurs at [25]

ω2−ω1 =
u(γ2− γ1)√γ1γ2

,ωBSC = ω1+ u

√

γ2

γ1
, (10)

For the nonlinear case Eq. (10) can be satisfied in a self-induced way [25,31] without necessity
to tune material parameters:ω j → ω j +λ j j|A j|2,u → u+λ12(A1A∗

2+A∗
1A2).

Two factors substantially weaken the nonlinear contribution of the quadrupole-diag mode.
First, as seen from Fig. 3(a) two nodal lines of the quadrupole mode go through the central de-
fect rod which enormously decreases the integrals in Eq. (8). Second,γ1 ≪ γ2 that suppresses
excitation of the quadrupole-diag mode amplitudeA2 compared to the monopole mode ampli-
tudeA1. Therefore for simplicity we takeλ12 = 0,λ22 = 0 and obtain from Eq. (10) that the
BSC is achieved at fixed values of the mode intensities [25]

λ11|A1c|2 = ω2−ω1+
u(γ2− γ1)√γ1γ2

, |A2c|2 =
γ1

γ2
|A1c|2 (11)

when the intensities of monopole and quadrupole-diag modes become equal, respectively,

I2c = |A2c|2 =
γ1

γ2
I1c, I1c ≪ I2c, ωBSC ≈ ω2− u

√

γ1

γ2
. (12)

Thus the amplitudesAm of the BSC eigenmode are fixed and depend only on the design of
the optical microresonator and material parameters. Therefore, the amount of trapped light by
the BSC is also fixed. The amount does not depend on the basic frequency and profile of a
light pulse. Therefore for successful light storage the amount of pulse power should be enough
to populate the BSC with the intensity given by Eqs. (11) and (12). The process of trapping
numerically computed and shown in Fig. 3(c) agrees with this consideration. One can see that
at first both mode amplitudesAm,m = 1,2 follow the pulse. After the time of order 104 the
amplitudes stick to the BSC amplitudes given by Eq. (11) shown by dash lines in Fig. 3(c). The
light accumulated in the resonator remains trapped until the next gaussian pulse is applied.

4. Fabry-Perot BSC

The next design is close to that considered in section 2, however two defect nonlinear rods
are positioned at some distanceL between each other as shown in Fig. 4(a). Each defect rods
presents off-channel nonlinear microresonator which gives rise to a full reflection at the fre-
quency dependent on the intensity of light [44]. Therefore these two off-channel resonators
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Fig. 4. (a). Layout of 2D PhC which forms the Fabry-Perot resonator. Two defect rods
shown by gray with the Kerr effect are inserted near by PhC waveguide. (b). Equivalent
CMT presentation for PhC layout with equivalent parameters:γ = 0.01,λ = 0.0001,ω0 =
0.352,u = 0.

form a Fabry-Perot resonator. Then if the distance between the microresonators is tuned to ful-
fill the integer half-wavelength condition [32] the system supports a BSC. For simplicity we
consider that only defect rods shown by gray in Fig. 4(a) are subjected to the Kerr effect and
neglect the nonlinear phase shift in the waveguide. The CMT equations have the following
form [13,45]

−iȦ1 = (ω0+λ |A1|2+ iγ)A1+ iγA2eiθ − i
√γEin(t)eiωt ,

−iȦ2 = (ω0+λ |A2|2+ iγ)A2+ iγA1eiθ − i
√γEin(t)eiωt+iθ , (13)

whereθ is the phase shift incurred as the wave travels from the first defect to the second one.
For a monochromatic waveθ = k(ω)L. However for a light pulse which is an expansion over
monochromatic waves these equations (13) are not valid. Therefore we have to modify Eq. (13)
taking into consideration the delay timeτ for travelling from one microcavity to another:

−iȦ1 = (ω0+λ |A1|2+ iγ)A1+ iγA2(t − τ)− i
√γEin(t)eiωt ,

−iȦ2 = (ω0+λ |A2|2+ iγ)A2+ iγA1(t − τ)− i
√γEin(t − τ)eiω(t−τ). (14)

For stationary process witha j(t) = A jeiωt , θ = τω . Equation (14) can be obtained from
Eq. (13) after the substitutionω with the differential operatori ∂

∂ t . Then we haveA j(t − τ) =
exp[iτ ∂

∂ t ]A j(t) = exp(iθ )A j(t). The BSC occurs if the determinant of the matrix in the station-
ary CMT equations

(

ω0+λ |A1|2−ω + iγ iγeiτω

iγeiτω ω0+λ |A2|2−ω + iγ

)

equals zero [32]. That condition gives us

τω = πn, |A1c|2 = |A2c|2 =
1
λ

(πn
τ

−ω0

)

, (15)

wheren is an integer. For the parameters listed in Fig. 4 andω = ω0+ ν,τ = π/ω we obtain
the amplitudes of the intensities of the BSC take discrete value defined by the ratioν

λ for
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n = 1. They are are shown in Fig. 5(a) by black dash lines. The numerical solution of Eq. (14)
shows as injected gaussian pulse is captured at this BSC as shown in Fig. 5(a) provided that
the amplitude of the injected pulse exceeds the threshold similar to the previous design with
single microresonator. Application of the secondary pulse releases captured light. In Fig. 5(b)
we present the most optimal process which occurs at the parameters of the gaussian pulse listed
in figure caption. As different from the case of single microresonator in section 3, the BSC
intensities are discretized by integer n as given by Eq. (15). Therefore application of larger
pulse intensities can give rise to trapping of light in the next BSCs withn > 1.

time
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Fig. 5. Time evolution of mode amplitudes|A1| (blue solid line) and|A2| (red dash line) af-
ter the injection of a first gaussian pulse shown by green dash-dot line withσ = 10000,E0 =
0.3522,ν = 10−5 (a) and a secondary pulse withσ = 4705,E0 = 0.545,ν = 10−5. Black
dash lines show the BSC amplitude given by Eq. (15).

