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INTRODUCTION

Extensive studies of the phase of coexisting super�
conductivity and antiferromagnetism (SC + AFM)
began after the discovery of a number of rare�earth
heavy�fermion intermetallic compounds in which
such states were observed [1]. The SC + AFM phase
induced by externally applied pressure occurs in such
cerium intermetallic compounds as CeIn3, CeRhIn5,
and CePt2In7 (of the group CenTmIn3n + 2m [2]).

Recent experimental investigations of CeRhIn5
raised problems relating to fundamentals of the struc�
ture of heavy�fermion systems.

Under atmospheric pressure, CeRhIn5 is an anti�
ferromagnet with a Neél temperature of 3.8 K [3].
Applying external pressure to a sample lowers its Neél
temperature, evidence of the suppression of long�
range antiferromagnetic (AFM) order. In the region of
pressures where the AFM order is greatly suppressed,
a reduction in temperature is accompanied by the
onset of the superconducting (SC) state [4]. In a num�
ber of NQR and neutron diffraction experiments, it
was shown that a microscopically homogeneous
SC+AFM phase exists in CeRhIn5 up to critical pres�
sures at which the AFM state is destroyed [5, 6].

The most probable nonphonon SC mechanism in
heavy�fermion systems is one involving interaction of
a magnetic nature and spin fluctuations [7, 8]. Other
nonphonon mechanisms are directly related to fluctu�
ations of nonmagnetic nature in the vicinity of a quan�
tum critical point. In [9], it was suggested that the
onset of Cooper instability is related to valence fluctu�
ations. The possibility of Cooper pairing in the vicinity
of local quantum critical point, where the Kondo
regime is violated, was demonstrated in [10].

A model of Kondo lattice [11] is often used in
microscopic descriptions of the magnetism of heavy�
fermion systems. This adequately describes the situa�
tion when a localized f�level is far from the Fermi level.
With mixed valence (which is common in cerium
compounds), the f�level and the Fermi level are close.
In this regime, the minimum microscopic model is the
periodic Anderson model (PAM).

It is known that the Shrieffer–Wolf transformation
often used to obtain effective exchange interaction
cannot be applied to the PAM Hamiltonian if the sys�
tem is in the mixed valence regime [12]. At the same
time, exchange interaction between localized elec�
trons can be induced via high�energy hybridization
processes [13]. The resulting exchange interaction is
actually the Cooper pairing mechanism that produces
the SC + AFM phase in heavy�fermion systems
[14, 15]. This approach allows a qualitative descrip�
tion of the phase transitions observed in CeRhIn5 at
low temperatures as pressure grows.

In this work, a more general approach is presented
that uses an effective temperature�dependent scatter�
ing matrix for a quasi�localized subsystem and allows
us to consider the kinematic mechanism behind the
formation of AFM, SC, and SC + AFM phases in
cerium intermetallic compounds.

It should be noted that the temperature of the onset
of AFM ordering in the above compounds does not
exceed several degrees Kelvin. The temperature of SC
formation is on the same order of magnitude. We
therefore assume that both orderings are induced by
the same interaction. When hybridization is taken into
account, the exchange mean�field theory yields rather
high values of the critical temperature for the AFM
phase [16]. The method proposed in this work allows
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us to develop a spin�wave theory of antiferromag�
netism in the low temperature region with allowance
for hybridization between itinerant and localized elec�
tron subsystems. Calculations for the temperature�
dependent scattering matrix are based on using the
diagram technique in atomic representation with
Hubbard operators [17, 18].

Earlier, expansion of the Green functions by semi�
invariants [19] and the method of Kubo invariants [20]
were used to construct a theory of perturbations within
the PAM. Using the diagram technique in the atomic
representation and the generalized random phase
approximation [22], the dynamic magnetic suscepti�
bility of the paramagnetic PAM phase was calculated
in [21].

MODEL

In a two�sublattice representation, the PAM
Hamiltonian can be written in the form

(1)

where  operator allows for the noninteracting sub�
systems of localized and itinerant electrons

(2)

and the Hmix operator considers hybridization pro�
cesses involving the two groups of electrons:

 (3)

Here  and  are the operators for annihilation of
itinerant electrons with quasi�momentum p and spin
projection  in the first and second AFM zones with
energies  and , respectively; μ is the system
chemical potential;  is the operator of electron
annihilation on localized site f(g) belonging to 
sublattice;  is the localized level energy;

 is the operator of the number localized
electrons on site f with spin projection σ; U is the
parameter of on�site Coulomb interaction between
localized electrons. In the Hmix summand, quantities

 and  represent Fourier transforms of hybridiza�
tion matrix elements belonging to the same sublattice
and to different sublattices, respectively; and N is the
total number of sites in the two sublattices.
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TEMPERATURE�DEPENDENT 
SCATTERING MATRIX 

OF A QUASI�LOCALIZED SUBSYSTEM

To calculate the properties of the normal and SC
phases with AFM ordering, we employ Matsubara
Green functions constructed using Hubbard operators

(4)

where

(5)

In these expressions, the operator time dependence
is contained in their interaction representation. The
related averaging is performed using a zero�order
Hamiltonian. Symbols λ and ν determine the root
vectors for the Hubbard operator and T is the temper�
ature. The dimension of the root vector coincides with
that of the atomic states basis and the root vector
n�component is represented in the simple universal
form  [18].

For the introduced Green functions, summing over
the degrees of freedom that correspond to the itinerant
subsystem can be performed explicitly, and the effec�
tive temperature�dependent scattering matrix can be
obtained:

where the  operators are given by expressions

matrix  has the form

and  are bare Green functions for itiner�
ant electrons.

Construction of the effective scattering matrix sim�
plifies calculations of localized Green functions due to
the equality

As a result, the averaging operation is accomplished
with allowance for the zero�order Hamiltonian of the
localized subsystem only, and the effective Hamilto�
nian acquires the structure of the Hubbard Hamilto�
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nian. The kinematic mechanism arising from the non�
Fermi character of commutation relations of the Hub�
bard operators in this case leads to both AFM ordering
and Cooper pairing in the presence of long�range
AFM order. The ensuing dependence of the effective
parameters on Matsubara variables describes the retar�
dation effects and brings about renormalization of the
energy parameters.

CONCLUSIONS

Exact regrouping of the diagram series was accom�
plished in the periodic Anderson model after summa�
tion under the sign of average in every order of pertur�
bation theory by dynamic variables relating to an itin�
erant subsystem. Calculating the Green functions for a
quasi�localized subsystem was thus reduced to calcu�
lating these functions for an effective Hubbard Hamil�
tonian. This allowed us to determine the kinematic
mechanism behind the formation of antiferromag�
netism, superconductivity, and the coexistence phase
of superconductivity and antiferromagnetism in
cerium heavy�fermion intermetallic compounds.
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