5. Discussion and conclusions

In regard to stability the approaches based on stopping light in linear PhC designs briefly dis-
cussed in the Introduction are preferable compared to the light storage in BSCs in nonlinear
PhC structures. Moreover the linear system can operate at any light intensity while the light
storage in the self-induced BSCs is possible only if the amplitude of the injected pulse exceeds
a certain threshold sufficient to populate discrete value of the BSC intensity . The process of
light slowing demands tuning of operational frequency of light to the specific points of the
frequency spectrum of waveguide where the group velocity of light tends to zero. While the
only requirement in the present approach is that the BSC frequencies reside in the propagation
band of PhC waveguide. The next fundamental advantage of the BSC designs is a ultra-high
compactness. The trapping of light in a single defect rod due to a full destructive interference
of the monopole and quadrupole-diag modes [43] occurs in the volume of order ofa2h wherea
is the period of 2D PhC andh is the length of the rods. While the former linear designs for light
storage require much more volume. The second advantage of exploiting the self-induced BSC
is that the light can be easily released by a secondary pulse rendering the process of storage
and release by demand all-optical. Instead of the Kerr effect resulting in self-induced BSCs
we can utilize a local heating or local deformation of the PhC to reach the condition for the
BSC in controllable manner. However these approaches deprive the advantage of all-optical
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manipulation.
In the present paper we considered the phenomenon of light storage and release by the bound

states in the continuum in the framework of temporal coupled mode theory with the parame-
ters borrowed from numerical calculations for real 2D PhC structures. Direct study of these
processes in PhC designs requires extremely time consuming computations even for the case
when the nonlinearity is accounted for only the defect rods. The temporal CMT allows us easily
asses merits and disadvantages of the PhC designs considered in sections 2-4. The first design
consists of a waveguide with two off-channel nonlinear microresonators weakly coupled with
the waveguide. The design holds the antisymmetric mode shown in Fig. 1(c) which is decou-
pled from the symmetric propagating mode and thereby is determined as a symmetry protected
bound state. Application of a light pulse damages this BSC as the pulse passes by the microres-
onators because of nonlinear interaction of the BSC with the symmetrical mode as seen from
Eq. (5). As the result some amount of light is trapped in the BSC after the pulse has been
passed. However the next pulse is again coupled with the BSC giving rise to release of captured
light. Figures 2(b)–2(d) show that the light storage is highly sensitive to the parameters of the
gaussian pulse. That is result of the BSC intensity or equivalently the BSC frequency depends
on to which extend the BSC is populated.

In the next section we considered different PhC design with a single in-channel microres-
onator in which the BSC is a result of full destructive interference of two resonant modes. In
the linear case the occurrence of BSC would require tuning of the material parameters. It is
remarkable that due to the Kerr effect BSCs occur by self-induced way as it was shown in
Refs. [25,31,33] if the intensity of accumulated light achieves critical values given by Eq. (12).
Finally we considered in the framework of the temporal CMT the Fabry-Perot PhC structure
shown in Fig. 4. The temporal CMT equations were modified to account for the delay times to
yield Eq. (14). This design also supports self-induced BSCs as was shown in Ref. [32] however
with multiple discretized BSC intensities as given by Eq. (15). That gives more freedom in light
storage compared to the previous design.

There are processes of irreversible light emission due to finite thickness of 2D PhC as well
as due to imperfectness of the structure which take place for any approach. That will restrict the
storage in time. Also the nonlinear resonator has a risk of bifurcation into modes coupled with
different waveguide channels or radiation modes for example because of modulation instability
of enough long nonlinear defect rod. These processes can be readily involved into the CMT
approach by expansion of number of modes of the microresonator and number of channels
coupled with the modes. But it is clear that a criteria to exclude these unwanted modes is the
frequency distance between useful modes and unwanted modes should substantially exceed the
perturbation due to the Kerr effect. In the present paper we consider this criteria is fulfilled.

Let us estimate the values of the power of injected light which are necessary to achieve the
all-optical storage and release by demand. The nonlinearity constant is estimated in order of
magnitude as 10−4. Then the injected amplitude in terms of CMT equationsE0 = 1 corresponds
to 625W/a wherea= 0.5µm is the lattice unit. Therefore in order to store light in the symmetry
protected BSC (section 2) by gaussian pulse its power should exceedE2

0 · 625W/a. For the
length of rods compared toa we obtain that power injected into the waveguide channel should
be around 180 W. However this power can be reduced further when the tuning parameterν is
decreased as it is seen from Fig. 2(b). Similar estimates can be applied for other PhC designs
in Sections 3 and 4. However these designs demand that the injected amplitude exceed the
threshold values. For the single microresonator in section 3 the injected power should exceed
25W . For the Fabry-Perot design we obtain the value around 100 W however this power also
can be reduced with decereasing of the tuning parameterν. It is very important to notice the
Kerr effect is smallλ ∼ 10−4. Therefore to compensate for smallλ we have to tuneν to be the
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same order in magnitude asλ . The same refers to the duration of the gaussian pulseσ which
has to be of order 1/ν.
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